Spaces:
Sleeping
Sleeping
inLine-XJY
commited on
Commit
•
d276afe
1
Parent(s):
e787d71
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse, os, sys, glob
|
2 |
+
import pathlib
|
3 |
+
directory = pathlib.Path(os.getcwd())
|
4 |
+
print(directory)
|
5 |
+
sys.path.append(str(directory))
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
from omegaconf import OmegaConf
|
9 |
+
from PIL import Image
|
10 |
+
from tqdm import tqdm, trange
|
11 |
+
from ldm.util import instantiate_from_config
|
12 |
+
from ldm.models.diffusion.scheduling_lcm import LCMSampler
|
13 |
+
from ldm.models.diffusion.plms import PLMSSampler
|
14 |
+
import pandas as pd
|
15 |
+
from torch.utils.data import DataLoader
|
16 |
+
from tqdm import tqdm
|
17 |
+
from icecream import ic
|
18 |
+
from pathlib import Path
|
19 |
+
import soundfile as sf
|
20 |
+
import yaml
|
21 |
+
import datetime
|
22 |
+
from vocoder.bigvgan.models import VocoderBigVGAN
|
23 |
+
import soundfile
|
24 |
+
# from pytorch_memlab import LineProfiler,profile
|
25 |
+
import gradio
|
26 |
+
|
27 |
+
def load_model_from_config(config, ckpt = None, verbose=True):
|
28 |
+
model = instantiate_from_config(config.model)
|
29 |
+
if ckpt:
|
30 |
+
print(f"Loading model from {ckpt}")
|
31 |
+
pl_sd = torch.load(ckpt, map_location="cpu")
|
32 |
+
sd = pl_sd["state_dict"]
|
33 |
+
|
34 |
+
m, u = model.load_state_dict(sd, strict=False)
|
35 |
+
if len(m) > 0 and verbose:
|
36 |
+
print("missing keys:")
|
37 |
+
print(m)
|
38 |
+
if len(u) > 0 and verbose:
|
39 |
+
print("unexpected keys:")
|
40 |
+
print(u)
|
41 |
+
else:
|
42 |
+
print(f"Note chat no ckpt is loaded !!!")
|
43 |
+
|
44 |
+
model.cuda()
|
45 |
+
model.eval()
|
46 |
+
return model
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
class GenSamples:
|
52 |
+
def __init__(self,sampler,model,outpath,vocoder = None,save_mel = True,save_wav = True, original_inference_steps=None) -> None:
|
53 |
+
self.sampler = sampler
|
54 |
+
self.model = model
|
55 |
+
self.outpath = outpath
|
56 |
+
if save_wav:
|
57 |
+
assert vocoder is not None
|
58 |
+
self.vocoder = vocoder
|
59 |
+
self.save_mel = save_mel
|
60 |
+
self.save_wav = save_wav
|
61 |
+
self.channel_dim = self.model.channels
|
62 |
+
self.original_inference_steps = original_inference_steps
|
63 |
+
|
64 |
+
def gen_test_sample(self,prompt,mel_name = None,wav_name = None):# prompt is {'ori_caption':’xxx‘,'struct_caption':'xxx'}
|
65 |
+
uc = None
|
66 |
+
record_dicts = []
|
67 |
+
# if os.path.exists(os.path.join(self.outpath,mel_name+f'_0.npy')):
|
68 |
+
# return record_dicts
|
69 |
+
emptycap = {'ori_caption':1*[""],'struct_caption':1*[""]}
|
70 |
+
uc = self.model.get_learned_conditioning(emptycap)
|
71 |
+
|
72 |
+
for n in range(1):# trange(self.opt.n_iter, desc="Sampling"):
|
73 |
+
for k,v in prompt.items():
|
74 |
+
prompt[k] = 1 * [v]
|
75 |
+
c = self.model.get_learned_conditioning(prompt)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
|
76 |
+
if self.channel_dim>0:
|
77 |
+
shape = [self.channel_dim, 20, 312] # (z_dim, 80//2^x, 848//2^x)
|
78 |
+
else:
|
79 |
+
shape = [20, 312]
|
80 |
+
samples_ddim, _ = self.sampler.sample(S=2,
|
81 |
+
conditioning=c,
|
82 |
+
batch_size=1,
|
83 |
+
shape=shape,
|
84 |
+
verbose=False,
|
85 |
+
guidance_scale=5,
|
86 |
+
original_inference_steps=self.original_inference_steps
|
87 |
+
)
|
88 |
+
x_samples_ddim = self.model.decode_first_stage(samples_ddim)
|
89 |
+
for idx,spec in enumerate(x_samples_ddim):
|
90 |
+
spec = spec.squeeze(0).cpu().numpy()
|
91 |
+
record_dict = {'caption':prompt['ori_caption'][0]}
|
92 |
+
if self.save_mel:
|
93 |
+
mel_path = os.path.join(self.outpath,mel_name+f'_{idx}.npy')
|
94 |
+
np.save(mel_path,spec)
|
95 |
+
record_dict['mel_path'] = mel_path
|
96 |
+
if self.save_wav:
|
97 |
+
wav = self.vocoder.vocode(spec)
|
98 |
+
wav_path = os.path.join(self.outpath,wav_name+f'_{idx}.wav')
|
99 |
+
soundfile.write(wav_path, wav, 16000)
|
100 |
+
record_dict['audio_path'] = wav_path
|
101 |
+
record_dicts.append(record_dict)
|
102 |
+
return record_dicts
|
103 |
+
|
104 |
+
|
105 |
+
def infer(ori_prompt):
|
106 |
+
|
107 |
+
prompt = dict(ori_caption=ori_prompt,struct_caption=f'<{ori_prompt}& all>')
|
108 |
+
|
109 |
+
|
110 |
+
config = OmegaConf.load("configs/audiolcm.yaml")
|
111 |
+
|
112 |
+
# print("-------quick debug no load ckpt---------")
|
113 |
+
# model = instantiate_from_config(config['model'])# for quick debug
|
114 |
+
model = load_model_from_config(config, "./model/000184.ckpt")
|
115 |
+
|
116 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
117 |
+
model = model.to(device)
|
118 |
+
|
119 |
+
sampler = LCMSampler(model)
|
120 |
+
|
121 |
+
os.makedirs("results/test", exist_ok=True)
|
122 |
+
|
123 |
+
vocoder = VocoderBigVGAN("./vocoder/bigvnat16k93.5w",device)
|
124 |
+
|
125 |
+
|
126 |
+
generator = GenSamples(sampler,model,"results/test",vocoder,save_mel = False,save_wav = True, original_inference_steps=config.model.params.num_ddim_timesteps)
|
127 |
+
csv_dicts = []
|
128 |
+
|
129 |
+
with torch.no_grad():
|
130 |
+
with model.ema_scope():
|
131 |
+
wav_name = f'{prompt.strip().replace(" ", "-")}'
|
132 |
+
generator.gen_test_sample(prompt,wav_name=wav_name)
|
133 |
+
|
134 |
+
print(f"Your samples are ready and waiting four you here: \nresults/test \nEnjoy.")
|
135 |
+
return "results/test/"+wav_name+"_0.wav"
|
136 |
+
|
137 |
+
def my_inference_function(prompt_oir):
|
138 |
+
file_path = infer(prompt_oir)
|
139 |
+
return file_path
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
gradio_interface = gradio.Interface(
|
144 |
+
fn = my_inference_function,
|
145 |
+
inputs = "text",
|
146 |
+
outputs = "audio"
|
147 |
+
)
|
148 |
+
gradio_interface.launch()
|