Spaces:
Build error
Build error
File size: 4,797 Bytes
cf912f1 5158692 cf912f1 d028752 cf912f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
import sys
import torch
from dotenv import find_dotenv, load_dotenv
found_dotenv = find_dotenv(".env")
if len(found_dotenv) == 0:
found_dotenv = find_dotenv(".env.example")
print(f"loading env vars from: {found_dotenv}")
load_dotenv(found_dotenv, override=False)
path = os.path.dirname(found_dotenv)
print(f"Adding {path} to sys.path")
sys.path.append(path)
from llm_toolkit.llm_utils import *
from llm_toolkit.logical_reasoning_utils import *
device = check_gpu()
is_cuda = torch.cuda.is_available()
model_name = os.getenv("MODEL_NAME")
adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH")
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
data_path = os.getenv("LOGICAL_REASONING_DATA_PATH")
results_path = os.getenv("LOGICAL_REASONING_RESULTS_PATH")
use_english_datasets = os.getenv("USE_ENGLISH_DATASETS") == "true"
batch_size = int(os.getenv("BATCH_SIZE", 1))
using_llama_factory = os.getenv("USING_LLAMA_FACTORY") == "true"
max_new_tokens = int(os.getenv("MAX_NEW_TOKENS", 2048))
start_num_shots = int(os.getenv("START_NUM_SHOTS", 0))
print(
model_name,
adapter_name_or_path,
load_in_4bit,
data_path,
results_path,
max_new_tokens,
batch_size,
)
dtype = (
torch.float32
if os.getenv("USE_FLOAT32_FOR_INFERENCE") == "true"
else (
torch.bfloat16
if os.getenv("USE_BF16_FOR_INFERENCE") == "true"
else torch.float16
)
)
if is_cuda:
torch.cuda.empty_cache()
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(0) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
torch.cuda.empty_cache()
model, tokenizer = load_model(
model_name,
load_in_4bit=load_in_4bit,
adapter_name_or_path=adapter_name_or_path,
using_llama_factory=using_llama_factory,
dtype=dtype,
)
if is_cuda:
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
def on_num_shots_step_completed(model_name, dataset, predictions):
save_results(
model_name,
results_path,
dataset,
predictions,
)
metrics = calc_metrics(dataset["label"], predictions, debug=True)
print(f"{model_name} metrics: {metrics}")
if adapter_name_or_path is not None:
model_name += "/" + adapter_name_or_path.split("/")[-1]
def evaluate_model_with_num_shots(
model,
tokenizer,
model_name,
data_path,
start_num_shots=0,
range_num_shots=[0, 5, 10, 20, 30, 40, 50],
batch_size=1,
max_new_tokens=2048,
device="cuda",
):
print(f"Evaluating model: {model_name} on {device}")
for num_shots in range_num_shots:
if num_shots < start_num_shots:
continue
print(f"*** Evaluating with num_shots: {num_shots}")
datasets = load_logical_reasoning_dataset(
data_path,
tokenizer=tokenizer,
chinese_prompt=not use_english_datasets,
using_p1=False,
num_shots=num_shots,
)
if len(sys.argv) > 1:
num = int(sys.argv[1])
if num > 0:
print(f"--- evaluating {num} entries")
datasets["test"] = datasets["test"].select(range(num))
print_row_details(datasets["test"].to_pandas(), indices=[0, -1])
predictions = eval_model(
model,
tokenizer,
datasets["test"],
device=device,
batch_size=batch_size,
max_new_tokens=max_new_tokens,
)
model_name_with_rp = f"{model_name}/shots-{num_shots:02d}"
try:
on_num_shots_step_completed(
model_name_with_rp,
datasets["test"],
predictions,
)
except Exception as e:
print(e)
evaluate_model_with_num_shots(
model,
tokenizer,
model_name,
data_path,
batch_size=batch_size,
max_new_tokens=max_new_tokens,
device=device,
start_num_shots=start_num_shots,
)
if is_cuda:
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
|