Spaces:
Build error
Build error
# Copyright 2024 LMSYS and the LlamaFactory team. | |
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | |
# | |
# This code is inspired by the LMSYS's FastChat library. | |
# https://github.com/lm-sys/FastChat/blob/v0.2.30/fastchat/train/train.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import TYPE_CHECKING | |
from ...extras.logging import get_logger | |
if TYPE_CHECKING: | |
from transformers import PretrainedConfig | |
from ...hparams import ModelArguments | |
logger = get_logger(__name__) | |
def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: | |
if model_args.rope_scaling is None: | |
return | |
if not hasattr(config, "rope_scaling"): | |
logger.warning("Current model does not support RoPE scaling.") | |
return | |
if model_args.model_max_length is not None: | |
if is_trainable and model_args.rope_scaling == "dynamic": | |
logger.warning( | |
"Dynamic NTK scaling may not work well with fine-tuning. " | |
"See: https://github.com/huggingface/transformers/pull/24653" | |
) | |
current_max_length = getattr(config, "max_position_embeddings", None) | |
if current_max_length and model_args.model_max_length > current_max_length: | |
logger.info( | |
"Enlarge max model length from {} to {}.".format(current_max_length, model_args.model_max_length) | |
) | |
setattr(config, "max_position_embeddings", model_args.model_max_length) | |
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length)) | |
else: | |
logger.warning("Input length is smaller than max length. Consider increase input length.") | |
scaling_factor = 1.0 | |
else: | |
scaling_factor = 2.0 | |
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor}) | |
logger.info( | |
"Using {} scaling strategy and setting scaling factor to {}".format(model_args.rope_scaling, scaling_factor) | |
) | |