logical-reasoning / llm_toolkit /eval_logical_reasoning_all_epochs.py
dh-mc's picture
Update eval_logical_reasoning_all_epochs.py
090acf8
raw
history blame
3.15 kB
import os
import sys
import subprocess
from dotenv import find_dotenv, load_dotenv
def evaluate_model_all_epochs_v2(
model_name,
adapter_path_base=None,
start_epoch=0,
load_in_4bit=True,
num_of_entries=-1,
result_file=None,
batch_size=2,
):
new_env = os.environ.copy()
new_env["MODEL_NAME"] = model_name
model = model_name.split("/")[-1]
new_env["LOAD_IN_4BIT"] = "true" if load_in_4bit else "false"
new_env["BATCH_SIZE"] = str(batch_size)
if result_file is not None:
new_env["LOGICAL_REASONING_RESULTS_PATH"] = result_file
if adapter_path_base is None:
num_train_epochs = 0
print(f"No adapter path provided. Running with base model:{model_name}")
else:
# find subdirectories in adapter_path_base
# and sort them by epoch number
subdirs = [
d
for d in os.listdir(adapter_path_base)
if os.path.isdir(os.path.join(adapter_path_base, d))
]
subdirs = sorted(subdirs, key=lambda x: int(x.split("-")[-1]))
num_train_epochs = len(subdirs)
print(f"found {num_train_epochs} checkpoints: {subdirs}")
end_epoch = os.getenv("END_EPOCH")
if end_epoch:
num_train_epochs = int(end_epoch)
for i in range(start_epoch, num_train_epochs + 1):
print(f"Epoch {i}")
if i == 0:
os.unsetenv("ADAPTER_NAME_OR_PATH")
else:
adapter_path = adapter_path_base + "/" + subdirs[i - 1]
new_env["ADAPTER_NAME_OR_PATH"] = adapter_path
print(f"adapter path: {new_env.get('ADAPTER_NAME_OR_PATH')}")
log_file = "./logs/{}_epoch_{}.txt".format(model, i)
with open(log_file, "w") as f_obj:
subprocess.run(
f"python llm_toolkit/eval_logical_reasoning.py {num_of_entries}",
shell=True,
env=new_env,
stdout=f_obj,
text=True,
)
if __name__ == "__main__":
found_dotenv = find_dotenv(".env")
if len(found_dotenv) == 0:
found_dotenv = find_dotenv(".env.example")
print(f"loading env vars from: {found_dotenv}")
load_dotenv(found_dotenv, override=False)
workding_dir = os.path.dirname(found_dotenv)
os.chdir(workding_dir)
sys.path.append(workding_dir)
print("workding dir:", workding_dir)
print(f"adding {workding_dir} to sys.path")
sys.path.append(workding_dir)
model_name = os.getenv("MODEL_NAME")
adapter_path_base = os.getenv("ADAPTER_PATH_BASE")
start_epoch = int(os.getenv("START_EPOCH", 0))
load_in_4bit = os.getenv("LOAD_IN_4BIT", "true").lower() == "true"
result_file = os.getenv("LOGICAL_REASONING_RESULTS_PATH", None)
batch_size = int(os.getenv("BATCH_SIZE", 2))
num_of_entries = int(sys.argv[1]) if len(sys.argv) > 1 else -1
evaluate_model_all_epochs_v2(
model_name,
adapter_path_base=adapter_path_base,
start_epoch=start_epoch,
load_in_4bit=load_in_4bit,
num_of_entries=num_of_entries,
result_file=result_file,
batch_size=batch_size,
)