Spaces:
Build error
Build error
Create tune_logical_reasoning.py
Browse files
llm_toolkit/tune_logical_reasoning.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from unsloth import FastLanguageModel, is_bfloat16_supported
|
4 |
+
import torch
|
5 |
+
from trl import SFTTrainer
|
6 |
+
from transformers import TrainingArguments
|
7 |
+
|
8 |
+
from dotenv import find_dotenv, load_dotenv
|
9 |
+
from llm_toolkit.logical_reasoning_utils import *
|
10 |
+
from llm_toolkit.llm_utils import *
|
11 |
+
|
12 |
+
found_dotenv = find_dotenv(".env")
|
13 |
+
|
14 |
+
if len(found_dotenv) == 0:
|
15 |
+
found_dotenv = find_dotenv(".env.example")
|
16 |
+
print(f"loading env vars from: {found_dotenv}")
|
17 |
+
load_dotenv(found_dotenv, override=False)
|
18 |
+
|
19 |
+
path = os.path.dirname(found_dotenv)
|
20 |
+
print(f"Adding {path} to sys.path")
|
21 |
+
sys.path.append(path)
|
22 |
+
|
23 |
+
model_name = os.getenv("MODEL_NAME")
|
24 |
+
token = os.getenv("HF_TOKEN") or None
|
25 |
+
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
|
26 |
+
local_model = os.getenv("LOCAL_MODEL")
|
27 |
+
hub_model = os.getenv("HUB_MODEL")
|
28 |
+
num_train_epochs = int(os.getenv("NUM_TRAIN_EPOCHS") or 0)
|
29 |
+
data_path = os.getenv("LOGICAL_REASONING_DATA_PATH")
|
30 |
+
results_path = os.getenv("LOGICAL_REASONING_RESULTS_PATH")
|
31 |
+
|
32 |
+
print(model_name, load_in_4bit, data_path, results_path)
|
33 |
+
|
34 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
35 |
+
dtype = (
|
36 |
+
None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally!
|
41 |
+
dtype = (
|
42 |
+
None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
43 |
+
)
|
44 |
+
|
45 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
46 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
47 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
48 |
+
print(f"(1) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
49 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
50 |
+
|
51 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
52 |
+
model_name=model_name,
|
53 |
+
max_seq_length=max_seq_length,
|
54 |
+
dtype=dtype,
|
55 |
+
load_in_4bit=load_in_4bit,
|
56 |
+
)
|
57 |
+
|
58 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
59 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
60 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
61 |
+
print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
62 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
63 |
+
|
64 |
+
model = FastLanguageModel.get_peft_model(
|
65 |
+
model,
|
66 |
+
r=16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
67 |
+
target_modules=[
|
68 |
+
"q_proj",
|
69 |
+
"k_proj",
|
70 |
+
"v_proj",
|
71 |
+
"o_proj",
|
72 |
+
"gate_proj",
|
73 |
+
"up_proj",
|
74 |
+
"down_proj",
|
75 |
+
],
|
76 |
+
lora_alpha=16,
|
77 |
+
lora_dropout=0, # Supports any, but = 0 is optimized
|
78 |
+
bias="none", # Supports any, but = "none" is optimized
|
79 |
+
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
80 |
+
use_gradient_checkpointing="unsloth", # True or "unsloth" for very long context
|
81 |
+
random_state=3407,
|
82 |
+
use_rslora=False, # We support rank stabilized LoRA
|
83 |
+
loftq_config=None, # And LoftQ
|
84 |
+
)
|
85 |
+
|
86 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
87 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
88 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
89 |
+
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
90 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
91 |
+
|
92 |
+
dataset = load_logical_reasoning_dataset(data_path, tokenizer=tokenizer, using_p1=False)
|
93 |
+
print_row_details(dataset["train"].to_pandas())
|
94 |
+
|
95 |
+
trainer = SFTTrainer(
|
96 |
+
model=model,
|
97 |
+
tokenizer=tokenizer,
|
98 |
+
train_dataset=dataset["train"],
|
99 |
+
dataset_text_field="train_text",
|
100 |
+
max_seq_length=max_seq_length,
|
101 |
+
dataset_num_proc=2,
|
102 |
+
packing=False, # Can make training 5x faster for short sequences.
|
103 |
+
args=TrainingArguments(
|
104 |
+
per_device_train_batch_size=2,
|
105 |
+
gradient_accumulation_steps=4,
|
106 |
+
warmup_steps=5,
|
107 |
+
max_steps=20000,
|
108 |
+
learning_rate=2e-4,
|
109 |
+
fp16=not is_bfloat16_supported(),
|
110 |
+
bf16=is_bfloat16_supported(),
|
111 |
+
logging_steps=100,
|
112 |
+
optim="adamw_8bit",
|
113 |
+
weight_decay=0.01,
|
114 |
+
lr_scheduler_type="linear",
|
115 |
+
seed=3407,
|
116 |
+
output_dir="outputs",
|
117 |
+
),
|
118 |
+
)
|
119 |
+
|
120 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
121 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
122 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
123 |
+
print(f"(4) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
124 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
125 |
+
|
126 |
+
trainer_stats = trainer.train()
|
127 |
+
|
128 |
+
# @title Show final memory and time stats
|
129 |
+
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
130 |
+
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
|
131 |
+
used_percentage = round(used_memory / max_memory * 100, 3)
|
132 |
+
lora_percentage = round(used_memory_for_lora / max_memory * 100, 3)
|
133 |
+
print(f"(5) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
134 |
+
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
|
135 |
+
print(
|
136 |
+
f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training."
|
137 |
+
)
|
138 |
+
print(f"Peak reserved memory = {used_memory} GB.")
|
139 |
+
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
|
140 |
+
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
|
141 |
+
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
|
142 |
+
|
143 |
+
print("Evaluating fine-tuned model: " + model_name)
|
144 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
145 |
+
predictions = eval_model(model, tokenizer, datasets["test"])
|
146 |
+
|
147 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
148 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
149 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
150 |
+
print(f"(6) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
151 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
152 |
+
|
153 |
+
save_results(
|
154 |
+
model_name + "(unsloth_finetuned)",
|
155 |
+
results_path,
|
156 |
+
datasets["test"],
|
157 |
+
predictions,
|
158 |
+
debug=True,
|
159 |
+
)
|
160 |
+
|
161 |
+
metrics = calc_metrics(datasets["test"]["label"], predictions, debug=True)
|
162 |
+
print(metrics)
|