Spaces:
Build error
Build error
import os | |
import sys | |
from unsloth import FastLanguageModel, is_bfloat16_supported | |
import torch | |
from trl import SFTTrainer | |
from transformers import TrainingArguments | |
from dotenv import find_dotenv, load_dotenv | |
found_dotenv = find_dotenv(".env") | |
if len(found_dotenv) == 0: | |
found_dotenv = find_dotenv(".env.example") | |
print(f"loading env vars from: {found_dotenv}") | |
load_dotenv(found_dotenv, override=False) | |
path = os.path.dirname(found_dotenv) | |
print(f"Adding {path} to sys.path") | |
sys.path.append(path) | |
from llm_toolkit.logical_reasoning_utils import * | |
from llm_toolkit.llm_utils import * | |
model_name = os.getenv("MODEL_NAME") | |
token = os.getenv("HF_TOKEN") or None | |
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true" | |
local_model = os.getenv("LOCAL_MODEL") or "gemma-2-9b-it-lora" | |
hub_model = os.getenv("HUB_MODEL") or "inflaton-ai/gemma-2-9b-it-lora" | |
num_train_epochs = int(os.getenv("NUM_TRAIN_EPOCHS") or 0) | |
data_path = os.getenv("LOGICAL_REASONING_DATA_PATH") | |
results_path = os.getenv("LOGICAL_REASONING_RESULTS_PATH") | |
print(model_name, load_in_4bit, data_path, results_path) | |
max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally! | |
dtype = ( | |
None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ | |
) | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(1) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name=model_name, | |
max_seq_length=max_seq_length, | |
dtype=dtype, | |
load_in_4bit=load_in_4bit, | |
) | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
model = FastLanguageModel.get_peft_model( | |
model, | |
r=16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 | |
target_modules=[ | |
"q_proj", | |
"k_proj", | |
"v_proj", | |
"o_proj", | |
"gate_proj", | |
"up_proj", | |
"down_proj", | |
], | |
lora_alpha=16, | |
lora_dropout=0, # Supports any, but = 0 is optimized | |
bias="none", # Supports any, but = "none" is optimized | |
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! | |
use_gradient_checkpointing="unsloth", # True or "unsloth" for very long context | |
random_state=3407, | |
use_rslora=False, # We support rank stabilized LoRA | |
loftq_config=None, # And LoftQ | |
) | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
dataset = load_logical_reasoning_dataset(data_path, tokenizer=tokenizer, using_p1=False) | |
print_row_details(dataset["train"].to_pandas()) | |
trainer = SFTTrainer( | |
model=model, | |
tokenizer=tokenizer, | |
train_dataset=dataset["train"], | |
dataset_text_field="train_text", | |
max_seq_length=max_seq_length, | |
dataset_num_proc=2, | |
packing=False, # Can make training 5x faster for short sequences. | |
args=TrainingArguments( | |
per_device_train_batch_size=2, | |
gradient_accumulation_steps=4, | |
warmup_steps=5, | |
max_steps=20000, | |
learning_rate=2e-4, | |
fp16=not is_bfloat16_supported(), | |
bf16=is_bfloat16_supported(), | |
logging_steps=100, | |
optim="adamw_8bit", | |
weight_decay=0.01, | |
lr_scheduler_type="linear", | |
seed=3407, | |
output_dir="outputs", | |
), | |
) | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(4) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
trainer_stats = trainer.train() | |
# @title Show final memory and time stats | |
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
used_memory_for_lora = round(used_memory - start_gpu_memory, 3) | |
used_percentage = round(used_memory / max_memory * 100, 3) | |
lora_percentage = round(used_memory_for_lora / max_memory * 100, 3) | |
print(f"(5) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.") | |
print( | |
f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training." | |
) | |
print(f"Peak reserved memory = {used_memory} GB.") | |
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.") | |
print(f"Peak reserved memory % of max memory = {used_percentage} %.") | |
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.") | |
model.save_pretrained(local_model) # Local saving | |
tokenizer.save_pretrained(local_model) | |
print("Evaluating fine-tuned model: " + model_name) | |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
predictions = eval_model(model, tokenizer, dataset["test"]) | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(6) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
save_results( | |
model_name + "(unsloth_finetuned)", | |
results_path, | |
dataset["test"], | |
predictions, | |
debug=True, | |
) | |
metrics = calc_metrics(dataset["test"]["label"], predictions, debug=True) | |
print(metrics) | |
model.push_to_hub(hub_model, token=token) # Online saving | |
tokenizer.push_to_hub(hub_model, token=token) # Online saving | |