File size: 3,134 Bytes
5860b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5002792
 
5860b41
 
 
 
5002792
 
c8f289a
387046f
f754508
 
387046f
 
 
 
5860b41
 
 
 
 
 
 
 
 
 
387046f
 
 
 
5860b41
 
 
 
 
 
 
 
c8f289a
387046f
 
 
 
c8f289a
387046f
5002792
 
 
 
 
5860b41
c8f289a
c755e09
5860b41
f754508
 
 
 
 
 
 
5860b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5002792
5860b41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
import sys
import torch
from dotenv import find_dotenv, load_dotenv

found_dotenv = find_dotenv(".env")

if len(found_dotenv) == 0:
    found_dotenv = find_dotenv(".env.example")
print(f"loading env vars from: {found_dotenv}")
load_dotenv(found_dotenv, override=False)

path = os.path.dirname(found_dotenv)
print(f"Adding {path} to sys.path")
sys.path.append(path)

from llm_toolkit.llm_utils import *
from llm_toolkit.logical_reasoning_utils import *

model_name = os.getenv("MODEL_NAME")
adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH")
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
data_path = os.getenv("LOGICAL_REASONING_DATA_PATH")
results_path = os.getenv("LOGICAL_REASONING_RESULTS_PATH")
use_english_datasets = os.getenv("USE_ENGLISH_DATASETS") == "true"
using_p1 = os.getenv("USING_P1_PROMPT_TEMPLATE") == "true"
max_new_tokens = int(os.getenv("MAX_NEW_TOKENS", 16))
repetition_penalty = float(os.getenv("REPETITION_PENALTY", 1.0))

dtype = (
    torch.bfloat16 if os.getenv("USE_BF16_FOR_INFERENCE") == "true" else torch.float16
)

print(model_name, adapter_name_or_path, load_in_4bit, data_path, results_path)

gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(1) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")

model, tokenizer = load_model(
    model_name,
    load_in_4bit=load_in_4bit,
    adapter_name_or_path=adapter_name_or_path,
    dtype=dtype,
)

gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")

datasets = load_logical_reasoning_dataset(
    data_path,
    tokenizer=tokenizer,
    chinese_prompt=not use_english_datasets,
    using_p1=using_p1,
)

if len(sys.argv) > 1:
    num = int(sys.argv[1])
    if num > 0:
        print(f"--- evaluating {num} entries")
        datasets["test"] = datasets["test"].select(range(num))

print_row_details(datasets["test"].to_pandas(), indices=[0, -1])

print("Evaluating model: " + model_name)
predictions = eval_model(
    model,
    tokenizer,
    datasets["test"],
    max_new_tokens=max_new_tokens,
    repetition_penalty=repetition_penalty,
)

gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")

if adapter_name_or_path is not None:
    model_name += "_" + adapter_name_or_path.split("/")[-1]

save_results(
    model_name,
    results_path,
    datasets["test"],
    predictions,
    debug=True,
)

metrics = calc_metrics(datasets["test"]["label"], predictions, debug=True)
print(metrics)