dh-mc commited on
Commit
2fb55eb
·
1 Parent(s): 2bce01b

llama3 r2 config

Browse files
llama-factory/config/llama3-8b_lora_sft_bf16-p1_r2.yaml ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### model
2
+ model_name_or_path: shenzhi-wang/Llama3-8B-Chinese-Chat
3
+ #model_name_or_path: FlagAlpha/Llama3-Chinese-8B-Instruct
4
+
5
+ ### method
6
+ stage: sft
7
+ do_train: true
8
+ finetuning_type: lora
9
+ lora_target: all
10
+ # quantization_bit: 4 # use 4-bit QLoRA
11
+ loraplus_lr_ratio: 16.0 # use LoRA+ with lambda=16.0
12
+ # use_unsloth: true # use UnslothAI's LoRA optimization for 2x faster training
13
+ upcast_layernorm: true
14
+
15
+ ### dataset
16
+ dataset: alpaca_mgtv_p1
17
+ template: llama3
18
+ cutoff_len: 8192
19
+ max_samples: 25000
20
+ overwrite_cache: true
21
+ preprocessing_num_workers: 16
22
+
23
+ ### output
24
+ output_dir: saves/llama3-8b/lora/sft_bf16_p1_full_r2
25
+ logging_steps: 10
26
+ save_steps: 175
27
+ plot_loss: true
28
+ # overwrite_output_dir: true
29
+
30
+ ### train
31
+ per_device_train_batch_size: 16
32
+ gradient_accumulation_steps: 8
33
+ learning_rate: 1.0e-4
34
+ num_train_epochs: 4.0
35
+ lr_scheduler_type: cosine
36
+ warmup_ratio: 0.1
37
+ bf16: true
38
+ ddp_timeout: 180000000
39
+
40
+ ### eval
41
+ val_size: 0.1
42
+ per_device_eval_batch_size: 1
43
+ eval_strategy: epoch
44
+ eval_steps: 1
45
+
46
+ report_to: wandb
47
+ run_name: llama3_8b_p1_full_r2 # optional
llama-factory/config/llama3-8b_lora_sft_bf16-p2_r2.yaml ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### model
2
+ model_name_or_path: shenzhi-wang/Llama3-8B-Chinese-Chat
3
+ #model_name_or_path: FlagAlpha/Llama3-Chinese-8B-Instruct
4
+
5
+ ### method
6
+ stage: sft
7
+ do_train: true
8
+ finetuning_type: lora
9
+ lora_target: all
10
+ # quantization_bit: 4 # use 4-bit QLoRA
11
+ loraplus_lr_ratio: 16.0 # use LoRA+ with lambda=16.0
12
+ # use_unsloth: true # use UnslothAI's LoRA optimization for 2x faster training
13
+ upcast_layernorm: true
14
+
15
+ ### dataset
16
+ dataset: alpaca_mgtv_p2
17
+ template: llama3
18
+ cutoff_len: 8192
19
+ max_samples: 25000
20
+ overwrite_cache: true
21
+ preprocessing_num_workers: 16
22
+
23
+ ### output
24
+ output_dir: saves/llama3-8b/lora/sft_bf16_p2_full_r2
25
+ logging_steps: 10
26
+ save_steps: 175
27
+ plot_loss: true
28
+ #overwrite_output_dir: true
29
+
30
+ ### train
31
+ per_device_train_batch_size: 16
32
+ gradient_accumulation_steps: 8
33
+ learning_rate: 1.0e-4
34
+ num_train_epochs: 4.0
35
+ lr_scheduler_type: cosine
36
+ warmup_ratio: 0.1
37
+ bf16: true
38
+ ddp_timeout: 180000000
39
+
40
+ ### eval
41
+ val_size: 0.1
42
+ per_device_eval_batch_size: 1
43
+ eval_strategy: epoch
44
+ eval_steps: 1
45
+
46
+ report_to: wandb
47
+ run_name: llama3_8b_p2_full_r2 # optional
scripts/eval-mgtv-llama3_8b.sh CHANGED
@@ -24,13 +24,13 @@ export MODEL_NAME=shenzhi-wang/Llama3-8B-Chinese-Chat
24
  export MODEL_PREFIX=llama3-8b_lora_sft_bf16
25
 
26
  export LOGICAL_REASONING_RESULTS_PATH=results/$MODEL_PREFIX-p1.csv
27
- export ADAPTER_PATH_BASE=llama-factory/saves/llama3-8b/lora/sft_bf16_p1_full
28
  export USING_P1_PROMPT_TEMPLATE=true
29
  echo "Eval $MODEL_NAME with $ADAPTER_PATH_BASE"
30
  python llm_toolkit/eval_logical_reasoning_all_epochs.py
31
 
32
  export LOGICAL_REASONING_RESULTS_PATH=results/$MODEL_PREFIX-p2.csv
33
- export ADAPTER_PATH_BASE=llama-factory/saves/llama3-8b/lora/sft_bf16_p2_full
34
  export USING_P1_PROMPT_TEMPLATE=false
35
  echo "Eval $MODEL_NAME with $ADAPTER_PATH_BASE"
36
  python llm_toolkit/eval_logical_reasoning_all_epochs.py
 
24
  export MODEL_PREFIX=llama3-8b_lora_sft_bf16
25
 
26
  export LOGICAL_REASONING_RESULTS_PATH=results/$MODEL_PREFIX-p1.csv
27
+ export ADAPTER_PATH_BASE=llama-factory/saves/llama3-8b/lora/sft_bf16_p1_full_r2
28
  export USING_P1_PROMPT_TEMPLATE=true
29
  echo "Eval $MODEL_NAME with $ADAPTER_PATH_BASE"
30
  python llm_toolkit/eval_logical_reasoning_all_epochs.py
31
 
32
  export LOGICAL_REASONING_RESULTS_PATH=results/$MODEL_PREFIX-p2.csv
33
+ export ADAPTER_PATH_BASE=llama-factory/saves/llama3-8b/lora/sft_bf16_p2_full_r2
34
  export USING_P1_PROMPT_TEMPLATE=false
35
  echo "Eval $MODEL_NAME with $ADAPTER_PATH_BASE"
36
  python llm_toolkit/eval_logical_reasoning_all_epochs.py
scripts/tune-mgtv-llama3_8b.sh CHANGED
@@ -25,15 +25,14 @@ export MODEL_NAME=shenzhi-wang/Llama3-8B-Chinese-Chat
25
 
26
  export MODEL_PREFIX=llama3-8b_lora_sft_bf16
27
 
28
- export CONFIG_FILE=config/$MODEL_PREFIX-p1.yaml
29
  echo "Tuning $MODEL_NAME with $CONFIG_FILE"
30
  $BASEDIR/scripts/tune-lf.sh $CONFIG_FILE
31
 
32
 
33
- export CONFIG_FILE=config/$MODEL_PREFIX-p2.yaml
34
  echo "Tuning $MODEL_NAME with $CONFIG_FILE"
35
  $BASEDIR/scripts/tune-lf.sh $CONFIG_FILE
36
 
37
 
38
  $BASEDIR/scripts/eval-mgtv-llama3_8b.sh
39
-
 
25
 
26
  export MODEL_PREFIX=llama3-8b_lora_sft_bf16
27
 
28
+ export CONFIG_FILE=config/$MODEL_PREFIX-p1_r2.yaml
29
  echo "Tuning $MODEL_NAME with $CONFIG_FILE"
30
  $BASEDIR/scripts/tune-lf.sh $CONFIG_FILE
31
 
32
 
33
+ export CONFIG_FILE=config/$MODEL_PREFIX-p2_r2.yaml
34
  echo "Tuning $MODEL_NAME with $CONFIG_FILE"
35
  $BASEDIR/scripts/tune-lf.sh $CONFIG_FILE
36
 
37
 
38
  $BASEDIR/scripts/eval-mgtv-llama3_8b.sh