File size: 20,269 Bytes
5002792
 
8b9bb19
 
5002792
468b88d
5002792
 
e656f92
 
5002792
e656f92
468b88d
 
 
 
 
 
 
 
5002792
 
 
b5506da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58a3992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5506da
 
 
 
 
 
 
 
 
 
 
 
 
 
468b88d
 
 
 
b5506da
 
58a3992
 
 
468b88d
58a3992
 
 
 
 
 
 
 
 
 
468b88d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58a3992
468b88d
58a3992
468b88d
 
 
 
 
 
58a3992
 
 
 
 
 
 
 
 
c8f289a
468b88d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb52e90
5a8f8d2
eb52e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468b88d
5a8f8d2
468b88d
eb52e90
 
 
 
 
 
 
 
 
 
 
 
5a8f8d2
 
 
eb52e90
 
5002792
 
 
 
 
5a8f8d2
 
 
5002792
 
5a8f8d2
5002792
 
 
5a8f8d2
5002792
 
5a8f8d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5002792
 
 
 
 
 
 
 
 
 
8b9bb19
 
 
 
 
468b88d
 
 
5002792
 
 
 
 
 
 
 
 
 
 
b5506da
7670f2e
b5506da
c8f289a
 
7670f2e
5002792
 
 
 
 
 
 
 
58a3992
c8f289a
5002792
 
 
 
 
 
 
 
 
8b9bb19
5002792
 
 
 
 
 
6d673bc
5002792
 
 
 
c8f289a
5002792
 
 
 
 
 
 
7670f2e
5002792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a8f8d2
5002792
 
 
 
 
 
 
 
 
eb52e90
 
 
 
 
 
 
 
 
58a3992
 
 
eb52e90
 
 
 
 
 
58a3992
eb52e90
58a3992
eb52e90
 
58a3992
 
eb52e90
 
 
 
 
 
 
 
 
 
 
 
 
e656f92
 
5a8f8d2
e656f92
 
 
 
 
 
5a8f8d2
 
 
e656f92
468b88d
5a8f8d2
e656f92
5a8f8d2
 
e656f92
5a8f8d2
e656f92
 
 
 
 
5a8f8d2
468b88d
5a8f8d2
 
e656f92
 
5a8f8d2
 
 
e656f92
 
468b88d
e656f92
468b88d
e656f92
 
5a8f8d2
e656f92
468b88d
 
 
e656f92
468b88d
 
 
 
 
5a8f8d2
e656f92
 
 
 
 
 
 
 
 
468b88d
 
 
e656f92
 
 
468b88d
e656f92
 
 
 
 
468b88d
 
 
 
e656f92
 
 
 
468b88d
e656f92
 
468b88d
e656f92
 
 
 
 
468b88d
e656f92
 
 
468b88d
e656f92
 
 
 
 
468b88d
e656f92
 
 
468b88d
 
e656f92
 
468b88d
 
 
 
 
e656f92
 
468b88d
e656f92
 
 
 
 
 
 
 
 
 
 
8b9bb19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
468b88d
 
 
 
 
 
 
 
 
 
 
 
 
8b9bb19
 
 
 
468b88d
 
 
8b9bb19
 
 
468b88d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
import os
import re
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
import pandas as pd
from tqdm import tqdm
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib import rcParams
from matplotlib.ticker import MultipleLocator
from datasets import load_dataset
import numpy as np
from sklearn.metrics import (
    accuracy_score,
    precision_score,
    recall_score,
    f1_score,
    confusion_matrix,
)


print(f"loading {__file__}")

P1 = """你是一个逻辑游戏的主持人。游戏规则如下:

1. 参与者会得到一个谜题。
2. 参与者可以通过提问来获取线索,尝试解开谜题。
3. 对于每个问题,主持人将根据实际情况回答以下五个选项之一:是、不是、不重要、回答正确、问法错误。
4. 回答中不能添加任何其它信息,也不能省略选项中的任何一个字。例如,不可以把“不是”省略成“不”。
5. 参与者需要根据回答来推理,并最终找出谜题的正确答案。

请严格按照这些规则回答参与者提出的问题。

谜题: {}

实际情况: {}

参与者提出的问题: {}
"""

P1_en = """You are the host of a logic game. The rules of the game are as follows:

	1.	Participants will receive a puzzle.
	2.	Participants can ask questions to obtain clues and try to solve the puzzle.
	3.	For each question, the host will answer with one of the following five options based on the actual situation: Yes, No, Unimportant, Correct answer, or Incorrect questioning.
	4.	The answer cannot include any additional information, nor can any word in the options be omitted. For example, “No” cannot be shortened to “N”.
	5.	Participants need to infer and ultimately find the correct answer to the puzzle based on the responses.

Please strictly adhere to these rules when answering participants’ questions.

Puzzle: {}

Actual situation: {}

Question from participants: {}"""

P2 = """你是一个情景猜谜游戏的主持人。游戏规则如下:

1. 参与者会得到一个谜面,谜面会描述一个简单又难以理解的事件。
2. 主持人知道谜底,谜底是谜面的答案。
3. 参与者可以询问任何封闭式问题来找寻事件的真相。
4. 对于每个问题,主持人将根据实际情况回答以下五个选项之一:是、不是、不重要、回答正确、问法错误。各回答的判断标准如下:
   - 若谜面和谜底能找到问题的答案,回答:是或者不是
   - 若谜面和谜底不能直接或者间接推断出问题的答案,回答:不重要
   - 若参与者提问不是一个封闭式问题或者问题难以理解,回答:问法错误
   - 若参与者提问基本还原了谜底真相,回答:回答正确
5. 回答中不能添加任何其它信息,也不能省略选项中的任何一个字。例如,不可以把“不是”省略成“不”。

请严格按照这些规则回答参与者提出的问题。

谜面: {}
谜底: {}
参与者提出的问题: {}
回答: 
"""

P2_en = """You are the host of a situational guessing game. The rules of the game are as follows:

1. Participants will receive a riddle that describes a simple yet difficult to understand event.
2. The host knows the truth, which is the solution to the riddle.
3. Participants can ask any closed-ended questions to uncover the truth of the event.
4. For each question, the host will respond with one of the following five options based on the actual situation: Yes, No, Unimportant, Correct answer, or Incorrect questioning. The criteria for each response are as follows:
   - If the riddle and answer can provide an answer to the question, respond with: Yes or No
   - If the riddle and answer cannot directly or indirectly infer an answer to the question, respond with: Unimportant
   - If the participant's question is not a closed-ended question or is difficult to understand, respond with: Incorrect questioning
   - If the participant's question essentially reveals the truth of the answer, respond with: Correct answer
5. The response must not include any additional information, nor should any word be omitted from the options. For example, "No" cannot be abbreviated to "N".

Please strictly follow these rules when answering the participant's questions.

Riddle: {}
Truth: {}
Participant's question: {}
"""

system_prompt = "You are an expert in logical reasoning."

P2_few_shot = """你是一个情景猜谜游戏的主持人。游戏规则如下:

1. 参与者会得到一个谜面,谜面会描述一个简单又难以理解的事件。
2. 主持人知道谜底,谜底是谜面的答案。
3. 参与者可以询问任何封闭式问题来找寻事件的真相。
4. 对于每个问题,主持人将根据实际情况回答以下五个选项之一:是、不是、不重要、回答正确、问法错误。各回答的判断标准如下:
   - 若谜面和谜底能找到问题的答案,回答:是或者不是
   - 若谜面和谜底不能直接或者间接推断出问题的答案,回答:不重要
   - 若参与者提问不是一个封闭式问题或者问题难以理解,回答:问法错误
   - 若参与者提问基本还原了谜底真相,回答:回答正确
5. 回答中不能添加任何其它信息,也不能省略选项中的任何一个字。例如,不可以把“不是”省略成“不”。

请严格按照这些规则回答参与者提出的问题。

示例输入和输出: 
{examples}
谜面: {}
谜底: {}
参与者提出的问题: {}
回答: 
"""


def get_prompt_template(using_p1=True, chinese_prompt=True):
    if using_p1:
        return P1 if chinese_prompt else P1_en
    else:
        return P2 if chinese_prompt else P2_en


def get_few_shot_prompt_template(num_shots, train_dataset, debug=False):
    if num_shots == 0:
        return get_prompt_template(using_p1=False, chinese_prompt=True)

    labels = train_dataset["label"].unique()
    if debug:
        print("num_shots:", num_shots)
        print("labels:", labels)

    examples = ""
    index = 0
    while num_shots > 0:
        for label in labels:
            while train_dataset["label"][index] != label:
                index += 1

            row = train_dataset.iloc[index]
            examples += f"""谜面: {row["puzzle"]}
谜底: {row["truth"]}
参与者提出的问题: {row["text"]}
回答: {row["label"]}

"""
            num_shots -= 1
            if num_shots == 0:
                break

    prompt = P2_few_shot.replace("{examples}", examples)
    if debug:
        print("P2_few_shot:", prompt)

    return prompt


def extract_answer(text, debug=False):
    if text and isinstance(text, str):
        # Remove the begin and end tokens
        text = re.sub(
            r".*?(assistant|\[/INST\]).+?\b",
            "",
            text,
            flags=re.DOTALL | re.MULTILINE,
        )
        if debug:
            print("--------\nstep 1:", text)

        text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE)
        if debug:
            print("--------\nstep 2:", text)

        text = re.sub(
            r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE
        )
        if debug:
            print("--------\nstep 3:", text)

        text = text.split(".")[0].strip()
        text = text.split("\n")[0].strip()
        text = text.split("。")[0].strip()
        text = text.replace("回答: ", "").strip()
        if debug:
            print("--------\nstep 4:", text)

        text = re.sub(
            r"^Response:.+?\b",
            "",
            text,
            flags=re.DOTALL | re.MULTILINE,
        )
        if debug:
            print("--------\nstep 5:", text)

        return text.strip()

    return ""


def calc_metrics(references, predictions, debug=False):
    assert len(references) == len(
        predictions
    ), f"lengths are difference: {len(references)} != {len(predictions)}"

    labels = np.unique(references)
    valid_classifications = [1 if p in labels else 0 for p in predictions]

    predictions = [extract_answer(text) for text in predictions]

    accuracy = accuracy_score(references, predictions)

    results = {"accuracy": accuracy}
    if debug:
        incorrect_ids = [i for i, p in enumerate(predictions) if p != references[i]]
        results["incorrect_ids"] = incorrect_ids

    precision = precision_score(
        references, predictions, average="weighted", labels=labels
    )
    results["precision"] = float(precision)

    recall = recall_score(references, predictions, average="weighted", labels=labels)
    results["recall"] = float(recall)

    f1 = f1_score(references, predictions, average="weighted", labels=labels)
    results["f1"] = float(f1)

    results["ratio_valid_classifications"] = sum(valid_classifications) / len(
        valid_classifications
    )

    return results


def save_results(model_name, results_path, dataset, predictions, debug=False):
    if not os.path.exists(results_path):
        # Get the directory part of the file path
        dir_path = os.path.dirname(results_path)

        # Create all directories in the path (if they don't exist)
        os.makedirs(dir_path, exist_ok=True)

        if isinstance(dataset, pd.DataFrame):
            df = dataset
        else:
            df = dataset.to_pandas()
        df.drop(
            columns=["answer", "prompt", "train_text"], inplace=True, errors="ignore"
        )
    else:
        df = pd.read_csv(results_path, on_bad_lines="warn")

    df[model_name] = predictions

    if debug:
        print(df.head(1))

    df.to_csv(results_path, index=False)


def load_logical_reasoning_dataset(
    data_path, tokenizer=None, using_p1=True, chinese_prompt=True, test_data=None
):
    postfix = "" if chinese_prompt else "_en"
    train_data_file = data_path + f"/train{postfix}.csv"
    test_data_file = data_path + f"/{test_data if test_data else 'dev'}{postfix}.csv"

    print("loading train/test data files")
    datasets = load_dataset(
        "csv",
        data_files={"train": train_data_file, "test": test_data_file},
    )

    if tokenizer:
        reasoning_prompt = get_prompt_template(using_p1, chinese_prompt)

        def formatting_prompts_func(examples):
            inputs = examples["text"]
            outputs = examples["label"]
            puzzles = examples["puzzle"]
            truths = examples["truth"]

            messages = [
                {
                    "role": "system",
                    "content": system_prompt,
                },
                None,
            ]

            model_name = os.getenv("MODEL_NAME")

            if "mistral" in model_name.lower() or "gemma" in model_name.lower():
                messages = messages[1:]

            texts = []
            prompts = []
            for input, output, puzzle, truth in zip(inputs, outputs, puzzles, truths):
                prompt = reasoning_prompt.format(puzzle, truth, input)
                messages[-1] = {"role": "user", "content": prompt}

                prompt = tokenizer.apply_chat_template(
                    messages, tokenize=False, add_generation_prompt=True
                )
                prompts.append(prompt)
                texts.append(prompt + output + tokenizer.eos_token if output else "")
            return {"train_text": texts, "prompt": prompts}

        datasets = datasets.map(
            formatting_prompts_func,
            batched=True,
        )

    print(datasets)
    return datasets


def get_metrics(df):
    metrics_df = pd.DataFrame(df.columns.T)[2:]
    metrics_df.rename(columns={0: "model"}, inplace=True)
    metrics_df["model"] = metrics_df["model"].apply(lambda x: x.split("/")[-1])
    metrics_df.reset_index(inplace=True)
    metrics_df = metrics_df.drop(columns=["index"])

    accuracy = []
    meteor = []
    bleu_1 = []
    rouge_l = []
    all_metrics = []
    for col in df.columns[2:]:
        metrics = calc_metrics(df["label"], df[col], debug=True)
        print(f"{col}: {metrics}")

        accuracy.append(metrics["accuracy"])
        all_metrics.append(metrics)

    metrics_df["accuracy"] = accuracy
    metrics_df["all_metrics"] = all_metrics

    return metrics_df


def load_alpaca_data(data_path, using_p1=True, use_english_datasets=False):
    alpaca_data_path = (
        "llama-factory/data/alpaca_mgtv_p1.json"
        if using_p1
        else "llama-factory/data/alpaca_mgtv_p2.json"
    )

    if use_english_datasets:
        alpaca_data_path = alpaca_data_path.replace(".json", "_en.json")

    if os.path.exists(alpaca_data_path):
        print("loading existing data from:", alpaca_data_path)
        data = pd.read_json(alpaca_data_path, orient="records", lines=False)
        return data

    print("loading new data from:", alpaca_data_path)
    chinese_prompt = not use_english_datasets
    datasets = load_logical_reasoning_dataset(
        data_path, using_p1=using_p1, chinese_prompt=chinese_prompt
    )

    prompt_template = get_prompt_template(using_p1, chinese_prompt)

    df_train = datasets["train"].to_pandas()
    df_train["instruction"] = df_train.apply(
        lambda x: prompt_template.format(x["puzzle"], x["truth"], x["text"]), axis=1
    )

    df_alpaca = pd.DataFrame(
        {"instruction": [""] * len(df_train), "input": [""] * len(df_train)}
    )
    df_alpaca["instruction"] = df_train["instruction"]
    df_alpaca["output"] = df_train["label"]
    df_alpaca.to_json(alpaca_data_path, orient="records", lines=False, indent=2)

    return df_alpaca


def plot_value_counts(df, column_name, offset=0.1, title=None, preprocess_func=None):
    font_family = rcParams["font.family"]
    # Set the font to SimHei to support Chinese characters
    rcParams["font.family"] = "STHeiti"
    rcParams["axes.unicode_minus"] = (
        False  # This is to support the minus sign in Chinese.
    )
    if preprocess_func:
        df["backup"] = df[column_name]
        df[column_name] = df[column_name].apply(preprocess_func)

    plt.figure(figsize=(8, 4))
    df[column_name].value_counts().plot(kind="bar")
    # add values on top of bars
    for i, v in enumerate(df[column_name].value_counts()):
        plt.text(i, v + offset, str(v), ha="center")

    plt.xlabel(title or column_name)

    plt.show()

    rcParams["font.family"] = font_family

    if preprocess_func:
        plot_confusion_matrix(df["label"], df[column_name])
        df[column_name] = df["backup"]
        df.drop(columns=["backup"], inplace=True)


def calc_metrics_for_col(df, col):
    metrics = calc_metrics(df["label"], df[col], debug=True)
    return metrics["accuracy"], metrics["precision"], metrics["recall"], metrics["f1"]


def get_metrics_df(df, variant="epoch"):
    perf_df = pd.DataFrame(
        columns=[variant, "model", "run", "accuracy", "precision", "recall", "f1"]
    )
    for i, col in enumerate(df.columns[5:]):
        metrics = calc_metrics(df["label"], df[col], debug=False)
        new_model_metrics = {
            variant: i / 5 if variant == "epoch" else i + 1,
            "model": col if "/" not in col else col.split("/")[1].split("_torch")[0],
            "run": col,
        }
        if variant == "shots":
            parts = col.split("/shots-")
            new_model_metrics["shots"] = int(parts[1])
            new_model_metrics["model"] = parts[0]

        new_model_metrics.update(metrics)

        # Convert the dictionary to a DataFrame and concatenate it with the existing DataFrame
        perf_df = pd.concat(
            [perf_df, pd.DataFrame([new_model_metrics])], ignore_index=True
        )

    return perf_df


def plot_metrics(perf_df, model_name, variant="epoch", offset=0.01):
    fig, ax = plt.subplots(1, 1, figsize=(8, 4))
    perf_df = perf_df[perf_df["model"] == model_name]

    # Ensure the lengths of perf_df["epoch"], perf_df["accuracy"], and perf_df["f1"] are the same
    min_length = min(
        len(perf_df[variant]), len(perf_df["accuracy"]), len(perf_df["f1"])
    )
    perf_df = perf_df.iloc[:min_length]

    # Plot accuracy and f1 on the same chart with different markers
    ax.plot(
        perf_df[variant], perf_df["accuracy"], marker="o", label="Accuracy", color="r"
    )
    ax.plot(
        perf_df[variant], perf_df["f1"], marker="s", label="F1 Score", color="b"
    )  # Square marker for F1 Score

    # Add values on top of points
    for i in range(min_length):
        print(f"{perf_df[variant].iloc[i]}: {perf_df['run'].iloc[i]}")
        ax.annotate(
            f"{perf_df['accuracy'].iloc[i]*100:.2f}%",
            (perf_df[variant].iloc[i], perf_df["accuracy"].iloc[i]),
            ha="center",
            va="bottom",  # Move accuracy numbers below the points
            xytext=(0, -15),
            textcoords="offset points",
            fontsize=10,
            color="r",
        )
        ax.annotate(
            f"{perf_df['f1'].iloc[i]*100:.2f}%",
            (perf_df[variant].iloc[i], perf_df["f1"].iloc[i]),
            ha="center",
            va="top",  # Move F1 score numbers above the points
            xytext=(0, 15),  # Offset by 15 points vertically
            textcoords="offset points",
            fontsize=10,
            color="b",
        )

    # Set y-axis limit
    ylimits = ax.get_ylim()
    ax.set_ylim(ylimits[0] - offset, ylimits[1] + offset)

    # Add title and labels
    ax.set_xlabel(
        "Epoch (0: base model, 0.2 - 2: fine-tuned models)"
        if variant == "epoch"
        else "Number of Shots"
    )
    ax.set_ylabel("Accuracy and F1 Score")

    ax.xaxis.set_major_locator(MultipleLocator(0.2 if variant == "epoch" else 5))
    ax.set_title(f"Performance Analysis Across Checkpoints for the {model_name} Model")

    # Rotate x labels
    plt.xticks(rotation=0)
    plt.grid(True)
    # plt.tight_layout()

    # Set legend at the right to avoid overlapping with lines
    plt.legend(loc="center left", bbox_to_anchor=(1.0, 0.5))

    plt.show()


def reasoning_with_openai(
    row, user_prompt, max_tokens=None, model="gpt-4o-mini", base_url=None
):
    llm = ChatOpenAI(
        model=model,
        temperature=0,
        max_tokens=max_tokens,
        timeout=None,
        max_retries=2,
        base_url=base_url,
    )

    prompt = ChatPromptTemplate.from_messages(
        [
            (
                "system",
                system_prompt,
            ),
            (
                "human",
                user_prompt.format(row["puzzle"], row["truth"], row["text"]),
            ),
        ]
    )

    chain = prompt | llm
    response = chain.invoke(input={})

    return response.content


def eval_openai(
    eval_dataset,
    model="gpt-4o-mini",
    max_new_tokens=300,
    num_shots=0,
    train_dataset=None,
):
    user_prompt = (
        get_prompt_template(using_p1=False, chinese_prompt=True)
        if num_shots == 0
        else get_few_shot_prompt_template(num_shots, train_dataset)
    )
    print("user_prompt:", user_prompt)
    total = len(eval_dataset)
    predictions = []

    for i in tqdm(range(total)):
        output = reasoning_with_openai(
            eval_dataset.iloc[i], user_prompt, model=model, max_tokens=max_new_tokens
        )
        predictions.append(output)

    return predictions


def plot_confusion_matrix(y_true, y_pred, title="Confusion Matrix"):
    font_family = rcParams["font.family"]
    # Set the font to SimHei to support Chinese characters
    rcParams["font.family"] = "STHeiti"
    rcParams["axes.unicode_minus"] = (
        False  # This is to support the minus sign in Chinese.
    )

    labels = np.unique(y_true)

    y_pred = [extract_answer(text) for text in y_pred]

    cm = confusion_matrix(y_true, y_pred)
    cm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis]

    fig, ax = plt.subplots(figsize=(8, 8))
    sns.heatmap(
        cm,
        annot=True,
        fmt=".4f",
        cmap="Blues",
        xticklabels=labels,
        yticklabels=labels,
    )
    ax.set_title(title)
    ax.set_xlabel("Predicted labels")
    ax.set_ylabel("True labels")
    plt.show()

    rcParams["font.family"] = font_family


def majority_vote(r1, r2, r3):
    label = r2
    if r1 == r3:
        label = r1

    return label