inflaton's picture
InternLM 2.5 results
5002792
import os
import sys
import torch
from dotenv import find_dotenv, load_dotenv
found_dotenv = find_dotenv(".env")
if len(found_dotenv) == 0:
found_dotenv = find_dotenv(".env.example")
print(f"loading env vars from: {found_dotenv}")
load_dotenv(found_dotenv, override=False)
path = os.path.dirname(found_dotenv)
print(f"Adding {path} to sys.path")
sys.path.append(path)
from llm_toolkit.translation_engine import *
from llm_toolkit.translation_utils import *
model_name = os.getenv("MODEL_NAME")
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
eval_base_model = os.getenv("EVAL_BASE_MODEL") == "true"
eval_fine_tuned = os.getenv("EVAL_FINE_TUNED") == "true"
save_fine_tuned_model = os.getenv("SAVE_FINE_TUNED") == "true"
num_train_epochs = int(os.getenv("NUM_TRAIN_EPOCHS") or 0)
data_path = os.getenv("DATA_PATH")
results_path = os.getenv("RESULTS_PATH")
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = (
None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
)
print(
model_name,
load_in_4bit,
max_seq_length,
num_train_epochs,
dtype,
data_path,
results_path,
eval_base_model,
eval_fine_tuned,
save_fine_tuned_model,
)
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(1) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
model, tokenizer = load_model(model_name, load_in_4bit=load_in_4bit)
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
datasets = load_translation_dataset(data_path, tokenizer)
if eval_base_model:
print("Evaluating base model: " + model_name)
predictions = eval_model(model, tokenizer, datasets["test"])
# calc_metrics(datasets["test"]["english"], predictions, debug=True)
save_results(
model_name,
results_path,
datasets["test"],
predictions,
debug=True,
)
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
def is_bfloat16_supported():
return True
trainer = load_trainer(
model,
tokenizer,
datasets["train"],
num_train_epochs,
fp16=not is_bfloat16_supported(),
bf16=is_bfloat16_supported(),
)
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(4) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
trainer_stats = trainer.train()
# @title Show final memory and time stats
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
used_percentage = round(used_memory / max_memory * 100, 3)
lora_percentage = round(used_memory_for_lora / max_memory * 100, 3)
print(f"(5) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
print(
f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training."
)
print(f"Peak reserved memory = {used_memory} GB.")
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
if eval_fine_tuned:
print("Evaluating fine-tuned model: " + model_name)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
predictions = eval_model(model, tokenizer, datasets["test"])
# calc_metrics(datasets["test"]["english"], predictions, debug=True)
save_results(
model_name + "(finetuned)",
results_path,
datasets["test"],
predictions,
debug=True,
)
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"(6) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
if save_fine_tuned_model:
save_model(model, tokenizer)