Spaces:
Sleeping
Sleeping
from inspect import isfunction | |
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, einsum | |
from einops import rearrange, repeat | |
from ldm.modules.diffusionmodules.util import checkpoint | |
def exists(val): | |
return val is not None | |
def uniq(arr): | |
return{el: True for el in arr}.keys() | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def max_neg_value(t): | |
return -torch.finfo(t.dtype).max | |
def init_(tensor): | |
dim = tensor.shape[-1] | |
std = 1 / math.sqrt(dim) | |
tensor.uniform_(-std, std) | |
return tensor | |
# feedforward | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
class Conv1dGEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out,kernel_size = 9): | |
super().__init__() | |
self.proj = nn.Conv1d(dim_in, dim_out * 2,kernel_size=kernel_size,padding=kernel_size//2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=1) | |
return x * F.gelu(gate) | |
class Conv1dFeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.,kernel_size = 9): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
project_in = nn.Sequential( | |
nn.Conv1d(dim, inner_dim,kernel_size=kernel_size,padding=kernel_size//2), | |
nn.GELU() | |
) if not glu else Conv1dGEGLU(dim, inner_dim) | |
self.net = nn.Sequential( | |
project_in, | |
nn.Dropout(dropout), | |
nn.Conv1d(inner_dim, dim_out,kernel_size=kernel_size,padding=kernel_size//2) | |
) | |
def forward(self, x): # x shape (B,C,T) | |
return self.net(x) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it.zero-initializing the final convolutional layer in each block prior to any residual connections can accelerate training. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def Normalize(in_channels): | |
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
class CrossAttention(nn.Module): | |
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):# 如果设置了context_dim就不是自注意力了 | |
super().__init__() | |
inner_dim = dim_head * heads # inner_dim == SpatialTransformer.model_channels | |
context_dim = default(context_dim, query_dim) | |
self.scale = dim_head ** -0.5 | |
self.heads = heads | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential( | |
nn.Linear(inner_dim, query_dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x, context=None, mask=None):# x:(b,T,C), context:(b,seq_len,context_dim) | |
h = self.heads | |
q = self.to_q(x)# q:(b,T,inner_dim) | |
context = default(context, x) | |
k = self.to_k(context)# (b,seq_len,inner_dim) | |
v = self.to_v(context)# (b,seq_len,inner_dim) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))# n is seq_len for k and v | |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale # (b*head,T,seq_len) | |
if exists(mask):# false | |
mask = rearrange(mask, 'b ... -> b (...)') | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
sim.masked_fill_(~mask, max_neg_value) | |
# attention, what we cannot get enough of | |
attn = sim.softmax(dim=-1) | |
out = einsum('b i j, b j d -> b i d', attn, v)# (b*head,T,inner_dim/head) | |
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)# (b,T,inner_dim) | |
return self.to_out(out) | |
class BasicTransformerBlock(nn.Module): | |
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True): # 1 self 1 cross or 2 self | |
super().__init__() | |
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention,if context is none | |
self.ff = Conv1dFeedForward(dim, dropout=dropout, glu=gated_ff) | |
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, | |
heads=n_heads, dim_head=d_head, dropout=dropout) # use as cross attention | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def forward(self, x, context=None): | |
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) | |
def _forward(self, x, context=None):# x shape:(B,T,C) | |
x = self.attn1(self.norm1(x)) + x | |
x = self.attn2(self.norm2(x), context=context) + x | |
x = self.ff(self.norm3(x).permute(0,2,1)).permute(0,2,1) + x | |
return x | |
class TemporalTransformer(nn.Module): | |
""" | |
Transformer block for image-like data. | |
First, project the input (aka embedding) | |
and reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
""" | |
def __init__(self, in_channels, n_heads, d_head, | |
depth=1, dropout=0., context_dim=None): | |
super().__init__() | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = Normalize(in_channels) | |
self.proj_in = nn.Conv1d(in_channels, | |
inner_dim, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.transformer_blocks = nn.ModuleList( | |
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) | |
for d in range(depth)] | |
) | |
self.proj_out = zero_module(nn.Conv1d(inner_dim, | |
in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0))# initialize with zero | |
def forward(self, x, context=None):# x shape (b,c,t) | |
# note: if no context is given, cross-attention defaults to self-attention | |
x_in = x | |
x = self.norm(x)# group norm | |
x = self.proj_in(x)# no shape change | |
x = rearrange(x,'b c t -> b t c') | |
for block in self.transformer_blocks: | |
x = block(x, context=context)# context shape [b,seq_len=77,context_dim] | |
x = rearrange(x,'b t c -> b c t') | |
x = self.proj_out(x) | |
return x + x_in | |
class PositionalEncoding(nn.Module): | |
def __init__(self, num_hiddens, max_len=2000): | |
super(PositionalEncoding, self).__init__() | |
self.P = torch.zeros((1, max_len, num_hiddens)) | |
X = torch.arange(max_len, dtype=torch.float32).reshape(-1, 1) / torch.pow(10000, | |
torch.arange(0, num_hiddens, 2, dtype=torch.float32) / num_hiddens) | |
self.P[:, :, 0::2] = torch.sin(X) | |
self.P[:, :, 1::2] = torch.cos(X) | |
def forward(self, x): | |
x = x + self.P[:, :x.shape[1], :].to(x.device) | |
return x | |
class PositionEmbedding(nn.Module): | |
MODE_EXPAND = 'MODE_EXPAND' | |
MODE_ADD = 'MODE_ADD' | |
MODE_CONCAT = 'MODE_CONCAT' | |
def __init__(self, | |
num_embeddings, | |
embedding_dim, | |
mode=MODE_ADD): | |
super(PositionEmbedding, self).__init__() | |
self.num_embeddings = num_embeddings | |
self.embedding_dim = embedding_dim | |
self.mode = mode | |
if self.mode == self.MODE_EXPAND: | |
self.weight = nn.Parameter(torch.Tensor(num_embeddings * 2 + 1, embedding_dim)) | |
else: | |
self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
# use xavier_normal_ to initialize | |
torch.nn.init.xavier_normal_(self.weight) | |
# use sin cons to initialize | |
# X = torch.arange(self.num_embeddings, dtype=torch.float32).reshape(-1, 1) / torch.pow(10000, | |
# torch.arange(0, self.embedding_dim, 2, dtype=torch.float32) / self.embedding_dim) | |
# init = torch.Tensor(self.num_embeddings,self.embedding_dim) | |
# init[:, 0::2] = torch.sin(X) | |
# init[:, 1::2] = torch.cos(X) | |
# self.weight.data.copy_(init) | |
def forward(self, x): | |
if self.mode == self.MODE_EXPAND: | |
indices = torch.clamp(x, -self.num_embeddings, self.num_embeddings) + self.num_embeddings | |
return F.embedding(indices.type(torch.LongTensor), self.weight) | |
batch_size, seq_len = x.size()[:2] | |
embeddings = self.weight[:seq_len, :].view(1, seq_len, self.embedding_dim) | |
if self.mode == self.MODE_ADD: | |
return x + embeddings | |
if self.mode == self.MODE_CONCAT: | |
return torch.cat((x, embeddings.repeat(batch_size, 1, 1)), dim=-1) | |
raise NotImplementedError('Unknown mode: %s' % self.mode) | |
def extra_repr(self): | |
return 'num_embeddings={}, embedding_dim={}, mode={}'.format( | |
self.num_embeddings, self.embedding_dim, self.mode, | |
) | |
class TemporalTransformerSkip(TemporalTransformer): | |
def __init__(self, in_channels, n_heads, d_head, | |
depth=1, dropout=0., context_dim=None): | |
super().__init__(in_channels, n_heads, d_head, | |
depth, dropout, context_dim) | |
self.skip_linear = nn.Linear(2 * in_channels, in_channels) | |
def forward(self, x,skip, context=None):# x shape (b,c,t) | |
# note: if no context is given, cross-attention defaults to self-attention | |
x_in = x | |
x = self.norm(x)# group norm | |
x = self.proj_in(x)# no shape change | |
x = rearrange(x,'b c t -> b t c') | |
skip = rearrange(skip,'b c t -> b t c') | |
x = self.skip_linear(torch.cat([x,skip],dim=-1)) | |
for block in self.transformer_blocks: | |
x = block(x, context=context)# context shape [b,seq_len=77,context_dim] | |
x = rearrange(x,'b t c -> b c t') | |
x = self.proj_out(x) | |
return x + x_in | |