File size: 11,455 Bytes
5002792
 
 
 
 
 
 
 
 
 
b5506da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8f289a
eb52e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5002792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5506da
a5837c1
b5506da
c8f289a
 
 
5002792
 
 
 
 
 
 
 
c8f289a
b5506da
c8f289a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5002792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8f289a
5002792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb52e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import os
import re
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from datasets import load_dataset
from tqdm import tqdm

print(f"loading {__file__}")

P1 = """你是一个逻辑游戏的主持人。游戏规则如下:

1. 参与者会得到一个谜题。
2. 参与者可以通过提问来获取线索,尝试解开谜题。
3. 对于每个问题,主持人将根据实际情况回答以下五个选项之一:是、不是、不重要、回答正确、问法错误。
4. 回答中不能添加任何其它信息,也不能省略选项中的任何一个字。例如,不可以把“不是”省略成“不”。
5. 参与者需要根据回答来推理,并最终找出谜题的正确答案。

请严格按照这些规则回答参与者提出的问题。

谜题: {}

实际情况: {}

参与者提出的问题: {}
"""

P2 = """你是一个情景猜谜游戏的主持人。游戏规则如下:

1. 参与者会得到一个谜面,谜面会描述一个简单又难以理解的事件。
2. 主持人知道谜底,谜底是谜面的答案。
3. 参与者可以询问任何封闭式问题来找寻事件的真相。
4. 对于每个问题,主持人将根据实际情况回答以下五个选项之一:是、不是、不重要、回答正确、问法错误。各回答的判断标准如下:
   - 若谜面和谜底能找到问题的答案,回答:是或者不是
   - 若谜面和谜底不能直接或者间接推断出问题的答案,回答:不重要
   - 若参与者提问不是一个封闭式问题或者问题难以理解,回答:问法错误
   - 若参与者提问基本还原了谜底真相,回答:回答正确
5. 回答中不能添加任何其它信息,也不能省略选项中的任何一个字。例如,不可以把“不是”省略成“不”。

请严格按照这些规则回答参与者提出的问题。

**谜面:** {}

**谜底:** {}

**参与者提出的问题:** {}
"""


def extract_answer(text, debug=False):
    if text:
        # Remove the begin and end tokens
        text = re.sub(
            r".*?(assistant|\[/INST\]).+?\b",
            "",
            text,
            flags=re.DOTALL | re.MULTILINE,
        )
        if debug:
            print("--------\nstep 1:", text)

        text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE)
        if debug:
            print("--------\nstep 2:", text)

        text = re.sub(
            r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE
        )
        if debug:
            print("--------\nstep 3:", text)

        text = text.split(".")[0].strip()
        if debug:
            print("--------\nstep 4:", text)

        text = re.sub(
            r"^Response:.+?\b",
            "",
            text,
            flags=re.DOTALL | re.MULTILINE,
        )
        if debug:
            print("--------\nstep 5:", text)

    return text


def calc_metrics(references, predictions, debug=False):
    assert len(references) == len(
        predictions
    ), f"lengths are difference: {len(references)} != {len(predictions)}"

    predictions = [extract_answer(text) for text in predictions]

    correct = [1 if ref == pred else 0 for ref, pred in zip(references, predictions)]
    accuracy = sum(correct) / len(references)

    results = {"accuracy": accuracy}
    if debug:
        incorrect_ids = [i for i, c in enumerate(correct) if c == 0]
        results["incorrect_ids"] = incorrect_ids

    return results


def save_results(model_name, results_path, dataset, predictions, debug=False):
    if not os.path.exists(results_path):
        # Get the directory part of the file path
        dir_path = os.path.dirname(results_path)

        # Create all directories in the path (if they don't exist)
        os.makedirs(dir_path, exist_ok=True)
        df = dataset.to_pandas()
        df.drop(columns=["answer", "prompt", "train_text"], inplace=True)
    else:
        df = pd.read_csv(results_path, on_bad_lines="warn")

    df[model_name] = predictions

    if debug:
        print(df.head(1))

    df.to_csv(results_path, index=False)


def load_logical_reasoning_dataset(
    data_path, tokenizer=None, using_p1=True, chinese_prompt=True
):
    postfix = "" if chinese_prompt else "_en"
    train_data_file = data_path + f"/train{postfix}.csv"
    test_data_file = data_path + f"/dev{postfix}.csv"

    print("loading train/test data files")
    datasets = load_dataset(
        "csv",
        data_files={"train": train_data_file, "test": test_data_file},
    )

    if tokenizer:
        reasoning_prompt = (
            (P1 if using_p1 else P2)
            if chinese_prompt
            else """You are the host of a situational guessing game. The rules of the game are as follows:

1. Participants will receive a riddle that describes a simple yet difficult to understand event.
2. The host knows the answer, which is the solution to the riddle.
3. Participants can ask any closed-ended questions to uncover the truth of the event.
4. For each question, the host will respond with one of the following five options based on the actual situation: Yes, No, Unimportant, Correct answer, or Incorrect questioning. The criteria for each response are as follows:
   - If the riddle and answer can provide an answer to the question, respond with: Yes or No
   - If the riddle and answer cannot directly or indirectly infer an answer to the question, respond with: Unimportant
   - If the participant's question is not a closed-ended question or is difficult to understand, respond with: Incorrect questioning
   - If the participant's question essentially reveals the truth of the answer, respond with: Correct answer
5. The response must not include any additional information, nor should any word be omitted from the options. For example, "No" cannot be abbreviated to "N".

Please strictly follow these rules when answering the participant's questions.

**Riddle:** {}

**Answer:** {}

**Participant's question:** {}
"""
        )

        def formatting_prompts_func(examples):
            inputs = examples["text"]
            outputs = examples["label"]
            puzzles = examples["puzzle"]
            truths = examples["truth"]

            messages = [
                {
                    "role": "system",
                    "content": "You are an expert in logical reasoning.",
                },
                None,
            ]

            model_name = os.getenv("MODEL_NAME")

            if "mistral" in model_name.lower():
                messages = messages[1:]

            texts = []
            prompts = []
            for input, output, puzzle, truth in zip(inputs, outputs, puzzles, truths):
                prompt = reasoning_prompt.format(puzzle, truth, input)
                messages[-1] = {"role": "user", "content": prompt}

                prompt = tokenizer.apply_chat_template(
                    messages, tokenize=False, add_generation_prompt=True
                )
                prompts.append(prompt)
                texts.append(prompt + output + tokenizer.eos_token)
            return {"train_text": texts, "prompt": prompts}

        datasets = datasets.map(
            formatting_prompts_func,
            batched=True,
        )

    print(datasets)
    return datasets


def eval_model(model, tokenizer, eval_dataset):
    total = len(eval_dataset)
    predictions = []
    for i in tqdm(range(total)):
        inputs = tokenizer(
            eval_dataset["prompt"][i : i + 1],
            return_tensors="pt",
        ).to("cuda")

        outputs = model.generate(**inputs, max_new_tokens=4096, use_cache=False)
        decoded_output = tokenizer.batch_decode(outputs)
        debug = i == 0
        decoded_output = [
            extract_answer(output, debug=debug) for output in decoded_output
        ]
        predictions.extend(decoded_output)

    return predictions


def save_model(
    model,
    tokenizer,
    include_gguf=True,
    include_merged=True,
    publish=True,
):
    try:
        token = os.getenv("HF_TOKEN") or None
        model_name = os.getenv("MODEL_NAME")

        save_method = "lora"
        quantization_method = "q5_k_m"

        model_names = get_model_names(
            model_name, save_method=save_method, quantization_method=quantization_method
        )

        model.save_pretrained(model_names["local"])
        tokenizer.save_pretrained(model_names["local"])

        if publish:
            model.push_to_hub(
                model_names["hub"],
                token=token,
            )
            tokenizer.push_to_hub(
                model_names["hub"],
                token=token,
            )

        if include_merged:
            model.save_pretrained_merged(
                model_names["local"] + "-merged", tokenizer, save_method=save_method
            )
            if publish:
                model.push_to_hub_merged(
                    model_names["hub"] + "-merged",
                    tokenizer,
                    save_method="lora",
                    token="",
                )

        if include_gguf:
            model.save_pretrained_gguf(
                model_names["local-gguf"],
                tokenizer,
                quantization_method=quantization_method,
            )

            if publish:
                model.push_to_hub_gguf(
                    model_names["hub-gguf"],
                    tokenizer,
                    quantization_method=quantization_method,
                    token=token,
                )
    except Exception as e:
        print(e)


def get_metrics(df):
    metrics_df = pd.DataFrame(df.columns.T)[2:]
    metrics_df.rename(columns={0: "model"}, inplace=True)
    metrics_df["model"] = metrics_df["model"].apply(lambda x: x.split("/")[-1])
    metrics_df.reset_index(inplace=True)
    metrics_df = metrics_df.drop(columns=["index"])

    accuracy = []
    meteor = []
    bleu_1 = []
    rouge_l = []
    all_metrics = []
    for col in df.columns[2:]:
        metrics = calc_metrics(df["english"], df[col], debug=True)
        print(f"{col}: {metrics}")

        accuracy.append(metrics["accuracy"])
        all_metrics.append(metrics)

    metrics_df["accuracy"] = accuracy
    metrics_df["all_metrics"] = all_metrics

    return metrics_df


def load_alpaca_data(data_path, using_p1=True, use_english_datasets=False):
    alpaca_data_path = (
        "llama-factory/data/alpaca_mgtv_p1.json"
        if using_p1
        else "llama-factory/data/alpaca_mgtv_p2.json"
    )

    if os.path.exists(alpaca_data_path):
        print("loading existing data from:", alpaca_data_path)
        data = pd.read_json(alpaca_data_path, orient="records", lines=False)
        return data

    print("loading new data from:", alpaca_data_path)
    datasets = load_logical_reasoning_dataset(
        data_path, chinese_prompt=not use_english_datasets
    )

    prompt_template = P1 if using_p1 else P2
    df_train = datasets["train"].to_pandas()
    df_train["instruction"] = df_train.apply(
        lambda x: prompt_template.format(x["puzzle"], x["truth"], x["text"]), axis=1
    )

    df_alpaca = pd.DataFrame(
        {"instruction": [""] * len(df_train), "input": [""] * len(df_train)}
    )
    df_alpaca["instruction"] = df_train["instruction"]
    df_alpaca["output"] = df_train["label"]
    df_alpaca.to_json(alpaca_data_path, orient="records", lines=False, indent=2)

    return df_alpaca