import streamlit as st import SessionState from mtranslate import translate from prompts import PROMPT_LIST import random import time from transformers import pipeline, set_seed import psutil import codecs import streamlit.components.v1 as stc import shutil import pathlib # st.set_page_config(page_title="Indonesian Story Generator") MODELS = { "Indonesian Literature - GPT-2 Small": { "name": "cahya/gpt2-small-indonesian-story", "text_generator": None }, "Indonesian Literature - GPT-2 Medium": { "name": "cahya/gpt2-medium-indonesian-story", "text_generator": None }, "Indonesian Persona Chatbot": { "name": "", "text_generator": None }, } def stc_chatbot(html_file, width=700, height=900): html = codecs.open(html_file, "r") page = html.read() stc.html(page, width=width, height=height, scrolling=True) model = st.sidebar.selectbox('Model', (MODELS.keys())) @st.cache(suppress_st_warning=True, allow_output_mutation=True) def get_generator(model_name: str): st.write(f"Loading the GPT2 model {model_name}, please wait...") text_generator = pipeline('text-generation', model=model_name) return text_generator # Disable the st.cache for this function due to issue on newer version of streamlit # @st.cache(suppress_st_warning=True, hash_funcs={tokenizers.Tokenizer: id}) def process(text_generator, text: str, max_length: int = 100, do_sample: bool = True, top_k: int = 50, top_p: float = 0.95, temperature: float = 1.0, max_time: float = 60.0, seed=42): # st.write("Cache miss: process") set_seed(seed) result = text_generator(text, max_length=max_length, do_sample=do_sample, top_k=top_k, top_p=top_p, temperature=temperature, max_time=max_time) return result st.title("Indonesian GPT-2 Applications") prompt_group_name = "" if model.find("Indonesian Literature") != -1: st.subheader("Indonesian Literature") prompt_group_name = "Indonesian Literature" st.markdown( """ This application is a demo for Indonesian Literature Generator using GPT2. """ ) session_state = SessionState.get(prompt=None, prompt_box=None, text=None) ALL_PROMPTS = list(PROMPT_LIST[prompt_group_name].keys())+["Custom"] prompt = st.selectbox('Prompt', ALL_PROMPTS, index=len(ALL_PROMPTS)-1) # Update prompt if session_state.prompt is None: session_state.prompt = prompt elif session_state.prompt is not None and (prompt != session_state.prompt): session_state.prompt = prompt session_state.prompt_box = None session_state.text = None else: session_state.prompt = prompt # Update prompt box if session_state.prompt == "Custom": session_state.prompt_box = "Enter your text here" else: print(f"# prompt: {session_state.prompt}") print(f"# prompt_box: {session_state.prompt_box}") if session_state.prompt is not None and session_state.prompt_box is None: session_state.prompt_box = random.choice(PROMPT_LIST[prompt_group_name][session_state.prompt]) session_state.text = st.text_area("Enter text", session_state.prompt_box) max_length = st.sidebar.number_input( "Maximum length", value=100, max_value=512, help="The maximum length of the sequence to be generated." ) temperature = st.sidebar.slider( "Temperature", value=1.0, min_value=0.0, max_value=10.0 ) do_sample = st.sidebar.checkbox( "Use sampling", value=True ) top_k = 40 top_p = 0.95 if do_sample: top_k = st.sidebar.number_input( "Top k", value=top_k ) top_p = st.sidebar.number_input( "Top p", value=top_p ) seed = st.sidebar.number_input( "Random Seed", value=25, help="The number used to initialize a pseudorandom number generator" ) for group_name in MODELS: if group_name.find("Indonesian Literature") != -1: MODELS[group_name]["text_generator"] = get_generator(MODELS[group_name]["name"]) # text_generator = get_generator() if st.button("Run"): with st.spinner(text="Getting results..."): memory = psutil.virtual_memory() st.subheader("Result") time_start = time.time() # text_generator = MODELS[model]["text_generator"] result = process(MODELS[model]["text_generator"], text=session_state.text, max_length=int(max_length), temperature=temperature, do_sample=do_sample, top_k=int(top_k), top_p=float(top_p), seed=seed) time_end = time.time() time_diff = time_end-time_start result = result[0]["generated_text"] st.write(result.replace("\n", " \n")) st.text("Translation") translation = translate(result, "en", "id") st.write(translation.replace("\n", " \n")) # st.write(f"*do_sample: {do_sample}, top_k: {top_k}, top_p: {top_p}, seed: {seed}*") info = f""" *Memory: {memory.total/(1024*1024*1024):.2f}GB, used: {memory.percent}%, available: {memory.available/(1024*1024*1024):.2f}GB* *Text generated in {time_diff:.5} seconds* """ st.write(info) # Reset state session_state.prompt = None session_state.prompt_box = None session_state.text = None elif model == "Indonesian Persona Chatbot": st.subheader("Indonesian GPT-2 Persona Chatbot") STREAMLIT_STATIC_PATH = pathlib.Path(st.__path__[0]) / 'static' # We create a videos directory within the streamlit static asset directory # and we write output files to it ASSETS_PATH = STREAMLIT_STATIC_PATH/"gpt2-app" if not ASSETS_PATH.is_dir(): ASSETS_PATH.mkdir() shutil.copytree("app/css", ASSETS_PATH/"css") shutil.copytree("app/js", ASSETS_PATH/"js") stc_chatbot("app/chatbot.html")