Spaces:
Build error
Build error
File size: 11,455 Bytes
5002792 b5506da c8f289a eb52e90 5002792 b5506da a5837c1 b5506da c8f289a 5002792 c8f289a b5506da c8f289a 5002792 c8f289a 5002792 eb52e90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import os
import re
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from datasets import load_dataset
from tqdm import tqdm
print(f"loading {__file__}")
P1 = """你是一个逻辑游戏的主持人。游戏规则如下:
1. 参与者会得到一个谜题。
2. 参与者可以通过提问来获取线索,尝试解开谜题。
3. 对于每个问题,主持人将根据实际情况回答以下五个选项之一:是、不是、不重要、回答正确、问法错误。
4. 回答中不能添加任何其它信息,也不能省略选项中的任何一个字。例如,不可以把“不是”省略成“不”。
5. 参与者需要根据回答来推理,并最终找出谜题的正确答案。
请严格按照这些规则回答参与者提出的问题。
谜题: {}
实际情况: {}
参与者提出的问题: {}
"""
P2 = """你是一个情景猜谜游戏的主持人。游戏规则如下:
1. 参与者会得到一个谜面,谜面会描述一个简单又难以理解的事件。
2. 主持人知道谜底,谜底是谜面的答案。
3. 参与者可以询问任何封闭式问题来找寻事件的真相。
4. 对于每个问题,主持人将根据实际情况回答以下五个选项之一:是、不是、不重要、回答正确、问法错误。各回答的判断标准如下:
- 若谜面和谜底能找到问题的答案,回答:是或者不是
- 若谜面和谜底不能直接或者间接推断出问题的答案,回答:不重要
- 若参与者提问不是一个封闭式问题或者问题难以理解,回答:问法错误
- 若参与者提问基本还原了谜底真相,回答:回答正确
5. 回答中不能添加任何其它信息,也不能省略选项中的任何一个字。例如,不可以把“不是”省略成“不”。
请严格按照这些规则回答参与者提出的问题。
**谜面:** {}
**谜底:** {}
**参与者提出的问题:** {}
"""
def extract_answer(text, debug=False):
if text:
# Remove the begin and end tokens
text = re.sub(
r".*?(assistant|\[/INST\]).+?\b",
"",
text,
flags=re.DOTALL | re.MULTILINE,
)
if debug:
print("--------\nstep 1:", text)
text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE)
if debug:
print("--------\nstep 2:", text)
text = re.sub(
r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE
)
if debug:
print("--------\nstep 3:", text)
text = text.split(".")[0].strip()
if debug:
print("--------\nstep 4:", text)
text = re.sub(
r"^Response:.+?\b",
"",
text,
flags=re.DOTALL | re.MULTILINE,
)
if debug:
print("--------\nstep 5:", text)
return text
def calc_metrics(references, predictions, debug=False):
assert len(references) == len(
predictions
), f"lengths are difference: {len(references)} != {len(predictions)}"
predictions = [extract_answer(text) for text in predictions]
correct = [1 if ref == pred else 0 for ref, pred in zip(references, predictions)]
accuracy = sum(correct) / len(references)
results = {"accuracy": accuracy}
if debug:
incorrect_ids = [i for i, c in enumerate(correct) if c == 0]
results["incorrect_ids"] = incorrect_ids
return results
def save_results(model_name, results_path, dataset, predictions, debug=False):
if not os.path.exists(results_path):
# Get the directory part of the file path
dir_path = os.path.dirname(results_path)
# Create all directories in the path (if they don't exist)
os.makedirs(dir_path, exist_ok=True)
df = dataset.to_pandas()
df.drop(columns=["answer", "prompt", "train_text"], inplace=True)
else:
df = pd.read_csv(results_path, on_bad_lines="warn")
df[model_name] = predictions
if debug:
print(df.head(1))
df.to_csv(results_path, index=False)
def load_logical_reasoning_dataset(
data_path, tokenizer=None, using_p1=True, chinese_prompt=True
):
postfix = "" if chinese_prompt else "_en"
train_data_file = data_path + f"/train{postfix}.csv"
test_data_file = data_path + f"/dev{postfix}.csv"
print("loading train/test data files")
datasets = load_dataset(
"csv",
data_files={"train": train_data_file, "test": test_data_file},
)
if tokenizer:
reasoning_prompt = (
(P1 if using_p1 else P2)
if chinese_prompt
else """You are the host of a situational guessing game. The rules of the game are as follows:
1. Participants will receive a riddle that describes a simple yet difficult to understand event.
2. The host knows the answer, which is the solution to the riddle.
3. Participants can ask any closed-ended questions to uncover the truth of the event.
4. For each question, the host will respond with one of the following five options based on the actual situation: Yes, No, Unimportant, Correct answer, or Incorrect questioning. The criteria for each response are as follows:
- If the riddle and answer can provide an answer to the question, respond with: Yes or No
- If the riddle and answer cannot directly or indirectly infer an answer to the question, respond with: Unimportant
- If the participant's question is not a closed-ended question or is difficult to understand, respond with: Incorrect questioning
- If the participant's question essentially reveals the truth of the answer, respond with: Correct answer
5. The response must not include any additional information, nor should any word be omitted from the options. For example, "No" cannot be abbreviated to "N".
Please strictly follow these rules when answering the participant's questions.
**Riddle:** {}
**Answer:** {}
**Participant's question:** {}
"""
)
def formatting_prompts_func(examples):
inputs = examples["text"]
outputs = examples["label"]
puzzles = examples["puzzle"]
truths = examples["truth"]
messages = [
{
"role": "system",
"content": "You are an expert in logical reasoning.",
},
None,
]
model_name = os.getenv("MODEL_NAME")
if "mistral" in model_name.lower():
messages = messages[1:]
texts = []
prompts = []
for input, output, puzzle, truth in zip(inputs, outputs, puzzles, truths):
prompt = reasoning_prompt.format(puzzle, truth, input)
messages[-1] = {"role": "user", "content": prompt}
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
prompts.append(prompt)
texts.append(prompt + output + tokenizer.eos_token)
return {"train_text": texts, "prompt": prompts}
datasets = datasets.map(
formatting_prompts_func,
batched=True,
)
print(datasets)
return datasets
def eval_model(model, tokenizer, eval_dataset):
total = len(eval_dataset)
predictions = []
for i in tqdm(range(total)):
inputs = tokenizer(
eval_dataset["prompt"][i : i + 1],
return_tensors="pt",
).to("cuda")
outputs = model.generate(**inputs, max_new_tokens=4096, use_cache=False)
decoded_output = tokenizer.batch_decode(outputs)
debug = i == 0
decoded_output = [
extract_answer(output, debug=debug) for output in decoded_output
]
predictions.extend(decoded_output)
return predictions
def save_model(
model,
tokenizer,
include_gguf=True,
include_merged=True,
publish=True,
):
try:
token = os.getenv("HF_TOKEN") or None
model_name = os.getenv("MODEL_NAME")
save_method = "lora"
quantization_method = "q5_k_m"
model_names = get_model_names(
model_name, save_method=save_method, quantization_method=quantization_method
)
model.save_pretrained(model_names["local"])
tokenizer.save_pretrained(model_names["local"])
if publish:
model.push_to_hub(
model_names["hub"],
token=token,
)
tokenizer.push_to_hub(
model_names["hub"],
token=token,
)
if include_merged:
model.save_pretrained_merged(
model_names["local"] + "-merged", tokenizer, save_method=save_method
)
if publish:
model.push_to_hub_merged(
model_names["hub"] + "-merged",
tokenizer,
save_method="lora",
token="",
)
if include_gguf:
model.save_pretrained_gguf(
model_names["local-gguf"],
tokenizer,
quantization_method=quantization_method,
)
if publish:
model.push_to_hub_gguf(
model_names["hub-gguf"],
tokenizer,
quantization_method=quantization_method,
token=token,
)
except Exception as e:
print(e)
def get_metrics(df):
metrics_df = pd.DataFrame(df.columns.T)[2:]
metrics_df.rename(columns={0: "model"}, inplace=True)
metrics_df["model"] = metrics_df["model"].apply(lambda x: x.split("/")[-1])
metrics_df.reset_index(inplace=True)
metrics_df = metrics_df.drop(columns=["index"])
accuracy = []
meteor = []
bleu_1 = []
rouge_l = []
all_metrics = []
for col in df.columns[2:]:
metrics = calc_metrics(df["english"], df[col], debug=True)
print(f"{col}: {metrics}")
accuracy.append(metrics["accuracy"])
all_metrics.append(metrics)
metrics_df["accuracy"] = accuracy
metrics_df["all_metrics"] = all_metrics
return metrics_df
def load_alpaca_data(data_path, using_p1=True, use_english_datasets=False):
alpaca_data_path = (
"llama-factory/data/alpaca_mgtv_p1.json"
if using_p1
else "llama-factory/data/alpaca_mgtv_p2.json"
)
if os.path.exists(alpaca_data_path):
print("loading existing data from:", alpaca_data_path)
data = pd.read_json(alpaca_data_path, orient="records", lines=False)
return data
print("loading new data from:", alpaca_data_path)
datasets = load_logical_reasoning_dataset(
data_path, chinese_prompt=not use_english_datasets
)
prompt_template = P1 if using_p1 else P2
df_train = datasets["train"].to_pandas()
df_train["instruction"] = df_train.apply(
lambda x: prompt_template.format(x["puzzle"], x["truth"], x["text"]), axis=1
)
df_alpaca = pd.DataFrame(
{"instruction": [""] * len(df_train), "input": [""] * len(df_train)}
)
df_alpaca["instruction"] = df_train["instruction"]
df_alpaca["output"] = df_train["label"]
df_alpaca.to_json(alpaca_data_path, orient="records", lines=False, indent=2)
return df_alpaca
|