Spaces:
Build error
Build error
# Copyright 2024 the LlamaFactory team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import TYPE_CHECKING, Sequence | |
import torch | |
from transformers.integrations import is_deepspeed_zero3_enabled | |
from transformers.utils.versions import require_version | |
if TYPE_CHECKING: | |
from transformers import PretrainedConfig, PreTrainedModel | |
from ...hparams import ModelArguments | |
def _set_z3_leaf_modules(model: "PreTrainedModel", leaf_modules: Sequence["torch.nn.Module"]) -> None: | |
require_version("deepspeed>=0.13.0", "To fix: pip install deepspeed>=0.13.0") | |
from deepspeed.utils import set_z3_leaf_modules # type: ignore | |
set_z3_leaf_modules(model, leaf_modules) | |
def add_z3_leaf_module(model: "PreTrainedModel") -> None: | |
r""" | |
Sets module as a leaf module to skip partitioning in deepspeed zero3. | |
""" | |
if not is_deepspeed_zero3_enabled(): | |
return | |
if getattr(model.config, "model_type", None) == "dbrx": | |
from transformers.models.dbrx.modeling_dbrx import DbrxFFN | |
_set_z3_leaf_modules(model, [DbrxFFN]) | |
if getattr(model.config, "model_type", None) == "jamba": | |
from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock | |
_set_z3_leaf_modules(model, [JambaSparseMoeBlock]) | |
if getattr(model.config, "model_type", None) == "jetmoe": | |
from transformers.models.jetmoe.modeling_jetmoe import JetMoeMoA, JetMoeMoE | |
_set_z3_leaf_modules(model, [JetMoeMoA, JetMoeMoE]) | |
if getattr(model.config, "model_type", None) == "mixtral": | |
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock | |
_set_z3_leaf_modules(model, [MixtralSparseMoeBlock]) | |
if getattr(model.config, "model_type", None) == "qwen2moe": | |
from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock | |
_set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock]) | |
def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: | |
if model_args.moe_aux_loss_coef is not None: | |
if getattr(config, "model_type", None) in ["jamba", "mixtral", "qwen2_moe"]: | |
setattr(config, "router_aux_loss_coef", model_args.moe_aux_loss_coef) | |
elif getattr(config, "model_type", None) == "deepseek": | |
setattr(config, "aux_loss_alpha", model_args.moe_aux_loss_coef) | |
elif getattr(config, "model_type", None) == "jetmoe": | |
setattr(config, "aux_loss_coef", model_args.moe_aux_loss_coef) | |
if getattr(config, "model_type", None) in ["dbrx", "jamba", "jetmoe", "mixtral", "qwen2_moe"]: | |
setattr(config, "output_router_logits", is_trainable) | |