dh-mc commited on
Commit
3e74e95
·
1 Parent(s): a128b31

Create tune_logical_reasoning.py

Browse files
Files changed (1) hide show
  1. llm_toolkit/tune_logical_reasoning.py +162 -0
llm_toolkit/tune_logical_reasoning.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ from unsloth import FastLanguageModel, is_bfloat16_supported
4
+ import torch
5
+ from trl import SFTTrainer
6
+ from transformers import TrainingArguments
7
+
8
+ from dotenv import find_dotenv, load_dotenv
9
+ from llm_toolkit.logical_reasoning_utils import *
10
+ from llm_toolkit.llm_utils import *
11
+
12
+ found_dotenv = find_dotenv(".env")
13
+
14
+ if len(found_dotenv) == 0:
15
+ found_dotenv = find_dotenv(".env.example")
16
+ print(f"loading env vars from: {found_dotenv}")
17
+ load_dotenv(found_dotenv, override=False)
18
+
19
+ path = os.path.dirname(found_dotenv)
20
+ print(f"Adding {path} to sys.path")
21
+ sys.path.append(path)
22
+
23
+ model_name = os.getenv("MODEL_NAME")
24
+ token = os.getenv("HF_TOKEN") or None
25
+ load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
26
+ local_model = os.getenv("LOCAL_MODEL")
27
+ hub_model = os.getenv("HUB_MODEL")
28
+ num_train_epochs = int(os.getenv("NUM_TRAIN_EPOCHS") or 0)
29
+ data_path = os.getenv("LOGICAL_REASONING_DATA_PATH")
30
+ results_path = os.getenv("LOGICAL_REASONING_RESULTS_PATH")
31
+
32
+ print(model_name, load_in_4bit, data_path, results_path)
33
+
34
+ max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
35
+ dtype = (
36
+ None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
37
+ )
38
+
39
+
40
+ max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally!
41
+ dtype = (
42
+ None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
43
+ )
44
+
45
+ gpu_stats = torch.cuda.get_device_properties(0)
46
+ start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
47
+ max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
48
+ print(f"(1) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
49
+ print(f"{start_gpu_memory} GB of memory reserved.")
50
+
51
+ model, tokenizer = FastLanguageModel.from_pretrained(
52
+ model_name=model_name,
53
+ max_seq_length=max_seq_length,
54
+ dtype=dtype,
55
+ load_in_4bit=load_in_4bit,
56
+ )
57
+
58
+ gpu_stats = torch.cuda.get_device_properties(0)
59
+ start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
60
+ max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
61
+ print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
62
+ print(f"{start_gpu_memory} GB of memory reserved.")
63
+
64
+ model = FastLanguageModel.get_peft_model(
65
+ model,
66
+ r=16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
67
+ target_modules=[
68
+ "q_proj",
69
+ "k_proj",
70
+ "v_proj",
71
+ "o_proj",
72
+ "gate_proj",
73
+ "up_proj",
74
+ "down_proj",
75
+ ],
76
+ lora_alpha=16,
77
+ lora_dropout=0, # Supports any, but = 0 is optimized
78
+ bias="none", # Supports any, but = "none" is optimized
79
+ # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
80
+ use_gradient_checkpointing="unsloth", # True or "unsloth" for very long context
81
+ random_state=3407,
82
+ use_rslora=False, # We support rank stabilized LoRA
83
+ loftq_config=None, # And LoftQ
84
+ )
85
+
86
+ gpu_stats = torch.cuda.get_device_properties(0)
87
+ start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
88
+ max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
89
+ print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
90
+ print(f"{start_gpu_memory} GB of memory reserved.")
91
+
92
+ dataset = load_logical_reasoning_dataset(data_path, tokenizer=tokenizer, using_p1=False)
93
+ print_row_details(dataset["train"].to_pandas())
94
+
95
+ trainer = SFTTrainer(
96
+ model=model,
97
+ tokenizer=tokenizer,
98
+ train_dataset=dataset["train"],
99
+ dataset_text_field="train_text",
100
+ max_seq_length=max_seq_length,
101
+ dataset_num_proc=2,
102
+ packing=False, # Can make training 5x faster for short sequences.
103
+ args=TrainingArguments(
104
+ per_device_train_batch_size=2,
105
+ gradient_accumulation_steps=4,
106
+ warmup_steps=5,
107
+ max_steps=20000,
108
+ learning_rate=2e-4,
109
+ fp16=not is_bfloat16_supported(),
110
+ bf16=is_bfloat16_supported(),
111
+ logging_steps=100,
112
+ optim="adamw_8bit",
113
+ weight_decay=0.01,
114
+ lr_scheduler_type="linear",
115
+ seed=3407,
116
+ output_dir="outputs",
117
+ ),
118
+ )
119
+
120
+ gpu_stats = torch.cuda.get_device_properties(0)
121
+ start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
122
+ max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
123
+ print(f"(4) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
124
+ print(f"{start_gpu_memory} GB of memory reserved.")
125
+
126
+ trainer_stats = trainer.train()
127
+
128
+ # @title Show final memory and time stats
129
+ used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
130
+ used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
131
+ used_percentage = round(used_memory / max_memory * 100, 3)
132
+ lora_percentage = round(used_memory_for_lora / max_memory * 100, 3)
133
+ print(f"(5) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
134
+ print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
135
+ print(
136
+ f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training."
137
+ )
138
+ print(f"Peak reserved memory = {used_memory} GB.")
139
+ print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
140
+ print(f"Peak reserved memory % of max memory = {used_percentage} %.")
141
+ print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
142
+
143
+ print("Evaluating fine-tuned model: " + model_name)
144
+ FastLanguageModel.for_inference(model) # Enable native 2x faster inference
145
+ predictions = eval_model(model, tokenizer, datasets["test"])
146
+
147
+ gpu_stats = torch.cuda.get_device_properties(0)
148
+ start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
149
+ max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
150
+ print(f"(6) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
151
+ print(f"{start_gpu_memory} GB of memory reserved.")
152
+
153
+ save_results(
154
+ model_name + "(unsloth_finetuned)",
155
+ results_path,
156
+ datasets["test"],
157
+ predictions,
158
+ debug=True,
159
+ )
160
+
161
+ metrics = calc_metrics(datasets["test"]["label"], predictions, debug=True)
162
+ print(metrics)