Spaces:
Build error
Build error
import os | |
import sys | |
import torch | |
from dotenv import find_dotenv, load_dotenv | |
found_dotenv = find_dotenv(".env") | |
if len(found_dotenv) == 0: | |
found_dotenv = find_dotenv(".env.example") | |
print(f"loading env vars from: {found_dotenv}") | |
load_dotenv(found_dotenv, override=False) | |
path = os.path.dirname(found_dotenv) | |
print(f"Adding {path} to sys.path") | |
sys.path.append(path) | |
from llm_toolkit.translation_engine import * | |
from llm_toolkit.translation_utils import * | |
model_name = os.getenv("MODEL_NAME") | |
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true" | |
eval_base_model = os.getenv("EVAL_BASE_MODEL") == "true" | |
eval_fine_tuned = os.getenv("EVAL_FINE_TUNED") == "true" | |
save_fine_tuned_model = os.getenv("SAVE_FINE_TUNED") == "true" | |
num_train_epochs = int(os.getenv("NUM_TRAIN_EPOCHS") or 0) | |
data_path = os.getenv("DATA_PATH") | |
results_path = os.getenv("RESULTS_PATH") | |
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! | |
dtype = ( | |
None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ | |
) | |
print( | |
model_name, | |
load_in_4bit, | |
max_seq_length, | |
num_train_epochs, | |
dtype, | |
data_path, | |
results_path, | |
eval_base_model, | |
eval_fine_tuned, | |
save_fine_tuned_model, | |
) | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(1) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
model, tokenizer = load_model(model_name, load_in_4bit=load_in_4bit) | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
datasets = load_translation_dataset(data_path, tokenizer) | |
if eval_base_model: | |
print("Evaluating base model: " + model_name) | |
predictions = eval_model(model, tokenizer, datasets["test"]) | |
# calc_metrics(datasets["test"]["english"], predictions, debug=True) | |
save_results( | |
model_name, | |
results_path, | |
datasets["test"], | |
predictions, | |
debug=True, | |
) | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
def is_bfloat16_supported(): | |
return True | |
trainer = load_trainer( | |
model, | |
tokenizer, | |
datasets["train"], | |
num_train_epochs, | |
fp16=not is_bfloat16_supported(), | |
bf16=is_bfloat16_supported(), | |
) | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(4) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
trainer_stats = trainer.train() | |
# @title Show final memory and time stats | |
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
used_memory_for_lora = round(used_memory - start_gpu_memory, 3) | |
used_percentage = round(used_memory / max_memory * 100, 3) | |
lora_percentage = round(used_memory_for_lora / max_memory * 100, 3) | |
print(f"(5) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.") | |
print( | |
f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training." | |
) | |
print(f"Peak reserved memory = {used_memory} GB.") | |
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.") | |
print(f"Peak reserved memory % of max memory = {used_percentage} %.") | |
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.") | |
if eval_fine_tuned: | |
print("Evaluating fine-tuned model: " + model_name) | |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
predictions = eval_model(model, tokenizer, datasets["test"]) | |
# calc_metrics(datasets["test"]["english"], predictions, debug=True) | |
save_results( | |
model_name + "(finetuned)", | |
results_path, | |
datasets["test"], | |
predictions, | |
debug=True, | |
) | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(6) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
if save_fine_tuned_model: | |
save_model(model, tokenizer) | |