Spaces:
Build error
Build error
File size: 20,269 Bytes
5002792 8b9bb19 5002792 468b88d 5002792 e656f92 5002792 e656f92 468b88d 5002792 b5506da 58a3992 b5506da 468b88d b5506da 58a3992 468b88d 58a3992 468b88d 58a3992 468b88d 58a3992 468b88d 58a3992 c8f289a 468b88d eb52e90 5a8f8d2 eb52e90 468b88d 5a8f8d2 468b88d eb52e90 5a8f8d2 eb52e90 5002792 5a8f8d2 5002792 5a8f8d2 5002792 5a8f8d2 5002792 5a8f8d2 5002792 8b9bb19 468b88d 5002792 b5506da 7670f2e b5506da c8f289a 7670f2e 5002792 58a3992 c8f289a 5002792 8b9bb19 5002792 6d673bc 5002792 c8f289a 5002792 7670f2e 5002792 5a8f8d2 5002792 eb52e90 58a3992 eb52e90 58a3992 eb52e90 58a3992 eb52e90 58a3992 eb52e90 e656f92 5a8f8d2 e656f92 5a8f8d2 e656f92 468b88d 5a8f8d2 e656f92 5a8f8d2 e656f92 5a8f8d2 e656f92 5a8f8d2 468b88d 5a8f8d2 e656f92 5a8f8d2 e656f92 468b88d e656f92 468b88d e656f92 5a8f8d2 e656f92 468b88d e656f92 468b88d 5a8f8d2 e656f92 468b88d e656f92 468b88d e656f92 468b88d e656f92 468b88d e656f92 468b88d e656f92 468b88d e656f92 468b88d e656f92 468b88d e656f92 468b88d e656f92 468b88d e656f92 468b88d e656f92 8b9bb19 468b88d 8b9bb19 468b88d 8b9bb19 468b88d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
import os
import re
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
import pandas as pd
from tqdm import tqdm
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib import rcParams
from matplotlib.ticker import MultipleLocator
from datasets import load_dataset
import numpy as np
from sklearn.metrics import (
accuracy_score,
precision_score,
recall_score,
f1_score,
confusion_matrix,
)
print(f"loading {__file__}")
P1 = """你是一个逻辑游戏的主持人。游戏规则如下:
1. 参与者会得到一个谜题。
2. 参与者可以通过提问来获取线索,尝试解开谜题。
3. 对于每个问题,主持人将根据实际情况回答以下五个选项之一:是、不是、不重要、回答正确、问法错误。
4. 回答中不能添加任何其它信息,也不能省略选项中的任何一个字。例如,不可以把“不是”省略成“不”。
5. 参与者需要根据回答来推理,并最终找出谜题的正确答案。
请严格按照这些规则回答参与者提出的问题。
谜题: {}
实际情况: {}
参与者提出的问题: {}
"""
P1_en = """You are the host of a logic game. The rules of the game are as follows:
1. Participants will receive a puzzle.
2. Participants can ask questions to obtain clues and try to solve the puzzle.
3. For each question, the host will answer with one of the following five options based on the actual situation: Yes, No, Unimportant, Correct answer, or Incorrect questioning.
4. The answer cannot include any additional information, nor can any word in the options be omitted. For example, “No” cannot be shortened to “N”.
5. Participants need to infer and ultimately find the correct answer to the puzzle based on the responses.
Please strictly adhere to these rules when answering participants’ questions.
Puzzle: {}
Actual situation: {}
Question from participants: {}"""
P2 = """你是一个情景猜谜游戏的主持人。游戏规则如下:
1. 参与者会得到一个谜面,谜面会描述一个简单又难以理解的事件。
2. 主持人知道谜底,谜底是谜面的答案。
3. 参与者可以询问任何封闭式问题来找寻事件的真相。
4. 对于每个问题,主持人将根据实际情况回答以下五个选项之一:是、不是、不重要、回答正确、问法错误。各回答的判断标准如下:
- 若谜面和谜底能找到问题的答案,回答:是或者不是
- 若谜面和谜底不能直接或者间接推断出问题的答案,回答:不重要
- 若参与者提问不是一个封闭式问题或者问题难以理解,回答:问法错误
- 若参与者提问基本还原了谜底真相,回答:回答正确
5. 回答中不能添加任何其它信息,也不能省略选项中的任何一个字。例如,不可以把“不是”省略成“不”。
请严格按照这些规则回答参与者提出的问题。
谜面: {}
谜底: {}
参与者提出的问题: {}
回答:
"""
P2_en = """You are the host of a situational guessing game. The rules of the game are as follows:
1. Participants will receive a riddle that describes a simple yet difficult to understand event.
2. The host knows the truth, which is the solution to the riddle.
3. Participants can ask any closed-ended questions to uncover the truth of the event.
4. For each question, the host will respond with one of the following five options based on the actual situation: Yes, No, Unimportant, Correct answer, or Incorrect questioning. The criteria for each response are as follows:
- If the riddle and answer can provide an answer to the question, respond with: Yes or No
- If the riddle and answer cannot directly or indirectly infer an answer to the question, respond with: Unimportant
- If the participant's question is not a closed-ended question or is difficult to understand, respond with: Incorrect questioning
- If the participant's question essentially reveals the truth of the answer, respond with: Correct answer
5. The response must not include any additional information, nor should any word be omitted from the options. For example, "No" cannot be abbreviated to "N".
Please strictly follow these rules when answering the participant's questions.
Riddle: {}
Truth: {}
Participant's question: {}
"""
system_prompt = "You are an expert in logical reasoning."
P2_few_shot = """你是一个情景猜谜游戏的主持人。游戏规则如下:
1. 参与者会得到一个谜面,谜面会描述一个简单又难以理解的事件。
2. 主持人知道谜底,谜底是谜面的答案。
3. 参与者可以询问任何封闭式问题来找寻事件的真相。
4. 对于每个问题,主持人将根据实际情况回答以下五个选项之一:是、不是、不重要、回答正确、问法错误。各回答的判断标准如下:
- 若谜面和谜底能找到问题的答案,回答:是或者不是
- 若谜面和谜底不能直接或者间接推断出问题的答案,回答:不重要
- 若参与者提问不是一个封闭式问题或者问题难以理解,回答:问法错误
- 若参与者提问基本还原了谜底真相,回答:回答正确
5. 回答中不能添加任何其它信息,也不能省略选项中的任何一个字。例如,不可以把“不是”省略成“不”。
请严格按照这些规则回答参与者提出的问题。
示例输入和输出:
{examples}
谜面: {}
谜底: {}
参与者提出的问题: {}
回答:
"""
def get_prompt_template(using_p1=True, chinese_prompt=True):
if using_p1:
return P1 if chinese_prompt else P1_en
else:
return P2 if chinese_prompt else P2_en
def get_few_shot_prompt_template(num_shots, train_dataset, debug=False):
if num_shots == 0:
return get_prompt_template(using_p1=False, chinese_prompt=True)
labels = train_dataset["label"].unique()
if debug:
print("num_shots:", num_shots)
print("labels:", labels)
examples = ""
index = 0
while num_shots > 0:
for label in labels:
while train_dataset["label"][index] != label:
index += 1
row = train_dataset.iloc[index]
examples += f"""谜面: {row["puzzle"]}
谜底: {row["truth"]}
参与者提出的问题: {row["text"]}
回答: {row["label"]}
"""
num_shots -= 1
if num_shots == 0:
break
prompt = P2_few_shot.replace("{examples}", examples)
if debug:
print("P2_few_shot:", prompt)
return prompt
def extract_answer(text, debug=False):
if text and isinstance(text, str):
# Remove the begin and end tokens
text = re.sub(
r".*?(assistant|\[/INST\]).+?\b",
"",
text,
flags=re.DOTALL | re.MULTILINE,
)
if debug:
print("--------\nstep 1:", text)
text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE)
if debug:
print("--------\nstep 2:", text)
text = re.sub(
r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE
)
if debug:
print("--------\nstep 3:", text)
text = text.split(".")[0].strip()
text = text.split("\n")[0].strip()
text = text.split("。")[0].strip()
text = text.replace("回答: ", "").strip()
if debug:
print("--------\nstep 4:", text)
text = re.sub(
r"^Response:.+?\b",
"",
text,
flags=re.DOTALL | re.MULTILINE,
)
if debug:
print("--------\nstep 5:", text)
return text.strip()
return ""
def calc_metrics(references, predictions, debug=False):
assert len(references) == len(
predictions
), f"lengths are difference: {len(references)} != {len(predictions)}"
labels = np.unique(references)
valid_classifications = [1 if p in labels else 0 for p in predictions]
predictions = [extract_answer(text) for text in predictions]
accuracy = accuracy_score(references, predictions)
results = {"accuracy": accuracy}
if debug:
incorrect_ids = [i for i, p in enumerate(predictions) if p != references[i]]
results["incorrect_ids"] = incorrect_ids
precision = precision_score(
references, predictions, average="weighted", labels=labels
)
results["precision"] = float(precision)
recall = recall_score(references, predictions, average="weighted", labels=labels)
results["recall"] = float(recall)
f1 = f1_score(references, predictions, average="weighted", labels=labels)
results["f1"] = float(f1)
results["ratio_valid_classifications"] = sum(valid_classifications) / len(
valid_classifications
)
return results
def save_results(model_name, results_path, dataset, predictions, debug=False):
if not os.path.exists(results_path):
# Get the directory part of the file path
dir_path = os.path.dirname(results_path)
# Create all directories in the path (if they don't exist)
os.makedirs(dir_path, exist_ok=True)
if isinstance(dataset, pd.DataFrame):
df = dataset
else:
df = dataset.to_pandas()
df.drop(
columns=["answer", "prompt", "train_text"], inplace=True, errors="ignore"
)
else:
df = pd.read_csv(results_path, on_bad_lines="warn")
df[model_name] = predictions
if debug:
print(df.head(1))
df.to_csv(results_path, index=False)
def load_logical_reasoning_dataset(
data_path, tokenizer=None, using_p1=True, chinese_prompt=True, test_data=None
):
postfix = "" if chinese_prompt else "_en"
train_data_file = data_path + f"/train{postfix}.csv"
test_data_file = data_path + f"/{test_data if test_data else 'dev'}{postfix}.csv"
print("loading train/test data files")
datasets = load_dataset(
"csv",
data_files={"train": train_data_file, "test": test_data_file},
)
if tokenizer:
reasoning_prompt = get_prompt_template(using_p1, chinese_prompt)
def formatting_prompts_func(examples):
inputs = examples["text"]
outputs = examples["label"]
puzzles = examples["puzzle"]
truths = examples["truth"]
messages = [
{
"role": "system",
"content": system_prompt,
},
None,
]
model_name = os.getenv("MODEL_NAME")
if "mistral" in model_name.lower() or "gemma" in model_name.lower():
messages = messages[1:]
texts = []
prompts = []
for input, output, puzzle, truth in zip(inputs, outputs, puzzles, truths):
prompt = reasoning_prompt.format(puzzle, truth, input)
messages[-1] = {"role": "user", "content": prompt}
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
prompts.append(prompt)
texts.append(prompt + output + tokenizer.eos_token if output else "")
return {"train_text": texts, "prompt": prompts}
datasets = datasets.map(
formatting_prompts_func,
batched=True,
)
print(datasets)
return datasets
def get_metrics(df):
metrics_df = pd.DataFrame(df.columns.T)[2:]
metrics_df.rename(columns={0: "model"}, inplace=True)
metrics_df["model"] = metrics_df["model"].apply(lambda x: x.split("/")[-1])
metrics_df.reset_index(inplace=True)
metrics_df = metrics_df.drop(columns=["index"])
accuracy = []
meteor = []
bleu_1 = []
rouge_l = []
all_metrics = []
for col in df.columns[2:]:
metrics = calc_metrics(df["label"], df[col], debug=True)
print(f"{col}: {metrics}")
accuracy.append(metrics["accuracy"])
all_metrics.append(metrics)
metrics_df["accuracy"] = accuracy
metrics_df["all_metrics"] = all_metrics
return metrics_df
def load_alpaca_data(data_path, using_p1=True, use_english_datasets=False):
alpaca_data_path = (
"llama-factory/data/alpaca_mgtv_p1.json"
if using_p1
else "llama-factory/data/alpaca_mgtv_p2.json"
)
if use_english_datasets:
alpaca_data_path = alpaca_data_path.replace(".json", "_en.json")
if os.path.exists(alpaca_data_path):
print("loading existing data from:", alpaca_data_path)
data = pd.read_json(alpaca_data_path, orient="records", lines=False)
return data
print("loading new data from:", alpaca_data_path)
chinese_prompt = not use_english_datasets
datasets = load_logical_reasoning_dataset(
data_path, using_p1=using_p1, chinese_prompt=chinese_prompt
)
prompt_template = get_prompt_template(using_p1, chinese_prompt)
df_train = datasets["train"].to_pandas()
df_train["instruction"] = df_train.apply(
lambda x: prompt_template.format(x["puzzle"], x["truth"], x["text"]), axis=1
)
df_alpaca = pd.DataFrame(
{"instruction": [""] * len(df_train), "input": [""] * len(df_train)}
)
df_alpaca["instruction"] = df_train["instruction"]
df_alpaca["output"] = df_train["label"]
df_alpaca.to_json(alpaca_data_path, orient="records", lines=False, indent=2)
return df_alpaca
def plot_value_counts(df, column_name, offset=0.1, title=None, preprocess_func=None):
font_family = rcParams["font.family"]
# Set the font to SimHei to support Chinese characters
rcParams["font.family"] = "STHeiti"
rcParams["axes.unicode_minus"] = (
False # This is to support the minus sign in Chinese.
)
if preprocess_func:
df["backup"] = df[column_name]
df[column_name] = df[column_name].apply(preprocess_func)
plt.figure(figsize=(8, 4))
df[column_name].value_counts().plot(kind="bar")
# add values on top of bars
for i, v in enumerate(df[column_name].value_counts()):
plt.text(i, v + offset, str(v), ha="center")
plt.xlabel(title or column_name)
plt.show()
rcParams["font.family"] = font_family
if preprocess_func:
plot_confusion_matrix(df["label"], df[column_name])
df[column_name] = df["backup"]
df.drop(columns=["backup"], inplace=True)
def calc_metrics_for_col(df, col):
metrics = calc_metrics(df["label"], df[col], debug=True)
return metrics["accuracy"], metrics["precision"], metrics["recall"], metrics["f1"]
def get_metrics_df(df, variant="epoch"):
perf_df = pd.DataFrame(
columns=[variant, "model", "run", "accuracy", "precision", "recall", "f1"]
)
for i, col in enumerate(df.columns[5:]):
metrics = calc_metrics(df["label"], df[col], debug=False)
new_model_metrics = {
variant: i / 5 if variant == "epoch" else i + 1,
"model": col if "/" not in col else col.split("/")[1].split("_torch")[0],
"run": col,
}
if variant == "shots":
parts = col.split("/shots-")
new_model_metrics["shots"] = int(parts[1])
new_model_metrics["model"] = parts[0]
new_model_metrics.update(metrics)
# Convert the dictionary to a DataFrame and concatenate it with the existing DataFrame
perf_df = pd.concat(
[perf_df, pd.DataFrame([new_model_metrics])], ignore_index=True
)
return perf_df
def plot_metrics(perf_df, model_name, variant="epoch", offset=0.01):
fig, ax = plt.subplots(1, 1, figsize=(8, 4))
perf_df = perf_df[perf_df["model"] == model_name]
# Ensure the lengths of perf_df["epoch"], perf_df["accuracy"], and perf_df["f1"] are the same
min_length = min(
len(perf_df[variant]), len(perf_df["accuracy"]), len(perf_df["f1"])
)
perf_df = perf_df.iloc[:min_length]
# Plot accuracy and f1 on the same chart with different markers
ax.plot(
perf_df[variant], perf_df["accuracy"], marker="o", label="Accuracy", color="r"
)
ax.plot(
perf_df[variant], perf_df["f1"], marker="s", label="F1 Score", color="b"
) # Square marker for F1 Score
# Add values on top of points
for i in range(min_length):
print(f"{perf_df[variant].iloc[i]}: {perf_df['run'].iloc[i]}")
ax.annotate(
f"{perf_df['accuracy'].iloc[i]*100:.2f}%",
(perf_df[variant].iloc[i], perf_df["accuracy"].iloc[i]),
ha="center",
va="bottom", # Move accuracy numbers below the points
xytext=(0, -15),
textcoords="offset points",
fontsize=10,
color="r",
)
ax.annotate(
f"{perf_df['f1'].iloc[i]*100:.2f}%",
(perf_df[variant].iloc[i], perf_df["f1"].iloc[i]),
ha="center",
va="top", # Move F1 score numbers above the points
xytext=(0, 15), # Offset by 15 points vertically
textcoords="offset points",
fontsize=10,
color="b",
)
# Set y-axis limit
ylimits = ax.get_ylim()
ax.set_ylim(ylimits[0] - offset, ylimits[1] + offset)
# Add title and labels
ax.set_xlabel(
"Epoch (0: base model, 0.2 - 2: fine-tuned models)"
if variant == "epoch"
else "Number of Shots"
)
ax.set_ylabel("Accuracy and F1 Score")
ax.xaxis.set_major_locator(MultipleLocator(0.2 if variant == "epoch" else 5))
ax.set_title(f"Performance Analysis Across Checkpoints for the {model_name} Model")
# Rotate x labels
plt.xticks(rotation=0)
plt.grid(True)
# plt.tight_layout()
# Set legend at the right to avoid overlapping with lines
plt.legend(loc="center left", bbox_to_anchor=(1.0, 0.5))
plt.show()
def reasoning_with_openai(
row, user_prompt, max_tokens=None, model="gpt-4o-mini", base_url=None
):
llm = ChatOpenAI(
model=model,
temperature=0,
max_tokens=max_tokens,
timeout=None,
max_retries=2,
base_url=base_url,
)
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
system_prompt,
),
(
"human",
user_prompt.format(row["puzzle"], row["truth"], row["text"]),
),
]
)
chain = prompt | llm
response = chain.invoke(input={})
return response.content
def eval_openai(
eval_dataset,
model="gpt-4o-mini",
max_new_tokens=300,
num_shots=0,
train_dataset=None,
):
user_prompt = (
get_prompt_template(using_p1=False, chinese_prompt=True)
if num_shots == 0
else get_few_shot_prompt_template(num_shots, train_dataset)
)
print("user_prompt:", user_prompt)
total = len(eval_dataset)
predictions = []
for i in tqdm(range(total)):
output = reasoning_with_openai(
eval_dataset.iloc[i], user_prompt, model=model, max_tokens=max_new_tokens
)
predictions.append(output)
return predictions
def plot_confusion_matrix(y_true, y_pred, title="Confusion Matrix"):
font_family = rcParams["font.family"]
# Set the font to SimHei to support Chinese characters
rcParams["font.family"] = "STHeiti"
rcParams["axes.unicode_minus"] = (
False # This is to support the minus sign in Chinese.
)
labels = np.unique(y_true)
y_pred = [extract_answer(text) for text in y_pred]
cm = confusion_matrix(y_true, y_pred)
cm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis]
fig, ax = plt.subplots(figsize=(8, 8))
sns.heatmap(
cm,
annot=True,
fmt=".4f",
cmap="Blues",
xticklabels=labels,
yticklabels=labels,
)
ax.set_title(title)
ax.set_xlabel("Predicted labels")
ax.set_ylabel("True labels")
plt.show()
rcParams["font.family"] = font_family
def majority_vote(r1, r2, r3):
label = r2
if r1 == r3:
label = r1
return label
|