File size: 12,520 Bytes
6d1c39a
 
 
 
 
 
36cb2cb
5860b41
 
36cb2cb
5860b41
36cb2cb
6d1c39a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36cb2cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d1c39a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5860b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import os
import re
import pandas as pd
import evaluate
import seaborn as sns
import matplotlib.pyplot as plt
from datasets import load_dataset
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from tqdm import tqdm

print(f"loading {__file__}")

bleu = evaluate.load("bleu")
rouge = evaluate.load("rouge")
meteor = evaluate.load("meteor")
accuracy = evaluate.load("accuracy")


def extract_answer(text, debug=False):
    if text:
        # Remove the begin and end tokens
        text = re.sub(
            r".*?(assistant|\[/INST\]).+?\b", "", text, flags=re.DOTALL | re.MULTILINE
        )
        if debug:
            print("--------\nstep 1:", text)

        text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE)
        if debug:
            print("--------\nstep 2:", text)

        text = re.sub(
            r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE
        )
        if debug:
            print("--------\nstep 3:", text)

    return text


def calc_metrics(references, predictions, debug=False):
    assert len(references) == len(
        predictions
    ), f"lengths are difference: {len(references)} != {len(predictions)}"

    predictions = [extract_answer(text) for text in predictions]

    correct = [1 if ref == pred else 0 for ref, pred in zip(references, predictions)]
    accuracy = sum(correct) / len(references)

    results = {"accuracy": accuracy}
    if debug:
        correct_ids = [i for i, c in enumerate(correct) if c == 1]
        results["correct_ids"] = correct_ids

    results["meteor"] = meteor.compute(predictions=predictions, references=references)[
        "meteor"
    ]

    results["bleu_scores"] = bleu.compute(
        predictions=predictions, references=references, max_order=4
    )
    results["rouge_scores"] = rouge.compute(
        predictions=predictions, references=references
    )
    return results


def save_results(model_name, results_path, dataset, predictions, debug=False):
    if not os.path.exists(results_path):
        # Get the directory part of the file path
        dir_path = os.path.dirname(results_path)

        # Create all directories in the path (if they don't exist)
        os.makedirs(dir_path, exist_ok=True)
        df = dataset.to_pandas()
        df.drop(columns=["text", "prompt"], inplace=True)
    else:
        df = pd.read_csv(results_path, on_bad_lines="warn")

    df[model_name] = predictions

    if debug:
        print(df.head(1))

    df.to_csv(results_path, index=False)


def load_translation_dataset(data_path, tokenizer=None):
    train_data_file = data_path.replace(".tsv", "-train.tsv")
    test_data_file = data_path.replace(".tsv", "-test.tsv")

    if not os.path.exists(train_data_file):
        print("generating train/test data files")
        dataset = load_dataset(
            "csv", data_files=data_path, delimiter="\t", split="train"
        )
        print(len(dataset))
        dataset = dataset.filter(lambda x: x["chinese"] and x["english"])

        datasets = dataset.train_test_split(test_size=0.2)
        print(len(dataset))

        # Convert to pandas DataFrame
        train_df = pd.DataFrame(datasets["train"])
        test_df = pd.DataFrame(datasets["test"])

        # Save to TSV
        train_df.to_csv(train_data_file, sep="\t", index=False)
        test_df.to_csv(test_data_file, sep="\t", index=False)

    print("loading train/test data files")
    datasets = load_dataset(
        "csv",
        data_files={"train": train_data_file, "test": test_data_file},
        delimiter="\t",
    )

    if tokenizer:
        translation_prompt = "Please translate the following Chinese text into English and provide only the translated content, nothing else.\n{}"

        def formatting_prompts_func(examples):
            inputs = examples["chinese"]
            outputs = examples["english"]

            messages = [
                {
                    "role": "system",
                    "content": "You are an expert in translating Chinese to English.",
                },
                None,
            ]

            model_name = os.getenv("MODEL_NAME")

            if "mistral" in model_name.lower():
                messages = messages[1:]

            texts = []
            prompts = []
            for input, output in zip(inputs, outputs):
                prompt = translation_prompt.format(input)
                messages[-1] = {"role": "user", "content": prompt}

                prompt = tokenizer.apply_chat_template(
                    messages, tokenize=False, add_generation_prompt=True
                )
                prompts.append(prompt)
                texts.append(prompt + output + tokenizer.eos_token)
            return {"text": texts, "prompt": prompts}

        datasets = datasets.map(
            formatting_prompts_func,
            batched=True,
        )

    print(datasets)
    return datasets


def eval_model(model, tokenizer, eval_dataset):
    total = len(eval_dataset)
    predictions = []
    for i in tqdm(range(total)):
        inputs = tokenizer(
            eval_dataset["prompt"][i : i + 1],
            return_tensors="pt",
        ).to("cuda")

        outputs = model.generate(**inputs, max_new_tokens=4096, use_cache=False)
        decoded_output = tokenizer.batch_decode(outputs)
        debug = i == 0
        decoded_output = [
            extract_answer(output, debug=debug) for output in decoded_output
        ]
        predictions.extend(decoded_output)

    return predictions


def save_model(
    model,
    tokenizer,
    include_gguf=True,
    include_merged=True,
    publish=True,
):
    try:
        token = os.getenv("HF_TOKEN") or None
        model_name = os.getenv("MODEL_NAME")

        save_method = "lora"
        quantization_method = "q5_k_m"

        model_names = get_model_names(
            model_name, save_method=save_method, quantization_method=quantization_method
        )

        model.save_pretrained(model_names["local"])
        tokenizer.save_pretrained(model_names["local"])

        if publish:
            model.push_to_hub(
                model_names["hub"],
                token=token,
            )
            tokenizer.push_to_hub(
                model_names["hub"],
                token=token,
            )

        if include_merged:
            model.save_pretrained_merged(
                model_names["local"] + "-merged", tokenizer, save_method=save_method
            )
            if publish:
                model.push_to_hub_merged(
                    model_names["hub"] + "-merged",
                    tokenizer,
                    save_method="lora",
                    token="",
                )

        if include_gguf:
            model.save_pretrained_gguf(
                model_names["local-gguf"],
                tokenizer,
                quantization_method=quantization_method,
            )

            if publish:
                model.push_to_hub_gguf(
                    model_names["hub-gguf"],
                    tokenizer,
                    quantization_method=quantization_method,
                    token=token,
                )
    except Exception as e:
        print(e)


def get_metrics(df):
    metrics_df = pd.DataFrame(df.columns.T)[2:]
    metrics_df.rename(columns={0: "model"}, inplace=True)
    metrics_df["model"] = metrics_df["model"].apply(lambda x: x.split("/")[-1])
    metrics_df.reset_index(inplace=True)
    metrics_df = metrics_df.drop(columns=["index"])

    accuracy = []
    meteor = []
    bleu_1 = []
    rouge_l = []
    all_metrics = []
    for col in df.columns[2:]:
        metrics = calc_metrics(df["english"], df[col], debug=True)
        print(f"{col}: {metrics}")

        accuracy.append(metrics["accuracy"])
        meteor.append(metrics["meteor"])
        bleu_1.append(metrics["bleu_scores"]["bleu"])
        rouge_l.append(metrics["rouge_scores"]["rougeL"])
        all_metrics.append(metrics)

    metrics_df["accuracy"] = accuracy
    metrics_df["meteor"] = meteor
    metrics_df["bleu_1"] = bleu_1
    metrics_df["rouge_l"] = rouge_l
    metrics_df["all_metrics"] = all_metrics

    return metrics_df


def plot_metrics(metrics_df, figsize=(14, 5), ylim=(0, 0.44)):
    plt.figure(figsize=figsize)
    df_melted = pd.melt(
        metrics_df, id_vars="model", value_vars=["meteor", "bleu_1", "rouge_l"]
    )

    barplot = sns.barplot(x="variable", y="value", hue="model", data=df_melted)

    # Set different hatches for each model
    hatches = ["/", "\\", "|", "-", "+", "x", "o", "O", ".", "*", "//", "\\\\"]

    # Create a dictionary to map models to hatches
    model_hatches = {
        model: hatches[i % len(hatches)]
        for i, model in enumerate(metrics_df["model"].unique())
    }

    # Apply hatches based on the model
    num_vars = len(df_melted["variable"].unique())
    for i, bar in enumerate(barplot.patches):
        model = df_melted["model"].iloc[i // num_vars]
        bar.set_hatch(model_hatches[model])

    # Manually update legend to match the bar hatches
    handles, labels = barplot.get_legend_handles_labels()
    for handle, model in zip(handles, metrics_df["model"].unique()):
        handle.set_hatch(model_hatches[model])

    barplot.set_xticklabels(["METEOR", "BLEU-1", "ROUGE-L"])
    for p in barplot.patches:
        if p.get_height() == 0:
            continue
        barplot.annotate(
            f"{p.get_height():.2f}",
            (p.get_x() + p.get_width() / 2.0, p.get_height()),
            ha="center",
            va="center",
            xytext=(0, 10),
            textcoords="offset points",
        )

    barplot.set(ylim=ylim, ylabel="Scores", xlabel="Metrics")
    plt.legend(bbox_to_anchor=(0.5, -0.1), loc="upper center")
    plt.show()


def plot_times(perf_df, ylim=0.421):
    # Adjusted code to put "train-time" bars in red at the bottom

    fig, ax1 = plt.subplots(figsize=(12, 10))

    color_train = "tab:red"
    color_eval = "orange"
    ax1.set_xlabel("Models")
    ax1.set_ylabel("Time (mins)")
    ax1.set_xticks(range(len(perf_df["model"])))  # Set x-ticks positions
    ax1.set_xticklabels(perf_df["model"], rotation=90)

    # Plot "train-time" first so it's at the bottom
    ax1.bar(
        perf_df["model"],
        perf_df["train-time(mins)"],
        color=color_train,
        label="train-time",
    )

    # Then, plot "eval-time" on top of "train-time"
    ax1.bar(
        perf_df["model"],
        perf_df["eval-time(mins)"],
        bottom=perf_df["train-time(mins)"],
        color=color_eval,
        label="eval-time",
    )

    ax1.tick_params(axis="y")
    ax1.legend(loc="upper left")

    if "meteor" in perf_df.columns:
        ax2 = ax1.twinx()
        color_meteor = "tab:blue"
        ax2.set_ylabel("METEOR", color=color_meteor)
        ax2.plot(
            perf_df["model"],
            perf_df["meteor"],
            color=color_meteor,
            marker="o",
            label="meteor",
        )
        ax2.tick_params(axis="y", labelcolor=color_meteor)
        ax2.legend(loc="upper right")
        ax2.set_ylim(ax2.get_ylim()[0], ylim)

    # Show numbers in bars
    for p in ax1.patches:
        height = p.get_height()
        if height == 0:  # Skip bars with height 0
            continue
        ax1.annotate(
            f"{height:.2f}",
            (p.get_x() + p.get_width() / 2.0, p.get_y() + height),
            ha="center",
            va="center",
            xytext=(0, -10),
            textcoords="offset points",
        )

    fig.tight_layout()
    plt.show()


def translate_via_llm(text):
    base_url = os.getenv("OPENAI_BASE_URL") or "http://localhost:8000/v1"
    llm = ChatOpenAI(
        model="gpt-4o",
        temperature=0,
        max_tokens=None,
        timeout=None,
        max_retries=2,
        base_url=base_url,
    )

    prompt = ChatPromptTemplate.from_messages(
        [
            (
                "human",
                "Please translate the following Chinese text into English and provide only the translated content, nothing else.\n{input}",
            ),
        ]
    )

    chain = prompt | llm
    response = chain.invoke(
        {
            "input": text,
        }
    )
    return response.content


def translate(text, cache_dict):
    if text in cache_dict:
        return cache_dict[text]
    else:
        translated_text = translate_via_llm(text)
        cache_dict[text] = translated_text
        return translated_text