"],"text/plain":[" text label title \\\n","0 甄加索是自杀吗 不是 海岸之谜 \n","1 甄加索有身体上的疾病吗 是 海岸之谜 \n","2 画作是甄的 是 海岸之谜 \n","3 甄有心脏病吗 是 海岸之谜 \n","4 车轮是凶手留下的 不是 海岸之谜 \n","... ... ... ... \n","2995 哭泣者必须在晚上祭奠吗 是 甄庄哭声 \n","2996 尸体在湖里吗 不是 甄庄哭声 \n","2997 哭泣者和死者有特殊关系吗 是 甄庄哭声 \n","2998 是帽子的主人去世了吗 不是 甄庄哭声 \n","2999 死者受伤了吗 不是 甄庄哭声 \n","\n"," puzzle \\\n","0 在远离城市喧嚣的海边小屋,一天清晨,邻居发现甄加索僵卧在沙滩上,已无生命迹象。现场没有发现任... \n","1 在远离城市喧嚣的海边小屋,一天清晨,邻居发现甄加索僵卧在沙滩上,已无生命迹象。现场没有发现任... \n","2 在远离城市喧嚣的海边小屋,一天清晨,邻居发现甄加索僵卧在沙滩上,已无生命迹象。现场没有发现任... \n","3 在远离城市喧嚣的海边小屋,一天清晨,邻居发现甄加索僵卧在沙滩上,已无生命迹象。现场没有发现任... \n","4 在远离城市喧嚣的海边小屋,一天清晨,邻居发现甄加索僵卧在沙滩上,已无生命迹象。现场没有发现任... \n","... ... \n","2995 在一个安静的夜晚,小村庄的湖边突然传来了阵阵哭泣声。第二天早晨,村长甄锐发现湖边的石头上放着... \n","2996 在一个安静的夜晚,小村庄的湖边突然传来了阵阵哭泣声。第二天早晨,村长甄锐发现湖边的石头上放着... \n","2997 在一个安静的夜晚,小村庄的湖边突然传来了阵阵哭泣声。第二天早晨,村长甄锐发现湖边的石头上放着... \n","2998 在一个安静的夜晚,小村庄的湖边突然传来了阵阵哭泣声。第二天早晨,村长甄锐发现湖边的石头上放着... \n","2999 在一个安静的夜晚,小村庄的湖边突然传来了阵阵哭泣声。第二天早晨,村长甄锐发现湖边的石头上放着... \n","\n"," truth \\\n","0 甄加索是一位热爱自然的画家,他每年都会来到这个海边小屋寻找灵感。在他生命的最后几天,他一直在... \n","1 甄加索是一位热爱自然的画家,他每年都会来到这个海边小屋寻找灵感。��他生命的最后几天,他一直在... \n","2 甄加索是一位热爱自然的画家,他每年都会来到这个海边小屋寻找灵感。在他生命的最后几天,他一直在... \n","3 甄加索是一位热爱自然的画家,他每年都会来到这个海边小屋寻找灵感。在他生命的最后几天,他一直在... \n","4 甄加索是一位热爱自然的画家,他每年都会来到这个海边小屋寻找灵感。在他生命的最后几天,他一直在... \n","... ... \n","2995 原来,这顶破旧的帽子属于一个小男孩,他小时候与爷爷在湖边生活。爷爷教他钓鱼、游泳,还告诉他湖... \n","2996 原来,这顶破旧的帽子属于一个小男孩,他小时候与爷爷在湖边生活。爷爷教他钓鱼、游泳,还告诉他湖... \n","2997 原来,这顶破旧的帽子属于一个小男孩,他小时候与爷爷在湖边生活。爷爷教他钓鱼、游泳,还告诉他湖... \n","2998 原来,这顶破旧的帽子属于一个小男孩,他小时候与爷爷在湖边生活。爷爷教他钓鱼、游泳,还告诉他湖... \n","2999 原来,这顶破旧的帽子属于一个小男孩,他小时候与爷爷在湖边生活。爷爷教他钓鱼、游泳,还告诉他湖... \n","\n"," internlm/internlm2_5-7b-chat-1m \\\n","0 不是 \n","1 是 \n","2 不是 \n","3 是 \n","4 不是 \n","... ... \n","2995 不是 \n","2996 不是 \n","2997 是 \n","2998 是 \n","2999 不是 \n","\n"," internlm/internlm2_5-7b-chat-1m_checkpoint-44 \\\n","0 不是 \n","1 是 \n","2 是 \n","3 是 \n","4 不是 \n","... ... \n","2995 不重要 \n","2996 不是 \n","2997 是 \n","2998 是 \n","2999 不重要 \n","\n"," internlm/internlm2_5-7b-chat-1m_checkpoint-88 \\\n","0 不是 \n","1 是 \n","2 是 \n","3 是 \n","4 不是 \n","... ... \n","2995 不重要 \n","2996 不是 \n","2997 是 \n","2998 是 \n","2999 不重要 \n","\n"," internlm/internlm2_5-7b-chat-1m_checkpoint-132 \\\n","0 不是 \n","1 是 \n","2 是 \n","3 是 \n","4 不是 \n","... ... \n","2995 不重要 \n","2996 不是 \n","2997 是 \n","2998 是 \n","2999 不重要 \n","\n"," internlm/internlm2_5-7b-chat-1m_checkpoint-176 \n","0 不是 \n","1 是 \n","2 是 \n","3 是 \n","4 不是 \n","... ... \n","2995 不重要 \n","2996 不是 \n","2997 是 \n","2998 是 \n","2999 不重要 \n","\n","[3000 rows x 10 columns]"]},"execution_count":14,"metadata":{},"output_type":"execute_result"}],"source":["df = df[cols]\n","df"]},{"cell_type":"code","execution_count":null,"metadata":{},"outputs":[],"source":["import matplotlib.pyplot as plt\n","from matplotlib import rcParams\n","\n","def plot_value_counts(df, column):\n"," font_family = rcParams[\"font.family\"]\n"," # Set the font to SimHei to support Chinese characters\n"," rcParams[\"font.family\"] = \"STHeiti\"\n"," rcParams[\"axes.unicode_minus\"] = False # This is to support the minus sign in Chinese.\n","\n"," plt.figure(figsize=(12, 6))\n"," df[column].value_counts().plot(kind=\"bar\")\n"," # add values on top of bars\n"," for i, v in enumerate(df[column].value_counts()):\n"," plt.text(i, v + 0.1, str(v), ha=\"center\")\n"," plt.show()\n"," \n"," rcParams[\"font.family\"] = font_family\n"]},{"cell_type":"code","execution_count":null,"metadata":{},"outputs":[{"data":{"text/plain":["['text',\n"," 'label',\n"," 'title',\n"," 'puzzle',\n"," 'truth',\n"," 'internlm/internlm2_5-7b-chat-1m',\n"," 'internlm/internlm2_5-7b-chat-1m_checkpoint-44',\n"," 'internlm/internlm2_5-7b-chat-1m_checkpoint-88',\n"," 'internlm/internlm2_5-7b-chat-1m_checkpoint-132',\n"," 'internlm/internlm2_5-7b-chat-1m_checkpoint-176']"]},"execution_count":16,"metadata":{},"output_type":"execute_result"}],"source":["df.columns.to_list()"]},{"cell_type":"code","execution_count":8,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["/Users/inflaton/anaconda3/envs/llm-finetuning/lib/python3.11/site-packages/matplotlib/mpl-data/matplotlibrc\n"]}],"source":["import matplotlib\n","print(matplotlib.matplotlib_fname())"]},{"cell_type":"code","execution_count":null,"metadata":{},"outputs":[{"name":"stderr","output_type":"stream","text":["findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 19981 (\\N{CJK UNIFIED IDEOGRAPH-4E0D}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 26159 (\\N{CJK UNIFIED IDEOGRAPH-662F}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 37325 (\\N{CJK UNIFIED IDEOGRAPH-91CD}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 35201 (\\N{CJK UNIFIED IDEOGRAPH-8981}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n"]},{"name":"stdout","output_type":"stream","text":["********** internlm/internlm2_5-7b-chat-1m **********\n","internlm/internlm2_5-7b-chat-1m\n","不是 1670\n","是 1284\n","不重要 46\n","Name: count, dtype: int64\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAA+IAAAIYCAYAAADpZFaAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABDM0lEQVR4nO3de5hWZb0//vcMI0edATRmnOTgTlMwFE8hZh6Cr4B4ILXSyHDH1p0bMnVvT79L8dABQ79mGImWpu2NnbemmCRpiiWhYmyNFA9psNMB02AC5bx+f3TxfBtBgxzWIL5e17Wui+e+P2utzz3IU+9Zz7NWVVEURQAAAIBSVLd1AwAAAPBuIogDAABAiQRxAAAAKJEgDgAAACUSxAEAAKBEgjgAAACUSBAHAACAEtW0dQNbyrp16/Liiy9mhx12SFVVVVu3AwAAwDauKIr85S9/SWNjY6qr3/y69zYbxF988cX07NmzrdsAAADgXWbhwoXZZZdd3nR+mw3iO+ywQ5K//gBqa2vbuBsAAAC2dc3NzenZs2clj76ZbTaIr/84em1trSAOAABAaf7e16PdrA0AAABKJIgDAABAiQRxAAAAKJEgDgAAACUSxAEAAKBEgjgAAACUSBAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJBHFIMnPmzBxzzDFpbGxMVVVVbr/99g1qnnzyyRx77LGpq6tLly5dcuCBB2bBggVJkhdeeCFVVVUb3X74wx9WjrFgwYKMGDEinTt3To8ePXLuuedmzZo1ZS0TAADYCgjikGT58uXZZ599Mnny5I3OP/fccznkkEOy55575v7778/jjz+eiy++OB07dkyS9OzZMy+99FKL7bLLLsv222+f4cOHJ0nWrl2bESNGZNWqVXnooYdyyy235Oabb8748eNLWycAAND2qoqiKNq6iS2hubk5dXV1Wbp0aWpra9u6Hd5Bqqqqctttt2XkyJGVsZNOOinbbbdd/vM//3OTj7Pvvvtmv/32y4033pgkufvuu3P00UfnxRdfTH19fZJkypQpOf/88/Pyyy+nffv2rboOAACgXJuaQ10Rh79j3bp1ueuuu/L+978/Q4cOTY8ePTJw4MCNfnx9vTlz5mTu3LkZM2ZMZWzWrFnp379/JYQnydChQ9Pc3Jx58+ZtySUAAABbEUEc/o7Fixdn2bJlueKKKzJs2LDcc889+ehHP5rjjz8+DzzwwEb3ufHGG9O3b98cfPDBlbGmpqYWITxJ5XVTU9OWWwAAALBVqWnrBmBrt27duiTJcccdl7PPPjtJMmDAgDz00EOZMmVKDjvssBb1r7/+em699dZcfPHFpfcKAABs/VwRh79jp512Sk1NTfr169divG/fvpW7pv+tH/3oR3nttdfy6U9/usV4Q0NDFi1a1GJs/euGhoZW7hoAANhaCeLwd7Rv3z4HHnhg5s+f32L86aefTu/evTeov/HGG3PsscfmPe95T4vxQYMG5YknnsjixYsrYzNmzEhtbe0GIR8AANh2+Wg6JFm2bFmeffbZyuvnn38+c+fOTffu3dOrV6+ce+65+cQnPpFDDz00RxxxRKZPn54777wz999/f4vjPPvss5k5c2Z++tOfbnCOI488Mv369cspp5ySiRMnpqmpKRdddFHGjh2bDh06bOklAgAAWwmPL6OFPhfc1dYttIkVCx7Pou/+fxuMd/nA4Ow04q/fC1/2+D1Z+usfZu1fXklN9/em6yGj0nn3g1rU//mBW7J83v157xk3pqpqww+crFm6OK/cMzkrF/w2Vdt1yPYfGJyuh5+aqup2W2ZhW7EXrhjR1i0AAECr2tQcKojTwrs1iFM+QRwAgG2N54gDAADAVkgQBwAAgBIJ4gAAAFAiQRwAAABKJIgDAABAiQRxAAAAKJEgDgAAACUSxAEAAKBEgjgAAACUSBAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJNjuIz5w5M8ccc0waGxtTVVWV22+/fYOaJ598Mscee2zq6urSpUuXHHjggVmwYEFlfsWKFRk7dmx23HHHbL/99jnhhBOyaNGiFsdYsGBBRowYkc6dO6dHjx4599xzs2bNms1fIQAAAGxFNjuIL1++PPvss08mT5680fnnnnsuhxxySPbcc8/cf//9efzxx3PxxRenY8eOlZqzzz47d955Z374wx/mgQceyIsvvpjjjz++Mr927dqMGDEiq1atykMPPZRbbrklN998c8aPH/8PLBEAAAC2HlVFURT/8M5VVbntttsycuTIythJJ52U7bbbLv/5n/+50X2WLl2a97znPbn11ltz4oknJkmeeuqp9O3bN7NmzcpBBx2Uu+++O0cffXRefPHF1NfXJ0mmTJmS888/Py+//HLat2//d3trbm5OXV1dli5dmtra2n90ie86fS64q61b4F3ihStGtHULAADQqjY1h7bqd8TXrVuXu+66K+9///szdOjQ9OjRIwMHDmzx8fU5c+Zk9erVGTJkSGVszz33TK9evTJr1qwkyaxZs9K/f/9KCE+SoUOHprm5OfPmzdvouVeuXJnm5uYWGwAAAGxtWjWIL168OMuWLcsVV1yRYcOG5Z577slHP/rRHH/88XnggQeSJE1NTWnfvn26du3aYt/6+vo0NTVVav42hK+fXz+3MRMmTEhdXV1l69mzZ2suDQAAAFpFq18RT5LjjjsuZ599dgYMGJALLrggRx99dKZMmdKap9rAhRdemKVLl1a2hQsXbtHzAQAAwD+iVYP4TjvtlJqamvTr16/FeN++fSt3TW9oaMiqVauyZMmSFjWLFi1KQ0NDpeaNd1Ff/3p9zRt16NAhtbW1LTYAAADY2rRqEG/fvn0OPPDAzJ8/v8X4008/nd69eydJ9t9//2y33Xa59957K/Pz58/PggULMmjQoCTJoEGD8sQTT2Tx4sWVmhkzZqS2tnaDkA8AAADvJDWbu8OyZcvy7LPPVl4///zzmTt3brp3755evXrl3HPPzSc+8YkceuihOeKIIzJ9+vTceeeduf/++5MkdXV1GTNmTM4555x07949tbW1+dznPpdBgwbloIMOSpIceeSR6devX0455ZRMnDgxTU1NueiiizJ27Nh06NChdVYOAAAAbWCzg/ijjz6aI444ovL6nHPOSZKMHj06N998cz760Y9mypQpmTBhQs4888zsscce+fGPf5xDDjmkss9Xv/rVVFdX54QTTsjKlSszdOjQfOMb36jMt2vXLtOmTcsZZ5yRQYMGpUuXLhk9enQuv/zyt7NWAAAAaHNv6zniWzPPEf/HeI44ZfEccQAAtjVt8hxxAAAA4K0J4gAAAFAiQRwAAABKJIgDAABAiQRxAAAAKJEgDgAAACUSxAEAAKBEgjgAAACUSBAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJBHEAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRIEAcAAIASCeIAAABQIkEcAAAASiSIAwAAQIkEcQAAACiRIA4AAAAlEsQBAACgRII4AAAAlEgQBwAAgBIJ4gAAAFAiQRwAAABKJIgDAABAiQRxAAAAKJEgDgAAACUSxAEAAKBEgjgAAACUSBAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJBHEAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRIEAcAAIASCeIAAABQos0O4jNnzswxxxyTxsbGVFVV5fbbb3/T2s9+9rOpqqrKNddc02L81VdfzahRo1JbW5uuXbtmzJgxWbZsWYuaxx9/PB/+8IfTsWPH9OzZMxMnTtzcVgEAAGCrs9lBfPny5dlnn30yefLkt6y77bbb8utf/zqNjY0bzI0aNSrz5s3LjBkzMm3atMycOTOnn356Zb65uTlHHnlkevfunTlz5uTKK6/MpZdemhtuuGFz2wUAAICtSs3m7jB8+PAMHz78LWv++Mc/5nOf+1x+9rOfZcSIES3mnnzyyUyfPj2PPPJIDjjggCTJtddem6OOOipXXXVVGhsbM3Xq1KxatSo33XRT2rdvn7322itz587N1Vdf3SKwAwAAwDtNq39HfN26dTnllFNy7rnnZq+99tpgftasWenatWslhCfJkCFDUl1dndmzZ1dqDj300LRv375SM3To0MyfPz9//vOfN3relStXprm5ucUGAAAAW5tWD+Jf+cpXUlNTkzPPPHOj801NTenRo0eLsZqamnTv3j1NTU2Vmvr6+hY161+vr3mjCRMmpK6urrL17Nnz7S4FAAAAWl2rBvE5c+bka1/7Wm6++eZUVVW15qH/rgsvvDBLly6tbAsXLiz1/AAAALApWjWIP/jgg1m8eHF69eqVmpqa1NTU5A9/+EP+/d//PX369EmSNDQ0ZPHixS32W7NmTV599dU0NDRUahYtWtSiZv3r9TVv1KFDh9TW1rbYAAAAYGvTqkH8lFNOyeOPP565c+dWtsbGxpx77rn52c9+liQZNGhQlixZkjlz5lT2u++++7Ju3boMHDiwUjNz5sysXr26UjNjxozsscce6datW2u2DAAAAKXa7LumL1u2LM8++2zl9fPPP5+5c+eme/fu6dWrV3bccccW9dttt10aGhqyxx57JEn69u2bYcOG5bTTTsuUKVOyevXqjBs3LieddFLlUWef/OQnc9lll2XMmDE5//zz89vf/jZf+9rX8tWvfvXtrBUAAADa3GYH8UcffTRHHHFE5fU555yTJBk9enRuvvnmTTrG1KlTM27cuAwePDjV1dU54YQTMmnSpMp8XV1d7rnnnowdOzb7779/dtppp4wfP96jywAAAHjHqyqKomjrJraE5ubm1NXVZenSpb4vvhn6XHBXW7fAu8QLV4xo6xYAAKBVbWoObfXHlwEAAABvThAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJBHEAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRIEAcAAIASCeIAAABQIkEcAAAASiSIAwAAQIkEcQAAACiRIA4A26CZM2fmmGOOSWNjY6qqqnL77bdX5lavXp3zzz8//fv3T5cuXdLY2JhPf/rTefHFF1sc4+mnn85xxx2XnXbaKbW1tTnkkEPyi1/8YqPne+WVV7LLLrukqqoqS5Ys2YIrA4B3PkEcALZBy5cvzz777JPJkydvMPfaa6/lsccey8UXX5zHHnss//3f/5358+fn2GOPbVF39NFHZ82aNbnvvvsyZ86c7LPPPjn66KPT1NS0wTHHjBmTvffee4utBwC2JTVt3QAA0PqGDx+e4cOHb3Surq4uM2bMaDH29a9/PR/84AezYMGC9OrVK3/605/yzDPP5MYbb6wE7CuuuCLf+MY38tvf/jYNDQ2Vfa+77rosWbIk48ePz913373lFgUA2whXxAGALF26NFVVVenatWuSZMcdd8wee+yR73znO1m+fHnWrFmT66+/Pj169Mj+++9f2e93v/tdLr/88nznO99JdbX/WwEAm8IVcQB4l1uxYkXOP//8nHzyyamtrU2SVFVV5ec//3lGjhyZHXbYIdXV1enRo0emT5+ebt26JUlWrlyZk08+OVdeeWV69eqV3//+9225DAB4x/CrawB4F1u9enU+/vGPpyiKXHfddZXxoigyduzY9OjRIw8++GAefvjhjBw5Msccc0xeeumlJMmFF16Yvn375lOf+lRbtQ8A70iCOAC8S60P4X/4wx8yY8aMytXwJLnvvvsybdq0fO9738uHPvSh7LfffvnGN76RTp065ZZbbqnU/PCHP0xNTU1qamoyePDgJMlOO+2USy65pE3WBADvBD6aDgDvQutD+DPPPJNf/OIX2XHHHVvMv/baa0mywfe+q6urs27duiTJj3/847z++uuVuUceeSSf+cxn8uCDD+Z973vfFl4BALxzCeIAsA1atmxZnn322crr559/PnPnzk337t2z884758QTT8xjjz2WadOmZe3atZVHknXv3j3t27fPoEGD0q1bt4wePTrjx49Pp06d8s1vfjPPP/98RowYkSQbhO0//elPSZK+fftWbvoGAGyoqiiKoq2b2BKam5tTV1eXpUuXtvioHW+tzwV3tXULvEu8cMWItm6Bd4l36/vaigWPZ9F3/78Nxrt8YHC6HvLJ/HHKmI3uV3/yl9Ox118fV7bypWeyZOZ3sqrp2RTr1mS7nXql68Enp9P7DnjLc/b8/PdS3XH71lvMO4T3NQA2NYe6Ig4A26COvfZO7/Onven8W82t12Hn3VP/iS+02jkBgL9yszYAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRIEAcAAIASCeIAAABQIkEcAAAASiSIAwAAQIkEcQAAACiRIA4AAAAlEsQBAACgRII4AAAAlEgQBwAAgBIJ4gAAAFAiQRwAAABKJIgDAABAiTY7iM+cOTPHHHNMGhsbU1VVldtvv70yt3r16px//vnp379/unTpksbGxnz605/Oiy++2OIYr776akaNGpXa2tp07do1Y8aMybJly1rUPP744/nwhz+cjh07pmfPnpk4ceI/tkIAAADYimx2EF++fHn22WefTJ48eYO51157LY899lguvvjiPPbYY/nv//7vzJ8/P8cee2yLulGjRmXevHmZMWNGpk2blpkzZ+b000+vzDc3N+fII49M7969M2fOnFx55ZW59NJLc8MNN/wDSwQAAICtR83m7jB8+PAMHz58o3N1dXWZMWNGi7Gvf/3r+eAHP5gFCxakV69eefLJJzN9+vQ88sgjOeCAA5Ik1157bY466qhcddVVaWxszNSpU7Nq1arcdNNNad++ffbaa6/MnTs3V199dYvADgAAAO80W/w74kuXLk1VVVW6du2aJJk1a1a6du1aCeFJMmTIkFRXV2f27NmVmkMPPTTt27ev1AwdOjTz58/Pn//8542eZ+XKlWlubm6xAQAAwNZmiwbxFStW5Pzzz8/JJ5+c2traJElTU1N69OjRoq6mpibdu3dPU1NTpaa+vr5FzfrX62veaMKECamrq6tsPXv2bO3lAAAAwNu2xYL46tWr8/GPfzxFUeS6667bUqepuPDCC7N06dLKtnDhwi1+TgAAANhcm/0d8U2xPoT/4Q9/yH333Ve5Gp4kDQ0NWbx4cYv6NWvW5NVXX01DQ0OlZtGiRS1q1r9eX/NGHTp0SIcOHVpzGQAAANDqWv2K+PoQ/swzz+TnP/95dtxxxxbzgwYNypIlSzJnzpzK2H333Zd169Zl4MCBlZqZM2dm9erVlZoZM2Zkjz32SLdu3Vq7ZQAAACjNZgfxZcuWZe7cuZk7d26S5Pnnn8/cuXOzYMGCrF69OieeeGIeffTRTJ06NWvXrk1TU1OampqyatWqJEnfvn0zbNiwnHbaaXn44Yfzq1/9KuPGjctJJ52UxsbGJMknP/nJtG/fPmPGjMm8efPy/e9/P1/72tdyzjnntN7KAQAAoA1s9kfTH3300RxxxBGV1+vD8ejRo3PppZfmjjvuSJIMGDCgxX6/+MUvcvjhhydJpk6dmnHjxmXw4MGprq7OCSeckEmTJlVq6+rqcs8992Ts2LHZf//9s9NOO2X8+PEeXQYAAMA73mYH8cMPPzxFUbzp/FvNrde9e/fceuutb1mz995758EHH9zc9gAAAGCrtsWfIw4AAAD8P4I4AAAAlEgQBwAAgBIJ4gAAAFAiQRwAAABKJIgDAABAiQRxAAAAKJEgDgAAACUSxAEAAKBEgjgAAACUSBAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJBHEAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRIEAcAAIASCeIAAABQIkEcAAAASiSIAwAAQIkEcQAAACiRIA4AAAAlEsQBAACgRII4AAAAlEgQBwAAgBIJ4gAAAFAiQRwAAABKJIgDAABAiQRxAAAAKJEgDgAAACUSxAEAAKBEgjgAAACUSBAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJBHEAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRos4P4zJkzc8wxx6SxsTFVVVW5/fbbW8wXRZHx48dn5513TqdOnTJkyJA888wzLWpeffXVjBo1KrW1tenatWvGjBmTZcuWtah5/PHH8+EPfzgdO3ZMz549M3HixM1fHQAAAGxlNjuIL1++PPvss08mT5680fmJEydm0qRJmTJlSmbPnp0uXbpk6NChWbFiRaVm1KhRmTdvXmbMmJFp06Zl5syZOf300yvzzc3NOfLII9O7d+/MmTMnV155ZS699NLccMMN/8ASAQAAYOtRs7k7DB8+PMOHD9/oXFEUueaaa3LRRRfluOOOS5J85zvfSX19fW6//facdNJJefLJJzN9+vQ88sgjOeCAA5Ik1157bY466qhcddVVaWxszNSpU7Nq1arcdNNNad++ffbaa6/MnTs3V199dYvADgAAAO80rfod8eeffz5NTU0ZMmRIZayuri4DBw7MrFmzkiSzZs1K165dKyE8SYYMGZLq6urMnj27UnPooYemffv2lZqhQ4dm/vz5+fOf/7zRc69cuTLNzc0tNgAAANjatGoQb2pqSpLU19e3GK+vr6/MNTU1pUePHi3ma2pq0r179xY1GzvG357jjSZMmJC6urrK1rNnz7e/IAAAAGhl28xd0y+88MIsXbq0si1cuLCtWwIAAIANtGoQb2hoSJIsWrSoxfiiRYsqcw0NDVm8eHGL+TVr1uTVV19tUbOxY/ztOd6oQ4cOqa2tbbEBAADA1qZVg/iuu+6ahoaG3HvvvZWx5ubmzJ49O4MGDUqSDBo0KEuWLMmcOXMqNffdd1/WrVuXgQMHVmpmzpyZ1atXV2pmzJiRPfbYI926dWvNlgEAAKBUmx3Ely1blrlz52bu3LlJ/nqDtrlz52bBggWpqqrKWWedlS9+8Yu544478sQTT+TTn/50GhsbM3LkyCRJ3759M2zYsJx22ml5+OGH86tf/Srjxo3LSSedlMbGxiTJJz/5ybRv3z5jxozJvHnz8v3vfz9f+9rXcs4557TawgEAAKAtbPbjyx599NEcccQRldfrw/Ho0aNz880357zzzsvy5ctz+umnZ8mSJTnkkEMyffr0dOzYsbLP1KlTM27cuAwePDjV1dU54YQTMmnSpMp8XV1d7rnnnowdOzb7779/dtppp4wfP96jywAAAHjHqyqKomjrJraE5ubm1NXVZenSpb4vvhn6XHBXW7fAu8QLV4xo6xZ4l/C+Rlm8rwGwqTl0m7lrOgAAALwTCOIAAABQIkEcAAAASiSIAwAAQIkEcQAAACiRIA4AAAAlEsQBAACgRII4AAAAlEgQBwAAgBIJ4gAAAFAiQRwAAABKJIgDAABAiQRxAAAAKJEgDgAAACUSxAEAAKBEgjgAAACUSBAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJBHEAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRIEAcAAIASCeIAAABQIkEcAAAASiSIAwAAQIkEcQAAACiRIA4AAAAlEsQBAACgRII4AAAAlEgQBwAAgBIJ4gAAAFAiQRwAAABKJIgDAABAiQRxAAAAKJEgDgAAACUSxAEAAKBEgjgAAACUSBAHAACAEgniAAAAUKJWD+Jr167NxRdfnF133TWdOnXK+973vnzhC19IURSVmqIoMn78+Oy8887p1KlThgwZkmeeeabFcV599dWMGjUqtbW16dq1a8aMGZNly5a1drsAAABQqlYP4l/5yldy3XXX5etf/3qefPLJfOUrX8nEiRNz7bXXVmomTpyYSZMmZcqUKZk9e3a6dOmSoUOHZsWKFZWaUaNGZd68eZkxY0amTZuWmTNn5vTTT2/tdgEAAKBUNa19wIceeijHHXdcRowYkSTp06dPvvvd7+bhhx9O8ter4ddcc00uuuiiHHfccUmS73znO6mvr8/tt9+ek046KU8++WSmT5+eRx55JAcccECS5Nprr81RRx2Vq666Ko2Nja3dNgAAAJSi1a+IH3zwwbn33nvz9NNPJ0n+53/+J7/85S8zfPjwJMnzzz+fpqamDBkypLJPXV1dBg4cmFmzZiVJZs2ala5du1ZCeJIMGTIk1dXVmT179kbPu3LlyjQ3N7fYAAAAYGvT6lfEL7jggjQ3N2fPPfdMu3btsnbt2nzpS1/KqFGjkiRNTU1Jkvr6+hb71dfXV+aamprSo0ePlo3W1KR79+6VmjeaMGFCLrvsstZeDgAAALSqVr8i/oMf/CBTp07Nrbfemsceeyy33HJLrrrqqtxyyy2tfaoWLrzwwixdurSyLVy4cIueDwAAAP4RrX5F/Nxzz80FF1yQk046KUnSv3///OEPf8iECRMyevToNDQ0JEkWLVqUnXfeubLfokWLMmDAgCRJQ0NDFi9e3OK4a9asyauvvlrZ/406dOiQDh06tPZyAAAAoFW1+hXx1157LdXVLQ/brl27rFu3Lkmy6667pqGhIffee29lvrm5ObNnz86gQYOSJIMGDcqSJUsyZ86cSs19992XdevWZeDAga3dMgAAAJSm1a+IH3PMMfnSl76UXr16Za+99spvfvObXH311fnMZz6TJKmqqspZZ52VL37xi9l9992z66675uKLL05jY2NGjhyZJOnbt2+GDRuW0047LVOmTMnq1aszbty4nHTSSe6YDgAAwDtaqwfxa6+9NhdffHH+7d/+LYsXL05jY2P+9V//NePHj6/UnHfeeVm+fHlOP/30LFmyJIccckimT5+ejh07VmqmTp2acePGZfDgwamurs4JJ5yQSZMmtXa7AAAAUKqqoiiKtm5iS2hubk5dXV2WLl2a2tratm7nHaPPBXe1dQu8S7xwxYi2boF3Ce9rlMX7GgCbmkNb/TviAAAAwJsTxAEAAKBEgjgAAACUSBAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJBHEAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRIEAcAAIASCeIAAABQIkEcAAAASiSIAwAAQIkEcQAAACiRIA4AAAAlEsQBAACgRII4AAAAlEgQBwAAgBIJ4gAAAFAiQRwAAABKJIgDAABAiQRxAAAAKJEgDgAAACUSxAEAAKBEgjgAAACUSBAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJBHEAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRIEAcAAIASCeIAAABQIkEcAAAASiSIAwAAQIkEcQAAACiRIA4AAAAl2iJB/I9//GM+9alPZccdd0ynTp3Sv3//PProo5X5oigyfvz47LzzzunUqVOGDBmSZ555psUxXn311YwaNSq1tbXp2rVrxowZk2XLlm2JdgEAAKA0rR7E//znP+dDH/pQtttuu9x999353e9+l//7f/9vunXrVqmZOHFiJk2alClTpmT27Nnp0qVLhg4dmhUrVlRqRo0alXnz5mXGjBmZNm1aZs6cmdNPP7212wUAAIBS1bT2Ab/yla+kZ8+e+fa3v10Z23XXXSt/Looi11xzTS666KIcd9xxSZLvfOc7qa+vz+23356TTjopTz75ZKZPn55HHnkkBxxwQJLk2muvzVFHHZWrrroqjY2Nrd02AAAAlKLVr4jfcccdOeCAA/Kxj30sPXr0yL777ptvfvOblfnnn38+TU1NGTJkSGWsrq4uAwcOzKxZs5Iks2bNSteuXSshPEmGDBmS6urqzJ49e6PnXblyZZqbm1tsAAAAsLVp9SD++9//Ptddd1123333/OxnP8sZZ5yRM888M7fcckuSpKmpKUlSX1/fYr/6+vrKXFNTU3r06NFivqamJt27d6/UvNGECRNSV1dX2Xr27NnaSwMAAIC3rdWD+Lp167Lffvvly1/+cvbdd9+cfvrpOe200zJlypTWPlULF154YZYuXVrZFi5cuEXPBwAAAP+IVg/iO++8c/r169dirG/fvlmwYEGSpKGhIUmyaNGiFjWLFi2qzDU0NGTx4sUt5tesWZNXX321UvNGHTp0SG1tbYsNAAAAtjatHsQ/9KEPZf78+S3Gnn766fTu3TvJX2/c1tDQkHvvvbcy39zcnNmzZ2fQoEFJkkGDBmXJkiWZM2dOpea+++7LunXrMnDgwNZuGQAAAErT6ndNP/vss3PwwQfny1/+cj7+8Y/n4Ycfzg033JAbbrghSVJVVZWzzjorX/ziF7P77rtn1113zcUXX5zGxsaMHDkyyV+voA8bNqzykfbVq1dn3LhxOemkk9wxHQAAgHe0Vg/iBx54YG677bZceOGFufzyy7PrrrvmmmuuyahRoyo15513XpYvX57TTz89S5YsySGHHJLp06enY8eOlZqpU6dm3LhxGTx4cKqrq3PCCSdk0qRJrd0uAAAAlKqqKIqirZvYEpqbm1NXV5elS5f6vvhm6HPBXW3dAu8SL1wxoq1b4F3C+xpl8b4GwKbm0Fb/jjgAAADw5gRxAAAAKJEgDgAAACUSxAEAAKBEgjgAAACUSBAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJBHEAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRIEAcAAIASCeIAAABQIkEcAAAASiSIAwAAQIkEcQAAACiRIA4AAAAlEsQBAACgRII4AAAAlEgQBwAAgBIJ4gAAAFAiQRwAAABKJIgDAABAiQRxAAAAKJEgDgAAACUSxAEAAKBEgjgAAACUSBAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJBHEAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRIEAcAAIASCeIAAABQIkEcAAAASiSIAwAAQIkEcQAAACjRFg/iV1xxRaqqqnLWWWdVxlasWJGxY8dmxx13zPbbb58TTjghixYtarHfggULMmLEiHTu3Dk9evTIueeemzVr1mzpdgEAAGCL2qJB/JFHHsn111+fvffeu8X42WefnTvvvDM//OEP88ADD+TFF1/M8ccfX5lfu3ZtRowYkVWrVuWhhx7KLbfckptvvjnjx4/fku0CAADAFrfFgviyZcsyatSofPOb30y3bt0q40uXLs2NN96Yq6++Oh/5yEey//7759vf/nYeeuih/PrXv06S3HPPPfnd736X//qv/8qAAQMyfPjwfOELX8jkyZOzatWqLdUyAAAAbHFbLIiPHTs2I0aMyJAhQ1qMz5kzJ6tXr24xvueee6ZXr16ZNWtWkmTWrFnp379/6uvrKzVDhw5Nc3Nz5s2bt9HzrVy5Ms3NzS02AAAA2NrUbImDfu9738tjjz2WRx55ZIO5pqamtG/fPl27dm0xXl9fn6ampkrN34bw9fPr5zZmwoQJueyyy1qhewAAANhyWv2K+MKFC/P5z38+U6dOTceOHVv78G/qwgsvzNKlSyvbwoULSzs3AAAAbKpWD+Jz5szJ4sWLs99++6WmpiY1NTV54IEHMmnSpNTU1KS+vj6rVq3KkiVLWuy3aNGiNDQ0JEkaGho2uIv6+tfra96oQ4cOqa2tbbEBAADA1qbVg/jgwYPzxBNPZO7cuZXtgAMOyKhRoyp/3m677XLvvfdW9pk/f34WLFiQQYMGJUkGDRqUJ554IosXL67UzJgxI7W1tenXr19rtwwAAAClafXviO+www75wAc+0GKsS5cu2XHHHSvjY8aMyTnnnJPu3buntrY2n/vc5zJo0KAcdNBBSZIjjzwy/fr1yymnnJKJEyemqakpF110UcaOHZsOHTq0dssAAABQmi1ys7a/56tf/Wqqq6tzwgknZOXKlRk6dGi+8Y1vVObbtWuXadOm5YwzzsigQYPSpUuXjB49OpdffnlbtAsAAACtppQgfv/997d43bFjx0yePDmTJ09+03169+6dn/70p1u4MwAAACjXFnuOOAAAALAhQRwAAABKJIgDAABAiQRxAAAAKJEgDgAAACUSxAEAAKBEgjgAAACUSBAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJBHEAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRIEAcAAIASCeIAAABQIkEcAAAASiSIAwAAQIkEcQAAACiRIA4AAAAlEsQBAACgRII4AAAAlEgQBwAAgBIJ4gAAAFAiQRwAAABKJIgDAABAiQRxAAAAKJEgDgAAACUSxAEAAKBEgjgAAACUSBAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJBHEAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRIEAcAAIASCeIAAABQIkEcAAAAStTqQXzChAk58MADs8MOO6RHjx4ZOXJk5s+f36JmxYoVGTt2bHbcccdsv/32OeGEE7Jo0aIWNQsWLMiIESPSuXPn9OjRI+eee27WrFnT2u0CAABAqVo9iD/wwAMZO3Zsfv3rX2fGjBlZvXp1jjzyyCxfvrxSc/bZZ+fOO+/MD3/4wzzwwAN58cUXc/zxx1fm165dmxEjRmTVqlV56KGHcsstt+Tmm2/O+PHjW7tdAAAAKFVVURTFljzByy+/nB49euSBBx7IoYcemqVLl+Y973lPbr311px44olJkqeeeip9+/bNrFmzctBBB+Xuu+/O0UcfnRdffDH19fVJkilTpuT888/Pyy+/nPbt2//d8zY3N6euri5Lly5NbW3tllziNqXPBXe1dQu8S7xwxYi2boF3Ce9rlMX7GgCbmkO3+HfEly5dmiTp3r17kmTOnDlZvXp1hgwZUqnZc88906tXr8yaNStJMmvWrPTv378SwpNk6NChaW5uzrx58zZ6npUrV6a5ubnFBgAAAFubLRrE161bl7POOisf+tCH8oEPfCBJ0tTUlPbt26dr164tauvr69PU1FSp+dsQvn5+/dzGTJgwIXV1dZWtZ8+erbwaAAAAePu2aBAfO3Zsfvvb3+Z73/veljxNkuTCCy/M0qVLK9vChQu3+DkBAABgc9VsqQOPGzcu06ZNy8yZM7PLLrtUxhsaGrJq1aosWbKkxVXxRYsWpaGhoVLz8MMPtzje+ruqr695ow4dOqRDhw6tvAoAAABoXa1+RbwoiowbNy633XZb7rvvvuy6664t5vfff/9st912uffeeytj8+fPz4IFCzJo0KAkyaBBg/LEE09k8eLFlZoZM2aktrY2/fr1a+2WAQAAoDStfkV87NixufXWW/OTn/wkO+ywQ+U73XV1denUqVPq6uoyZsyYnHPOOenevXtqa2vzuc99LoMGDcpBBx2UJDnyyCPTr1+/nHLKKZk4cWKamppy0UUXZezYsa56AwAA8I7W6kH8uuuuS5IcfvjhLca//e1v59RTT02SfPWrX011dXVOOOGErFy5MkOHDs03vvGNSm27du0ybdq0nHHGGRk0aFC6dOmS0aNH5/LLL2/tdgEAAKBUrR7EN+Wx5B07dszkyZMzefLkN63p3bt3fvrTn7ZmawAAANDmtvhzxAEAAID/RxAHAACAEgniAAAAUCJBHAAAAEokiAMAAECJBHEAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRIEAcAAIASCeIAAABQIkEcAAAASiSIAwAAQIkEcQAAACiRIA4AAAAlEsQBAACgRII4AAAAlEgQBwAAgBIJ4gAAAFAiQRwAAABKJIgDAABAiQRxAAAAKJEgDgAAACUSxAEAAKBEgjgAALDNueKKK1JVVZWzzjqrxfisWbPykY98JF26dEltbW0OPfTQvP76623TJO9aNW3dAAAAQGt65JFHcv3112fvvfduMT5r1qwMGzYsF154Ya699trU1NTkf/7nf1Jd7fok5RLEAQCAbcayZcsyatSofPOb38wXv/jFFnNnn312zjzzzFxwwQWVsT322KPsFsFH0wEAgG3H2LFjM2LEiAwZMqTF+OLFizN79uz06NEjBx98cOrr63PYYYfll7/8ZRt1yruZIA4AAGwTvve97+Wxxx7LhAkTNpj7/e9/nyS59NJLc9ppp2X69OnZb7/9Mnjw4DzzzDNlt8q7nCAOAAC84y1cuDCf//znM3Xq1HTs2HGD+XXr1iVJ/vVf/zX//M//nH333Tdf/epXs8cee+Smm24qu13e5QRxAADgHW/OnDlZvHhx9ttvv9TU1KSmpiYPPPBAJk2alJqamtTX1ydJ+vXr12K/vn37ZsGCBW3RMu9ibtYGAAC84w0ePDhPPPFEi7F//ud/zp577pnzzz8///RP/5TGxsbMnz+/Rc3TTz+d4cOHl9kqCOIAAMA73w477JAPfOADLca6dOmSHXfcsTJ+7rnn5pJLLsk+++yTAQMG5JZbbslTTz2VH/3oR23RMu9igjgAALyD9LngrrZu4R2j6fev5LFlz+f2ys9s91Tv+9Gc9Jkzsm7FX9L+Pbum6wmXZfA3n0ryVFu2ulV64YoRbd3CNksQBwAAtkkNn7xig7G6gz6WuoM+1gbdwP/jZm0AAABQIkEcAAAASiSIAwAAQIkEcQAAACiRIA4AAAAlEsQBAACgRII4AAAAlGirDuKTJ09Onz590rFjxwwcODAPP/xwW7cEAAAAb8tWG8S///3v55xzzskll1ySxx57LPvss0+GDh2axYsXt3VrAAAA8A+raesG3szVV1+d0047Lf/8z/+cJJkyZUruuuuu3HTTTbngggs2qF+5cmVWrlxZeb106dIkSXNzczkNbyPWrXytrVvgXcK/TcrifY2yeF+jLN7XKIv3tc23/mdWFMVb1lUVf6+iDaxatSqdO3fOj370o4wcObIyPnr06CxZsiQ/+clPNtjn0ksvzWWXXVZilwAAALChhQsXZpdddnnT+a3yivif/vSnrF27NvX19S3G6+vr89RTT210nwsvvDDnnHNO5fW6devy6quvZscdd0xVVdUW7Zd3t+bm5vTs2TMLFy5MbW1tW7cD8LZ5XwO2Nd7XKEtRFPnLX/6SxsbGt6zbKoP4P6JDhw7p0KFDi7GuXbu2TTO8K9XW1npjB7Yp3teAbY33NcpQV1f3d2u2ypu17bTTTmnXrl0WLVrUYnzRokVpaGhoo64AAADg7dsqg3j79u2z//775957762MrVu3Lvfee28GDRrUhp0BAADA27PVfjT9nHPOyejRo3PAAQfkgx/8YK655posX768chd12Fp06NAhl1xyyQZfjQB4p/K+BmxrvK+xtdkq75q+3te//vVceeWVaWpqyoABAzJp0qQMHDiwrdsCAACAf9hWHcQBAABgW7NVfkccAAAAtlWCOAAAAJRIEAcAAIASCeIAAABQoq328WWwtVm9enU2596G1dXVqanxTwzYen3+85/Pyy+/vMn173vf+/KFL3xhC3YEAO8O7poOm+j9739/dtlll78bxquqqlIURZYvX56HH364pO4ANt8+++yTO+64Y5Nqi6LIxz/+ce9rwFbtu9/9bv7yl79scn2PHj0ycuTILdcQvAmX62ATdenSJffdd98m1x944IFbsBuAt6+6ujq9e/fe5Hq/uwe2dl/60pdy3nnnbfL71Ze//GVBnDYhiMMmqqqq2qL1AGXzvgZsa7bbbrt8+tOf3uT6r3/961uwG3hzbtYGAABsE/yCkXcKQRwAAABK5KPpAPAu9frrr+fyyy/fpFrfDweA1iOIwyZq3759Dj744E2u32mnnbZgNwBv3/XXX5/XX399k+uHDh26BbsBePtWr16dmTNnblJtURR+yUibEcRhE33wgx/crOft7rbbbluwG4C379BDD23rFgBa1SmnnJK77757k+tPPfXULdcMvAXPEYdNNGDAgNxxxx2b/JvTj33sY563CwBQotWrV2/WVe7q6urU1Lg2Sfn8VwebqKqqKr169drker/jAgAo11577ZVddtllk2qLoshrr72W2bNnb+GuYEOCOGwij8MAANi6denSJffdd98m1x944IFbsBt4cx5fBgAAbBNcOOGdQhAHAACAEvloOmwiz9sFAABagyAOm8jzdgEAgNYgiMMm8rxdAICtW/v27XPwwQdvcv1OO+20BbuBNyeIAwAA24QPfvCDefnllze5frfddtuC3cCbqyp8mRUAANgGDBgwIHfccccm36/nYx/7WB5++OEt3BVsyBVxAABgm1BVVZVevXptcr1rkrQVjy8DAAC2CZ4jzjuFIA4AAAAlEsQBAACgRL4jDgAAbBNef/31XH755ZtU6/vhtCV3TQcAALYJM2fOzOuvv77J9XV1dTnooIO2YEewcYI4AAAAlMh3xAEAAKBEgjgAAACUSBAHAACAEgniAAAAUCJBHIBWdfjhh+ess85q6zbeVJ8+fXLNNde8Y47bmqqqqnL77be3dRtbxKWXXpoBAwa06jFfeOGFVFVVZe7cua16XAAQxAFoVf/93/+dL3zhC5tU+04POrfccksOOeSQJMkjjzyS008/fZP3vf/++1NVVZUlS5Zsoe62jG9+85v58Ic/nG7duqVbt24ZMmRIHn744U3e/9RTT01VVVWLbdiwYW+5z80337zBPuu3xYsXv90lbXGb+supFStW5NRTT03//v1TU1OTkSNHbvHeAGgbNW3dAADblu7du7fJeVevXp3tttuu1HP+5Cc/ybHHHpskec973lPqudcriiJr165NTU05/5N+//335+STT87BBx+cjh075itf+UqOPPLIzJs3L+9973s36RjDhg3Lt7/97crrDh06vGX9Jz7xiQ3C+qmnnpoVK1akR48em7+IrdTatWvTqVOnnHnmmfnxj3/c1u0AsAW5Ig5Aq/rbq399+vTJl7/85XzmM5/JDjvskF69euWGG26o1O66665Jkn333TdVVVU5/PDDK3Pf+ta30rdv33Ts2DF77rlnvvGNb1Tm1l9J//73v5/DDjssHTt2zNSpU3Pqqadm5MiRueqqq7Lzzjtnxx13zNixY7N69eo37beqqirXX399jj766HTu3Dl9+/bNrFmz8uyzz+bwww9Ply5dcvDBB+e5555rsd+KFStyzz33VIL4Gz+aXlVVlW9961v56Ec/ms6dO2f33XfPHXfcUen/iCOOSJJ069YtVVVVOfXUU5Mk69aty4QJE7LrrrumU6dO2WefffKjH/2octz1V9Lvvvvu7L///unQoUN++ctf5vDDD8+ZZ56Z8847L927d09DQ0MuvfTSN133+p/hD37wg3z4wx9Op06dcuCBB+bpp5/OI488kgMOOCDbb799hg8fnpdffrmy39SpU/Nv//ZvGTBgQPbcc89861vfyrp163Lvvfe+6bneqEOHDmloaKhs3bp1e8v6Tp06tahv165d7rvvvowZM2aD2uuvvz49e/ZM586d8/GPfzxLly59y2OvW7cuEydOzG677ZYOHTqkV69e+dKXvtSi5ve//32OOOKIdO7cOfvss09mzZpVmXvllVdy8skn573vfW86d+6c/v3757vf/W5l/tRTT80DDzyQr33ta5Wr+C+88MJGe+nSpUuuu+66nHbaaWloaNhozfqP4N90003p1atXtt9++/zbv/1b1q5dm4kTJ6ahoSE9evTYYA0AbGUKAGhFhx12WPH5z3++KIqi6N27d9G9e/di8uTJxTPPPFNMmDChqK6uLp566qmiKIri4YcfLpIUP//5z4uXXnqpeOWVV4qiKIr/+q//Knbeeefixz/+cfH73/+++PGPf1x07969uPnmm4uiKIrnn3++SFL06dOnUvPiiy8Wo0ePLmpra4vPfvazxZNPPlnceeedRefOnYsbbrih0l/v3r2Lr371q5XXSYr3vve9xfe///1i/vz5xciRI4s+ffoUH/nIR4rp06cXv/vd74qDDjqoGDZsWIt1Tps2rXj/+9//lsfdZZddiltvvbV45plnijPPPLPYfvvti1deeaVYs2ZN8eMf/7hIUsyfP7946aWXiiVLlhRFURRf/OIXiz333LOYPn168dxzzxXf/va3iw4dOhT3339/URRF8Ytf/KJIUuy9997FPffcUzz77LPFK6+8Uhx22GFFbW1tcemllxZPP/10ccsttxRVVVXFPffc06Kn2267rcXPcP251q9z//33Lw4//PDil7/8ZfHYY48Vu+22W/HZz372Tf++m5ubi44dOxZ33nnnpvznUYwePbqoq6sr3vOe9xTvf//7i89+9rPFn/70p03ad72rrrqqqKurK1577bXK2CWXXFJ06dKl+MhHPlL85je/KR544IFit912Kz75yU++5bHOO++8olu3bsXNN99cPPvss8WDDz5YfPOb3yyKouXPaNq0acX8+fOLE088sejdu3exevXqoiiK4n//93+LK6+8svjNb35TPPfcc8WkSZOKdu3aFbNnzy6KoiiWLFlSDBo0qDjttNOKl156qXjppZeKNWvWbNLP6bjjjttg/JJLLim233774sQTTyzmzZtX3HHHHUX79u2LoUOHFp/73OeKp556qrjpppuKJMWvf/3rTf2RAlAyQRyAVvXGIP6pT32qMrdu3bqiR48exXXXXVcUxf8LOr/5zW9aHON973tfceutt7YY+8IXvlAMGjSoxX7XXHNNi5rRo0cXvXv3bhF0PvaxjxWf+MQnKq83FpgvuuiiyutZs2YVSYobb7yxMvbd73636NixY4tznXbaacV//Md/bPJxly1bViQp7r777qIo/l+g/vOf/1ypWbFiRdG5c+fioYceanGuMWPGFCeffHKL/W6//fYWNYcddlhxyCGHtBg78MADi/PPP79FT28M4t/61rdarDNJce+991bGJkyYUOyxxx7FmznjjDOKf/qnfypef/31N635W9/97neLn/zkJ8Xjjz9e3HbbbUXfvn2LAw88cJPC6Xp9+/YtzjjjjBZjl1xySdGuXbvif//3fytjd999d1FdXV289NJLGz1Oc3Nz0aFDh0rwfqON/YzmzZtXJCmefPLJN+1vxIgRxb//+79XXv/tv4lN9VZBvHPnzkVzc3NlbOjQoUWfPn2KtWvXVsb22GOPYsKECZt1TgDK4zviAGxRe++9d+XPVVVVaWhoeMsbbC1fvjzPPfdcxowZk9NOO60yvmbNmtTV1bWoPeCAAzbYf6+99kq7du0qr3feeec88cQTm9xjfX19kqR///4txlasWJHm5ubU1tamKIrceeed+cEPfrDJx+3SpUtqa2vfcu3PPvtsXnvttfyf//N/WoyvWrUq++67b4uxja39b8+X/HXtf+9mZpuy9jc7xhVXXJHvfe97uf/++9OxY8e3PM96J510UuXP/fv3z9577533ve99uf/++zN48OAMHz48Dz74YJKkd+/emTdvXov9Z82alSeffDL/+Z//ucGxe/Xq1eJ76oMGDcq6desyf/78PPPMMxk+fHhl7vrrr8/uu++elStXZvDgwW/Z89/+jHbeeeckyeLFi7Pnnntm7dq1+fKXv5wf/OAH+eMf/5hVq1Zl5cqV6dy581sec6+99sof/vCHJMmHP/zh3H333W9Z/7f69OmTHXbYofK6vr4+7dq1S3V1dYuxd8KN7ADerQRxALaoN95AraqqKuvWrXvT+mXLliX56925Bw4c2GLubwN28tdw+3bP98Z9qqqq3nRs/XEefvjhrFmzJgcffPAmH3dTelm/9rvuumuDG5+98YZmZa59Y8e46qqrcsUVV+TnP//5Br8A2Bz/9E//lJ122inPPvtsBg8enG9961t5/fXXN7qe5K/3DhgwYED233//zTrPAQcc0OLu/PX19W/6Xe03eqv/Fq688sp87WtfyzXXXJP+/funS5cuOeuss7Jq1aq3POZPf/rTyr0LOnXqtBkr2fjf8z/ydw9A2xHEAWgz7du3T/LXu0WvV19fn8bGxvz+97/PqFGj2qq1t/STn/wkI0aM2OAXA5tjY2vv169fOnTokAULFuSwww57231uKRMnTsyXvvSl/OxnP9volfnN8b//+7955ZVXKlea3+rO68uWLcsPfvCDTJgwYaPzCxYsyIsvvpjGxsYkya9//etUV1dnjz32SKdOnbLbbru1qN99993TqVOn3HvvvfmXf/mXf6j/X/3qVznuuOPyqU99KslfA/rTTz+dfv36VWrat2/f4u85+evVfgDevQRxANpMjx490qlTp0yfPj277LJLOnbsmLq6ulx22WU588wzU1dXl2HDhmXlypV59NFH8+c//znnnHNOW7edO+64I5dffvnbOkbv3r1TVVWVadOm5aijjkqnTp2yww475D/+4z9y9tlnZ926dTnkkEOydOnS/OpXv0ptbW1Gjx7dSiv4x33lK1/J+PHjc+utt6ZPnz5pampKkmy//fbZfvvt33LfZcuW5bLLLssJJ5yQhoaGPPfccznvvPOy2267ZejQoX/33N///vezZs2aSuh9o44dO2b06NG56qqr0tzcnDPPPDMf//jH3/QO5B07dsz555+f8847L+3bt8+HPvShvPzyy5k3b95G78i+Mbvvvnt+9KMf5aGHHkq3bt1y9dVXZ9GiRS2CeJ8+fTJ79uy88MIL2X777dO9e/cWHyP/W7/73e+yatWqvPrqq/nLX/5SuYo/YMCATeoHgHcGjy8DoM3U1NRk0qRJuf7669PY2JjjjjsuSfIv//Iv+da3vpVvf/vb6d+/fw477LDcfPPNlcedtaXnnnsuzz777CYFx7fy3ve+N5dddlkuuOCC1NfXZ9y4cUmSL3zhC7n44oszYcKE9O3bN8OGDctdd921Vaw9Sa677rqsWrUqJ554YnbeeefKdtVVV/3dfdu1a5fHH388xx57bN7//vdnzJgx2X///fPggw/+3WeJJ8mNN96Y448/Pl27dt3o/G677Zbjjz8+Rx11VI488sjsvffeLR57tzEXX3xx/v3f/z3jx49P375984lPfGKzvlt90UUXZb/99svQoUNz+OGHp6GhISNHjmxR8x//8R9p165d+vXrl/e85z1ZsGDBmx7vqKOOyr777ps777wz999/f/bdd98N7g8AwDtfVVEURVs3AQDvFFdffXV+/vOf56c//WlbtwIAvEO5Ig4Am2GXXXbJhRde2NZtAADvYK6IAwCt4sEHH2zxiLA3Wn9XeAB4txPEAYBW8frrr+ePf/zjm86/8a7lAPBuJYgDAABAiXxHHAAAAEokiAMAAECJBHEAAAAokSAOAAAAJRLEAQAAoESCOAAAAJRIEAcAAIAS/f/ZNkQqPL9iTwAAAABJRU5ErkJggg==","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 19981 (\\N{CJK UNIFIED IDEOGRAPH-4E0D}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 26159 (\\N{CJK UNIFIED IDEOGRAPH-662F}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 37325 (\\N{CJK UNIFIED IDEOGRAPH-91CD}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 35201 (\\N{CJK UNIFIED IDEOGRAPH-8981}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 22238 (\\N{CJK UNIFIED IDEOGRAPH-56DE}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 31572 (\\N{CJK UNIFIED IDEOGRAPH-7B54}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 27491 (\\N{CJK UNIFIED IDEOGRAPH-6B63}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 30830 (\\N{CJK UNIFIED IDEOGRAPH-786E}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 38382 (\\N{CJK UNIFIED IDEOGRAPH-95EE}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 27861 (\\N{CJK UNIFIED IDEOGRAPH-6CD5}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 38169 (\\N{CJK UNIFIED IDEOGRAPH-9519}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 35823 (\\N{CJK UNIFIED IDEOGRAPH-8BEF}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n"]},{"name":"stdout","output_type":"stream","text":["********** internlm/internlm2_5-7b-chat-1m_checkpoint-44 **********\n","internlm/internlm2_5-7b-chat-1m_checkpoint-44\n","不是 1329\n","是 1213\n","不重要 377\n","回答正确 42\n","问法错误 39\n","Name: count, dtype: int64\n"]},{"name":"stderr","output_type":"stream","text":["findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAA+IAAAIgCAYAAAABTdNAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABIKUlEQVR4nO3de1hVdd7//9cG5CwIKiB5LE9onsYjdtCSW0Rv0xnTNKdwcnRstDLv0rzvNMsUU8dTmlma1oyanTQ1NQ+MWUaoGJORmVqGqWBlsAUVENbvj37sbztRofb+bJHn47r2dbnWeq+13ov9oXjttddaNsuyLAEAAAAAACO8PN0AAAAAAABVCUEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBPp5uwF1KSkp08uRJVa9eXTabzdPtAAAAAACuc5Zl6ezZs4qOjpaX1+XPe1+3QfzkyZOqV6+ep9sAAAAAAFQxx48fV926dS+7/LoN4tWrV5f08w8gJCTEw90AAAAAAK53drtd9erVc+TRy7lug3jp19FDQkII4gAAAAAAY652eTQ3awMAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxOFk165d6tu3r6Kjo2Wz2bRu3Tqn5VOmTFHz5s0VFBSksLAwxcXFKTU11bH82LFjGj58uBo1aqSAgADddNNNeuqpp1RYWOi0nTfeeENt27ZVYGCgGjRooFmzZpk4PAAAAADwOII4nOTn56tNmzZatGhRmcubNm2qhQsX6sCBA/roo4/UsGFD9ezZU99//70k6csvv1RJSYmWLFmijIwMzZ07Vy+++KL+93//17GNzZs3a+jQoRo1apQ+//xzvfDCC5o7d64WLlxo5BgBAAAAwJNslmVZnm7CHex2u0JDQ5Wbm6uQkBBPt1Mp2Ww2rV27Vv37979sTenPefv27erRo0eZNbNmzdLixYv19ddfS5LuvfdeFRUV6c0333TUPP/885o5c6YyMzNls9lcehwAAAAAYEJ5cyhnxPGbFRYW6qWXXlJoaKjatGlz2brc3FyFh4c7pgsKCuTv7+9UExAQoO+++07ffvut2/oFAAAAgGsBQRwVtnHjRgUHB8vf319z587Vtm3bVKtWrTJrjxw5oueff15/+9vfHPPi4+P1zjvvaMeOHSopKdFXX32lf/zjH5KkU6dOGTkGAAAAAPAUgjgq7I477lB6ero+/vhj9erVS4MGDdLp06cvqTtx4oR69eqlgQMHasSIEY75I0aM0JgxY/Tf//3f8vX1VZcuXTR48GBJkpcXQxIAAADA9Y3UgwoLCgpS48aN1aVLFy1btkw+Pj5atmyZU83Jkyd1xx13qGvXrnrppZecltlsNj333HPKy8vTt99+q6ysLHXq1EmSdOONNxo7DgAAAADwBB9PN4DKr6SkRAUFBY7pEydO6I477lD79u21fPnyy57l9vb21g033CBJWr16tWJjY1W7dm0jPQMAAACApxDE4SQvL09HjhxxTH/zzTdKT09XeHi4atasqWnTpumuu+5SnTp19MMPP2jRokU6ceKEBg4cKOnnEN69e3c1aNBAs2fPdjzWTJKioqIkST/88IPeeustde/eXRcuXNDy5cv15ptv6oMPPjB7sAAAAADgATy+7BrU8In3PLbvC5mfKXv1/14yP+jmHqoZP1rfb5ilwpOHVHzeLu+AEPlGNVFo13vkV6epJCnvwHb9uGlemdtuMGGjJKn4XK5Ov/2Mir7/VpIlv+jmqnH7/fKLbuauw7qqYzP6eGzfAAAAAK4P5c2hBPFrkCeDeFVFEAcAAADwe/EccQAAAAAArkEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcQJWza9cu9e3bV9HR0bLZbFq3bp1jWVFRkSZMmKBWrVopKChI0dHRuv/++3Xy5EmnbUybNk1du3ZVYGCgatSocck+fvzxR/Xq1UvR0dHy8/NTvXr1NGbMGNntdjcfHQAAAK51BHEAVU5+fr7atGmjRYsWXbLs3Llz2r9/vyZNmqT9+/frnXfe0aFDh3TXXXc51RUWFmrgwIF68MEHy9yHl5eX+vXrp/Xr1+urr77SihUrtH37do0aNcotxwQAAIDKw8fTDQCAaQkJCUpISChzWWhoqLZt2+Y0b+HCherUqZMyMzNVv359SdLTTz8tSVqxYkWZ2wkLC3MK6Q0aNNDf//53zZo1ywVHAAAAgMqMM+IAcBW5ubmy2WxlfgW9vE6ePKl33nlH3bp1c11jAAAAqJQI4gBwBRcuXNCECRM0ZMgQhYSEVHj9IUOGKDAwUDfccINCQkK0dOlSN3QJAACAyoQgDgCXUVRUpEGDBsmyLC1evPg3bWPu3Lnav3+/3n33XR09elTjxo1zcZcAAACobLhGHADKUBrCv/32WyUnJ/+ms+GSFBUVpaioKDVv3lzh4eG67bbbNGnSJNWpU8fFHQMAAKCyIIgDwK+UhvDDhw/r3//+t2rWrOmS7ZaUlEiSCgoKXLI9AAAAVE4EcQBVTl5eno4cOeKY/uabb5Senq7w8HDVqVNHd999t/bv36+NGzequLhYWVlZkqTw8HD5+vpKkjIzM3XmzBllZmaquLhY6enpkqTGjRsrODhYmzZtUnZ2tjp27Kjg4GBlZGTo8ccf1y233KKGDRuaPmQAAABcQwjiADyi4RPveWzfFzI/U/bq/3VMl163HXRzD9W49V6dWL9ektS2bVun9SKHTJd//daSpB/em6v8z3c4lrVr186p5sK3nyln12sq/PG4VFwk7+q1FNi0q/I63O2xYz82o49H9gsAAABnNsuyrIqssGvXLs2aNUtpaWk6deqU1q5dq/79+0v6+eucTz75pDZt2qSvv/5aoaGhiouL04wZMxQdHe3YxpkzZ/TQQw9pw4YN8vLy0oABAzR//nwFBwc7aj777DONHj1ae/fuVe3atfXQQw9p/Pjx5e7TbrcrNDRUubm5v/naTk/xZECpqggo5jHOzWOcAwAAuFd5c2iF75qen5+vNm3aaNGiRZcsO3funPbv369JkyZp//79euedd3To0CHdddddTnVDhw5VRkaGtm3bpo0bN2rXrl0aOXKkU/M9e/ZUgwYNlJaWplmzZmnKlCl66aWXKtouAAAAAADXlAp/NT0hIUEJCQllLgsNDdW2bduc5i1cuFCdOnVSZmam6tevr4MHD2rLli3au3evOnToIEl6/vnn1bt3b82ePVvR0dFauXKlCgsL9corr8jX11ctW7ZUenq65syZ4xTYAQAAAACobNz+HPHc3FzZbDbVqFFDkpSSkqIaNWo4QrgkxcXFycvLS6mpqY6a22+/3XFTJEmKj4/XoUOH9NNPP5W5n4KCAtntdqcXAAAAAADXGrcG8QsXLmjChAkaMmSI4/vxWVlZioiIcKrz8fFReHi4487EWVlZioyMdKopnS6t+bWkpCSFhoY6XvXq1XP14QAAAAAA8Lu5LYiXPofXsiwtXrzYXbtxmDhxonJzcx2v48ePu32fAAAAAABUlFseX1Yawr/99lslJyc73S0uKipKp0+fdqq/ePGizpw5o6ioKEdNdna2U03pdGnNr/n5+cnPz8+VhwEAAAAAgMu5/Ix4aQg/fPiwtm/frpo1azotj42NVU5OjtLS0hzzkpOTVVJSos6dOztqdu3apaKiIkfNtm3b1KxZM4WFhbm6ZQAAAAAAjKlwEM/Ly1N6errS09MlSd98843S09OVmZmpoqIi3X333dq3b59Wrlyp4uJiZWVlKSsrS4WFhZKkmJgY9erVSyNGjNCePXu0e/dujRkzRoMHD3Y8a/zee++Vr6+vhg8froyMDK1Zs0bz58/XuHHjXHfkAAAAAAB4QIW/mr5v3z7dcccdjunScJyYmKgpU6Zo/fr1kqS2bds6rffvf/9b3bt3lyStXLlSY8aMUY8ePeTl5aUBAwZowYIFjtrQ0FBt3bpVo0ePVvv27VWrVi1NnjyZR5cBAAAAACq9Cgfx7t27y7Ksyy6/0rJS4eHhWrVq1RVrWrdurQ8//LCi7QEAAAAAcE1z+3PEAQAAAADA/0MQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgUIWD+K5du9S3b19FR0fLZrNp3bp1Tssty9LkyZNVp04dBQQEKC4uTocPH3aqOXPmjIYOHaqQkBDVqFFDw4cPV15enlPNZ599pttuu03+/v6qV6+eZs6cWfGjAwAAAADgGlPhIJ6fn682bdpo0aJFZS6fOXOmFixYoBdffFGpqakKCgpSfHy8Lly44KgZOnSoMjIytG3bNm3cuFG7du3SyJEjHcvtdrt69uypBg0aKC0tTbNmzdKUKVP00ksv/YZDBAAAAADg2uFT0RUSEhKUkJBQ5jLLsjRv3jw9+eST6tevnyTptddeU2RkpNatW6fBgwfr4MGD2rJli/bu3asOHTpIkp5//nn17t1bs2fPVnR0tFauXKnCwkK98sor8vX1VcuWLZWenq45c+Y4BXYAAAAAACobl14j/s033ygrK0txcXGOeaGhoercubNSUlIkSSkpKapRo4YjhEtSXFycvLy8lJqa6qi5/fbb5evr66iJj4/XoUOH9NNPP5W574KCAtntdqcXAAAAAADXGpcG8aysLElSZGSk0/zIyEjHsqysLEVERDgt9/HxUXh4uFNNWdv45T5+LSkpSaGhoY5XvXr1fv8BAQAAAADgYtfNXdMnTpyo3Nxcx+v48eOebgkAAAAAgEu4NIhHRUVJkrKzs53mZ2dnO5ZFRUXp9OnTTssvXryoM2fOONWUtY1f7uPX/Pz8FBIS4vQCAAAAAOBa49Ig3qhRI0VFRWnHjh2OeXa7XampqYqNjZUkxcbGKicnR2lpaY6a5ORklZSUqHPnzo6aXbt2qaioyFGzbds2NWvWTGFhYa5sGQAAAAAAoyocxPPy8pSenq709HRJP9+gLT09XZmZmbLZbBo7dqyeffZZrV+/XgcOHND999+v6Oho9e/fX5IUExOjXr16acSIEdqzZ492796tMWPGaPDgwYqOjpYk3XvvvfL19dXw4cOVkZGhNWvWaP78+Ro3bpzLDhwAAAAAAE+o8OPL9u3bpzvuuMMxXRqOExMTtWLFCo0fP175+fkaOXKkcnJydOutt2rLli3y9/d3rLNy5UqNGTNGPXr0kJeXlwYMGKAFCxY4loeGhmrr1q0aPXq02rdvr1q1amny5Mk8ugwAAAAAUOnZLMuyPN2EO9jtdoWGhio3N7fSXS/e8In3PN1ClXNsRh9Pt1DlMM7NY5wDAAC4V3lz6HVz13QAAAAAACoDgjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGOTyIF5cXKxJkyapUaNGCggI0E033aSpU6fKsixHjWVZmjx5surUqaOAgADFxcXp8OHDTts5c+aMhg4dqpCQENWoUUPDhw9XXl6eq9sFAAAAAMAolwfx5557TosXL9bChQt18OBBPffcc5o5c6aef/55R83MmTO1YMECvfjii0pNTVVQUJDi4+N14cIFR83QoUOVkZGhbdu2aePGjdq1a5dGjhzp6nYBAAAAADDKx9Ub/Pjjj9WvXz/16dNHktSwYUOtXr1ae/bskfTz2fB58+bpySefVL9+/SRJr732miIjI7Vu3ToNHjxYBw8e1JYtW7R371516NBBkvT888+rd+/emj17tqKjoy/Zb0FBgQoKChzTdrvd1YcGAAAAAMDv5vIz4l27dtWOHTv01VdfSZL+85//6KOPPlJCQoIk6ZtvvlFWVpbi4uIc64SGhqpz585KSUmRJKWkpKhGjRqOEC5JcXFx8vLyUmpqapn7TUpKUmhoqONVr149Vx8aAAAAAAC/m8vPiD/xxBOy2+1q3ry5vL29VVxcrGnTpmno0KGSpKysLElSZGSk03qRkZGOZVlZWYqIiHBu1MdH4eHhjppfmzhxosaNG+eYttvthHEAAAAAwDXH5UH8jTfe0MqVK7Vq1Sq1bNlS6enpGjt2rKKjo5WYmOjq3Tn4+fnJz8/PbdsHAAAAAMAVXB7EH3/8cT3xxBMaPHiwJKlVq1b69ttvlZSUpMTEREVFRUmSsrOzVadOHcd62dnZatu2rSQpKipKp0+fdtruxYsXdebMGcf6AAAAAABURi6/RvzcuXPy8nLerLe3t0pKSiRJjRo1UlRUlHbs2OFYbrfblZqaqtjYWElSbGyscnJylJaW5qhJTk5WSUmJOnfu7OqWAQAAAAAwxuVnxPv27atp06apfv36atmypT799FPNmTNHDzzwgCTJZrNp7NixevbZZ9WkSRM1atRIkyZNUnR0tPr37y9JiomJUa9evTRixAi9+OKLKioq0pgxYzR48OAy75gOAAAAAEBl4fIg/vzzz2vSpEn6+9//rtOnTys6Olp/+9vfNHnyZEfN+PHjlZ+fr5EjRyonJ0e33nqrtmzZIn9/f0fNypUrNWbMGPXo0UNeXl4aMGCAFixY4Op2AQAAAAAwymZZluXpJtzBbrcrNDRUubm5CgkJ8XQ7FdLwifc83UKVc2xGH0+3UOUwzs1jnAMAALhXeXOoy68RBwAAAAAAl0cQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgkFuC+IkTJ/TnP/9ZNWvWVEBAgFq1aqV9+/Y5lluWpcmTJ6tOnToKCAhQXFycDh8+7LSNM2fOaOjQoQoJCVGNGjU0fPhw5eXluaNdAAAAAACMcXkQ/+mnn3TLLbeoWrVq2rx5s7744gv94x//UFhYmKNm5syZWrBggV588UWlpqYqKChI8fHxunDhgqNm6NChysjI0LZt27Rx40bt2rVLI0eOdHW7AAAAAAAY5ePqDT733HOqV6+eli9f7pjXqFEjx78ty9K8efP05JNPql+/fpKk1157TZGRkVq3bp0GDx6sgwcPasuWLdq7d686dOggSXr++efVu3dvzZ49W9HR0Zfst6CgQAUFBY5pu93u6kMDAAAAAOB3c/kZ8fXr16tDhw4aOHCgIiIi1K5dO7388suO5d98842ysrIUFxfnmBcaGqrOnTsrJSVFkpSSkqIaNWo4QrgkxcXFycvLS6mpqWXuNykpSaGhoY5XvXr1XH1oAAAAAAD8bi4P4l9//bUWL16sJk2a6P3339eDDz6ohx9+WK+++qokKSsrS5IUGRnptF5kZKRjWVZWliIiIpyW+/j4KDw83FHzaxMnTlRubq7jdfz4cVcfGgAAAAAAv5vLv5peUlKiDh06aPr06ZKkdu3a6fPPP9eLL76oxMREV+/Owc/PT35+fm7bPgAAAAAAruDyM+J16tRRixYtnObFxMQoMzNTkhQVFSVJys7OdqrJzs52LIuKitLp06edll+8eFFnzpxx1AAAAAAAUBm5PIjfcsstOnTokNO8r776Sg0aNJD0843boqKitGPHDsdyu92u1NRUxcbGSpJiY2OVk5OjtLQ0R01ycrJKSkrUuXNnV7cMAAAAAIAxLv9q+qOPPqquXbtq+vTpGjRokPbs2aOXXnpJL730kiTJZrNp7NixevbZZ9WkSRM1atRIkyZNUnR0tPr37y/p5zPovXr10ogRI/Tiiy+qqKhIY8aM0eDBg8u8YzoAAAAAAJWFy4N4x44dtXbtWk2cOFHPPPOMGjVqpHnz5mno0KGOmvHjxys/P18jR45UTk6Obr31Vm3ZskX+/v6OmpUrV2rMmDHq0aOHvLy8NGDAAC1YsMDV7QIAAAAAYJTNsizL0024g91uV2hoqHJzcxUSEuLpdiqk4RPvebqFKufYjD6ebqHKYZybxzgHAABwr/LmUJdfIw4AAAAAAC6PIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCC3B/EZM2bIZrNp7NixjnkXLlzQ6NGjVbNmTQUHB2vAgAHKzs52Wi8zM1N9+vRRYGCgIiIi9Pjjj+vixYvubhcAAAAAALdyaxDfu3evlixZotatWzvNf/TRR7Vhwwa9+eab+uCDD3Ty5En96U9/ciwvLi5Wnz59VFhYqI8//livvvqqVqxYocmTJ7uzXQAAAAAA3M5tQTwvL09Dhw7Vyy+/rLCwMMf83NxcLVu2THPmzNGdd96p9u3ba/ny5fr444/1ySefSJK2bt2qL774Qv/617/Utm1bJSQkaOrUqVq0aJEKCwvd1TIAANetxYsXq3Xr1goJCVFISIhiY2O1efNmSdKxY8dks9nKfL355puSpBUrVly25vTp0548NAAAKh23BfHRo0erT58+iouLc5qflpamoqIip/nNmzdX/fr1lZKSIklKSUlRq1atFBkZ6aiJj4+X3W5XRkZGmfsrKCiQ3W53egEAgJ/VrVtXM2bMUFpamvbt26c777xT/fr1U0ZGhurVq6dTp045vZ5++mkFBwcrISFBknTPPfdcUhMfH69u3bopIiLCw0cHAEDl4uOOjb7++uvav3+/9u7de8myrKws+fr6qkaNGk7zIyMjlZWV5aj5ZQgvXV66rCxJSUl6+umnXdA9AADXn759+zpNT5s2TYsXL9Ynn3yili1bKioqymn52rVrNWjQIAUHB0uSAgICFBAQ4Fj+/fffKzk5WcuWLXN/8wAAXGdcfkb8+PHjeuSRR7Ry5Ur5+/u7evOXNXHiROXm5jpex48fN7ZvAAAqk+LiYr3++uvKz89XbGzsJcvT0tKUnp6u4cOHX3Ybr732mgIDA3X33Xe7s1UAAK5LLj8jnpaWptOnT+sPf/iDY15xcbF27dqlhQsX6v3331dhYaFycnKczopnZ2c7Po2PiorSnj17nLZbelf1X39iX8rPz09+fn4uPhoAAK4fBw4cUGxsrC5cuKDg4GCtXbtWLVq0uKRu2bJliomJUdeuXS+7rWXLlunee+91OksOAADKx+VnxHv06KEDBw4oPT3d8erQoYOGDh3q+He1atW0Y8cOxzqHDh1SZmam41P52NhYHThwwOnmL9u2bVNISEiZfzAAAICra9asmdLT05WamqoHH3xQiYmJ+uKLL5xqzp8/r1WrVl3xbHhKSooOHjx4xRoAAHB5Lj8jXr16dd18881O84KCglSzZk3H/OHDh2vcuHEKDw9XSEiIHnroIcXGxqpLly6SpJ49e6pFixa67777NHPmTGVlZenJJ5/U6NGjOesNAMBv5Ovrq8aNG0uS2rdvr71792r+/PlasmSJo+att97SuXPndP/99192O0uXLlXbtm3Vvn17t/cMAMD1yC03a7uauXPnysvLSwMGDFBBQYHi4+P1wgsvOJZ7e3tr48aNevDBBxUbG6ugoCAlJibqmWee8US7AABcl0pKSlRQUOA0b9myZbrrrrtUu3btMtfJy8vTG2+8oaSkJBMtAgBwXTISxHfu3Ok07e/vr0WLFmnRokWXXadBgwbatGmTmzsDAKBqmDhxohISElS/fn2dPXtWq1at0s6dO/X+++87ao4cOaJdu3Zd8f+/a9as0cWLF/XnP//ZRNsAAFyXPHJGHACAqqDhE+95ugWHHzaladYLr6g4/4y8/ILkW7uhag98RiN2FEo7fu7zpw9elVdwLf3t30Wy7Sy796x/zpb3jZ3VdsZuk+2X27EZfTzdAgAAV0UQBwCgCqjV+5Gr1oR1S1RYt8Qr1kTdN9tVLQEAUGW5/K7pAAAAAADg8gjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMMjlQTwpKUkdO3ZU9erVFRERof79++vQoUNONRcuXNDo0aNVs2ZNBQcHa8CAAcrOznaqyczMVJ8+fRQYGKiIiAg9/vjjunjxoqvbBQAAAADAKJcH8Q8++ECjR4/WJ598om3btqmoqEg9e/ZUfn6+o+bRRx/Vhg0b9Oabb+qDDz7QyZMn9ac//cmxvLi4WH369FFhYaE+/vhjvfrqq1qxYoUmT57s6nYBAAAAADDKx9Ub3LJli9P0ihUrFBERobS0NN1+++3Kzc3VsmXLtGrVKt15552SpOXLlysmJkaffPKJunTpoq1bt+qLL77Q9u3bFRkZqbZt22rq1KmaMGGCpkyZIl9fX1e3DQAAAACAEW6/Rjw3N1eSFB4eLklKS0tTUVGR4uLiHDXNmzdX/fr1lZKSIklKSUlRq1atFBkZ6aiJj4+X3W5XRkZGmfspKCiQ3W53egEAAAAAcK1xaxAvKSnR2LFjdcstt+jmm2+WJGVlZcnX11c1atRwqo2MjFRWVpaj5pchvHR56bKyJCUlKTQ01PGqV6+ei48GAAAAAIDfz61BfPTo0fr888/1+uuvu3M3kqSJEycqNzfX8Tp+/Ljb9wkAAAAAQEW5/BrxUmPGjNHGjRu1a9cu1a1b1zE/KipKhYWFysnJcTornp2draioKEfNnj17nLZXelf10ppf8/Pzk5+fn4uPAgAAAAAA13L5GXHLsjRmzBitXbtWycnJatSokdPy9u3bq1q1atqxY4dj3qFDh5SZmanY2FhJUmxsrA4cOKDTp087arZt26aQkBC1aNHC1S0DAAAAAGCMy8+Ijx49WqtWrdK7776r6tWrO67pDg0NVUBAgEJDQzV8+HCNGzdO4eHhCgkJ0UMPPaTY2Fh16dJFktSzZ0+1aNFC9913n2bOnKmsrCw9+eSTGj16NGe9AQAAAACVmsuD+OLFiyVJ3bt3d5q/fPlyDRs2TJI0d+5ceXl5acCAASooKFB8fLxeeOEFR623t7c2btyoBx98ULGxsQoKClJiYqKeeeYZV7cLAAAAAIBRLg/ilmVdtcbf31+LFi3SokWLLlvToEEDbdq0yZWtAQAAAADgcW5/jjgAAAAAAPh/COIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAFAlzJgxQzabTWPHjpUknTlzRg899JCaNWumgIAA1a9fXw8//LByc3M92yiA6x5BHAAAANe9vXv3asmSJWrdurVj3smTJ3Xy5EnNnj1bn3/+uVasWKEtW7Zo+PDhHuwUqJjFixerdevWCgkJUUhIiGJjY7V582bH8qNHj+qPf/yjateurZCQEA0aNEjZ2dke7BgSQRwAAADXuby8PA0dOlQvv/yywsLCHPNvvvlmvf322+rbt69uuukm3XnnnZo2bZo2bNigixcverBjoPzq1q2rGTNmKC0tTfv27dOdd96pfv36KSMjQ/n5+erZs6dsNpuSk5O1e/duFRYWqm/fviopKfF061Waj6cbAAAAANxp9OjR6tOnj+Li4vTss89esTY3N1chISHy8eHPZFQOffv2dZqeNm2aFi9erE8++UQnTpzQsWPH9OmnnyokJESS9OqrryosLEzJycmKi4vzRMsQZ8QBAABwHXv99de1f/9+JSUlXbX2hx9+0NSpUzVy5EgDnQGuV1xcrNdff135+fmKjY1VQUGBbDab/Pz8HDX+/v7y8vLSRx995MFOQRAHAADAden48eN65JFHtHLlSvn7+1+x1m63q0+fPmrRooWmTJlipkHARQ4cOKDg4GD5+flp1KhRWrt2rVq0aKEuXbooKChIEyZM0Llz55Sfn6/HHntMxcXFOnXqlKfbrtII4gAAALgupaWl6fTp0/rDH/4gHx8f+fj46IMPPtCCBQvk4+Oj4uJiSdLZs2fVq1cvVa9eXWvXrlW1atU83DlQMc2aNVN6erpSU1P14IMPKjExUV988YVq166tN998Uxs2bFBwcLBCQ0OVk5OjP/zhD/LyIgp6Ehe/AAAA4LrUo0cPHThwwGneX/7yFzVv3lwTJkyQt7e37Ha74uPj5efnp/Xr11/1zDlwLfL19VXjxo0lSe3bt9fevXs1f/58LVmyRD179tTRo0f1ww8/yMfHRzVq1FBUVJRuvPFGD3ddtRHEAQAAcF2qXr26br75Zqd5QUFBqlmzpm6++WbZ7Xb17NlT586d07/+9S/Z7XbZ7XZJUu3ateXt7e2JtoHfraSkRAUFBU7zatWqJUlKTk7W6dOnddddd3miNfz/COIAAAD4zRo+8Z6nW6iQrK9/1P68b7Tuifd0IfMzZaemSpLjbGKpG0Ytk09opCdavKpjM/p4ugVcQyZOnKiEhATVr19fZ8+e1apVq7Rz5069//77kqTly5crJiZGtWvXVkpKih555BE9+uijatasmYc7r9oI4gAAAKgyou6d4fi3f/3WajBhowe7QWVxLX/g9MOmNM164RUV55+Rl1+QfGs3VO2Bz2jEjkJpx3v6aecm5X0+TiXn8+QTGqHqbf+ot3zu0NvX8DFJ1/8HTgRxAAAAAKikavV+5IrLw7oPU1j3YWaaQblxqzwAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQdd0EF+0aJEaNmwof39/de7cWXv27PF0SwAAAAAA/C7XbBBfs2aNxo0bp6eeekr79+9XmzZtFB8fr9OnT3u6NQAAAAAAfjMfTzdwOXPmzNGIESP0l7/8RZL04osv6r333tMrr7yiJ5544pL6goICFRQUOKZzc3MlSXa73UzDLlRScM7TLVQ5lXGcVHaMc/MY5+Yxzs1jnJvHODePcW4e49y8yjrOS/u2LOuKdTbrahUeUFhYqMDAQL311lvq37+/Y35iYqJycnL07rvvXrLOlClT9PTTTxvsEgAAAACASx0/flx169a97PJr8oz4Dz/8oOLiYkVGRjrNj4yM1JdfflnmOhMnTtS4ceMc0yUlJTpz5oxq1qwpm83m1n7xM7vdrnr16un48eMKCQnxdDuAWzDOURUwzlEVMM5RFTDOzbMsS2fPnlV0dPQV667JIP5b+Pn5yc/Pz2lejRo1PNNMFRcSEsIvOq57jHNUBYxzVAWMc1QFjHOzQkNDr1pzTd6srVatWvL29lZ2drbT/OzsbEVFRXmoKwAAAAAAfr9rMoj7+vqqffv22rFjh2NeSUmJduzYodjYWA92BgAAAADA73PNfjV93LhxSkxMVIcOHdSpUyfNmzdP+fn5jruo49rj5+enp5566pJLBIDrCeMcVQHjHFUB4xxVAeP82nVN3jW91MKFCzVr1ixlZWWpbdu2WrBggTp37uzptgAAAAAA+M2u6SAOAAAAAMD15pq8RhwAAAAAgOsVQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAoGv28WW4dhUVFaki9/jz8vKSjw9DDZXLI488ou+//77c9TfddJOmTp3qxo4AAABwveCu6aiwpk2bqm7dulcN4zabTZZlKT8/X3v27DHUHeAabdq00fr168tVa1mWBg0axDhHpbN69WqdPXu23PURERHq37+/+xoC3GDAgAE6depUuetbtGihpUuXurEjwPUY55UPpylRYUFBQUpOTi53fceOHd3YDeAeXl5eatCgQbnr+UwTldG0adM0fvz4co/f6dOnE8RR6Xz99df69NNPy13fqVMnN3YDuAfjvPIhiKPCbDabW+uBawHjHFVBtWrVdP/995e7fuHChW7sBnAP/vuMqoBxXvlwszYAAKooPnACAMAzCOIAAAAAABjEV9MBoAznz5/XM888U65arg8HAABARRDEUWG+vr7q2rVruetr1arlxm4A91iyZInOnz9f7vr4+Hg3dgO4R1FRkXbt2lWuWsuy+NAJlVJ+fr4eeOCBctUyzlFZMc4rH4I4KqxTp04Ver5y48aN3dgN4B633367p1sA3O6+++7T5s2by10/bNgw9zUDuMnmzZtVVFRU7vqAgAA3dgO4B+O88uE54qiwtm3bav369eX+JG3gwIE8XxkArkFFRUUVOivi5eUlHx8+w0flsnr1ap09e7bc9RERETymD5UO47zyIYijwtq1a1eh5xR27NhRe/fudWNHAIDfomnTpqpbt265ai3L0rlz55SamurmrgDXuvnmmzV+/Phyf+i0aNEiTiCg0mGcVz58rI0K43E3AHB9CAoKUnJycrnrO3bs6MZuAPeoVq2a7r///nLXL1y40I3dAO7BOK98eHwZAABVFB+soipgnKMqYJxXPgRxAAAAAAAM4qvpqDCerwwAAAAAvx1BHBXG85UBAEBlUVRUpF27dpWrlucro7JinFc+BHFUGM9XBoDrg6+vr7p27Vru+lq1armxG8A97rvvPm3evLnc9cOGDXNfM4CbMM4rHx5fBgBAFfXwww/r+++/L3d948aNNXXqVDd2BLheUVFRhc7+eXl5yceHc1WoXBjnlQ9BHACAKqpt27Zav359uf94GzhwIM+dRaXTtGlT1a1bt1y1lmXp3LlzSk1NdXNXgGsxzisfPgYBAKCKstlsql+/frnr+ewelVFQUJCSk5PLXd+xY0c3dgO4B+O88uHxZQAAVFE8dxZVAeMcVQHjvPIhiAMAAAAAYBBBHAAAAAAAg7hGHACAKur8+fN65plnylXL9eEAALgOQRwAgCpqyZIlOn/+fLnr4+Pj3dgN4B6+vr7q2rVruetr1arlxm4A92CcVz4EcQAAqqjbb7/d0y0AbtepUyd9//335a5v3LixG7sB3INxXvnwHHEAAABct9q2bav169eX+/KKgQMHas+ePW7uCnAtxnnlwxlxAAAAXLdsNpvq169f7nrOUaEyYpxXPtw1HQAAANctnq+MqoBxXvkQxAEAAAAAMIggDgAAAACAQVwjDgAAgOvW+fPn9cwzz5SrlutmUVkxzisf7poOAACA69auXbt0/vz5cteHhoaqS5cubuwIcD3GeeVDEAcAAAAAwCCuEQcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEA8KDu3btr7Nixnm7jsho2bKh58+ZVmu26ks1m07p16zzdhltMmTJFbdu2dek2jx07JpvNpvT0dJdutzJZsWKFatSo4dZ9uOO9K8v1PP4B4FpAEAcAD3rnnXc0derUctVW9qDz6quv6tZbb5Uk7d27VyNHjiz3ujt37pTNZlNOTo6bunOPl19+WbfddpvCwsIUFhamuLg47dmzp9zrDxs2TDabzenVq1evK66zYsWKS9YpfZ0+ffr3HpLblffDqQsXLmjYsGFq1aqVfHx81L9/f7f3VpWcOnVKCQkJ5a7/LR9CWJalhISEK4b+H3/8UXXr1q2Uv/8AcCU+nm4AAKqy8PBwj+y3qKhI1apVM7rPd999V3fddZckqXbt2kb3XcqyLBUXF8vHx8z//nbu3KkhQ4aoa9eu8vf313PPPaeePXsqIyNDN9xwQ7m20atXLy1fvtwx7efnd8X6e+6555KwPmzYMF24cEEREREVP4hrVHFxsQICAvTwww/r7bff9nQ7152oqCi372PevHmy2WxXrBk+fLhat26tEydOuL0fADCJM+IA4EG/PPvXsGFDTZ8+XQ888ICqV6+u+vXr66WXXnLUNmrUSJLUrl072Ww2de/e3bFs6dKliomJkb+/v5o3b64XXnjBsaz0TPqaNWvUrVs3+fv7a+XKlRo2bJj69++v2bNnq06dOqpZs6ZGjx6toqKiy/Zrs9m0ZMkS/fd//7cCAwMVExOjlJQUHTlyRN27d1dQUJC6du2qo0ePOq134cIFbd261RHEf/3VdJvNpqVLl+qPf/yjAgMD1aRJE61fv97R/x133CFJCgsLk81m07BhwyRJJSUlSkpKUqNGjRQQEKA2bdrorbfecmy39Ez65s2b1b59e/n5+emjjz5S9+7d9fDDD2v8+PEKDw9XVFSUpkyZctnjLv0ZvvHGG7rtttsUEBCgjh076quvvtLevXvVoUMHBQcHKyEhQd9//71jvZUrV+rvf/+72rZtq+bNm2vp0qUqKSnRjh07LruvX/Pz81NUVJTjFRYWdsX6gIAAp3pvb28lJydr+PDhl9QuWbJE9erVU2BgoAYNGqTc3NwrbrukpEQzZ85U48aN5efnp/r162vatGlONV9//bXuuOMOBQYGqk2bNkpJSXEs+/HHHzVkyBDdcMMNCgwMVKtWrbR69WrH8mHDhumDDz7Q/PnzHWfxjx07VmYvQUFBWrx4sUaMGHHZ0Fj6Ne5XXnlF9evXV3BwsP7+97+ruLhYM2fOVFRUlCIiIi45hivJycnR3/72N0VGRsrf318333yzNm7c6FTz/vvvKyYmRsHBwerVq5dOnTrltPxKv6+S9N1332nIkCEKDw9XUFCQOnTooNTU1DL7OXr0qG688UaNGTNGlmU5zkyvW7dOTZo0kb+/v+Lj43X8+HGn9RYvXqybbrpJvr6+atasmf75z386Lf/lWerS8f/OO++U+d7u3LlTf/nLX5Sbm+t43670+yRJ6enp+sc//qFXXnnlsjWLFy9WTk6OHnvssStuCwAqJQsA4DHdunWzHnnkEcuyLKtBgwZWeHi4tWjRIuvw4cNWUlKS5eXlZX355ZeWZVnWnj17LEnW9u3brVOnTlk//vijZVmW9a9//cuqU6eO9fbbb1tff/219fbbb1vh4eHWihUrLMuyrG+++caSZDVs2NBRc/LkSSsxMdEKCQmxRo0aZR08eNDasGGDFRgYaL300kuO/ho0aGDNnTvXMS3JuuGGG6w1a9ZYhw4dsvr37281bNjQuvPOO60tW7ZYX3zxhdWlSxerV69eTse5ceNGq2nTplfcbt26da1Vq1ZZhw8fth5++GErODjY+vHHH62LFy9ab7/9tiXJOnTokHXq1CkrJyfHsizLevbZZ63mzZtbW7ZssY4ePWotX77c8vPzs3bu3GlZlmX9+9//tiRZrVu3trZu3WodOXLE+vHHH61u3bpZISEh1pQpU6yvvvrKevXVVy2bzWZt3brVqae1a9c6/QxL91V6nO3bt7e6d+9uffTRR9b+/futxo0bW6NGjbrs+2232y1/f39rw4YN5RkeVmJiohUaGmrVrl3batq0qTVq1Cjrhx9+KNe6pWbPnm2FhoZa586dc8x76qmnrKCgIOvOO++0Pv30U+uDDz6wGjdubN17771X3Nb48eOtsLAwa8WKFdaRI0esDz/80Hr55Zcty3L+GW3cuNE6dOiQdffdd1sNGjSwioqKLMuyrO+++86aNWuW9emnn1pHjx61FixYYHl7e1upqamWZVlWTk6OFRsba40YMcI6deqUderUKevixYvl+jn169fvkvlPPfWUFRwcbN19991WRkaGtX79esvX19eKj4+3HnroIevLL7+0XnnlFUuS9cknn1x1P8XFxVaXLl2sli1bWlu3brWOHj1qbdiwwdq0aZNlWZa1fPlyq1q1alZcXJy1d+9eKy0tzYqJiXH6uV7t9/Xs2bPWjTfeaN12223Whx9+aB0+fNhas2aN9fHHHzuOqU2bNpZlWdZ//vMfKyoqyvq///s/x/ZLe+jQoYP18ccfW/v27bM6depkde3a1VHzzjvvWNWqVbMWLVpkHTp0yPrHP/5heXt7W8nJyY6ay43/st7bgoICa968eVZISIjjfTt79uxlf475+flWTEyMtW7dukv2VSojI8OKioqyvv32W8fv8U8//XTV9wgAKguCOAB40K+D+J///GfHspKSEisiIsJavHixZVn/74/hTz/91GkbN910k7Vq1SqneVOnTrViY2Od1ps3b55TTWJiotWgQQOnoDNw4EDrnnvucUyXFZiffPJJx3RKSoolyVq2bJlj3urVqy1/f3+nfY0YMcJ67LHHyr3dvLw8S5K1efNmy7KsMv8Qv3DhghUYGOgIKKWGDx9uDRkyxGm90j/4S3Xr1s269dZbneZ17NjRmjBhglNPvw4iS5cudTpOSdaOHTsc85KSkqxmzZpZl/Pggw9aN954o3X+/PnL1vzS6tWrrXfffdf67LPPrLVr11oxMTFWx44dyxVOS8XExFgPPvig07ynnnrK8vb2tr777jvHvM2bN1teXl7WqVOnytyO3W63/Pz8HMH718r6GWVkZFiSrIMHD162vz59+lj/8z//45j+5e9EeV0piAcGBlp2u90xLz4+3mrYsKFVXFzsmNesWTMrKSnpqvt5//33LS8vL+vQoUNlLl++fLklyTpy5Ihj3qJFi6zIyEjH9NV+X5csWWJVr17d8UFbWcfUpk0ba/fu3VZYWJg1e/bsMnv45QcLBw8etCQ5PvDo2rWrNWLECKf1Bg4caPXu3dsxfbXx/+v3dvny5VZoaGiZPf/ayJEjreHDh5e5L8v6+Xe7devW1j//+U/Lssr+/QeAyo5rxAHgGtK6dWvHv202m6Kioq54g638/HwdPXpUw4cP14gRIxzzL168qNDQUKfaDh06XLJ+y5Yt5e3t7ZiuU6eODhw4UO4eIyMjJUmtWrVymnfhwgXZ7XaFhITIsixt2LBBb7zxRrm3GxQUpJCQkCse+5EjR3Tu3Dn913/9l9P8wsJCtWvXzmleWcf+y/1JPx/71W5mVp5jv9w2ZsyYoddff107d+6Uv7//FfdTavDgwY5/t2rVSq1bt9ZNN92knTt3qkePHkpISNCHH34oSWrQoIEyMjKc1k9JSdHBgwcv+dqxJNWvX9/pOvXY2FiVlJTo0KFDOnz4sNONupYsWaImTZqooKBAPXr0uGLPv/wZ1alTR5J0+vRpNW/eXMXFxZo+fbreeOMNnThxQoWFhSooKFBgYOAVt9myZUt9++23kqTbbrtNmzdvvmL9LzVs2FDVq1d3TEdGRsrb21teXl5O88pzI7v09HTVrVtXTZs2vWxNYGCgbrrpJsf0L8dVeX5f09PT1a5duyvePyIzM1P/9V//pWnTppV5YzsfHx917NjRMd28eXPVqFFDBw8eVKdOnXTw4MFLbpZ4yy23aP78+Vc8/iu9t2WZPn26pk+f7pj+4osvlJ6eruTkZH366aeX3c/EiRMVExOjP//5z1fsBwAqM4I4AFxDfn0DNZvNppKSksvW5+XlSfr57tydO3d2WvbLgC39HG5/7/5+vU7pjZbKmle6nT179ujixYvq2rVrubdbnl5Kj/2999675MZnv76hmcljL2sbs2fP1owZM7R9+/ZLPgCoiBtvvFG1atXSkSNH1KNHDy1dulTnz58v83ikn69Fbtu2rdq3b1+h/XTo0MHp7vyRkZGXvVb71640FmbNmqX58+dr3rx5atWqlYKCgjR27FgVFhZecZubNm1y3LsgICCgAkdS9vv8W9778u67rG1bliWpfL+v5dlH7dq1FR0drdWrV+uBBx5QSEjIVddxhSu9t2UZNWqUBg0a5JiOjo7WnDlzdPTo0UvusD5gwADddttt2rlzp5KTk3XgwAHH/R5Kf361atXS//3f/+npp5921SEBgMcQxAGgkvD19ZX0892iS0VGRio6Olpff/21hg4d6qnWrujdd99Vnz59LvlgoCLKOvYWLVrIz89PmZmZ6tat2+/u011mzpypadOm6f333y/zzHxFfPfdd/rxxx8dZyOvdOf1vLw8vfHGG0pKSipzeWZmpk6ePKno6GhJ0ieffCIvLy81a9ZMAQEBaty4sVN9kyZNFBAQoB07duivf/3rb+p/9+7d6tevn+NMZ0lJib766iu1aNHCUePr6+v0Pks/n+2/FrRu3VrfffedvvrqqyueFb+c8vy+tm7dWkuXLtWZM2cue1Y8ICBAGzduVO/evRUfH6+tW7c6nfW/ePGi9u3bp06dOkmSDh06pJycHMXExEiSYmJitHv3biUmJjrW2b17t9P7UFFlvW/h4eGXHMMTTzxxyfhp1aqV5s6dq759+0qS3n77bccHTNLPjzt84IEH9OGHHzp92wAAKjOCOABUEhEREQoICNCWLVtUt25d+fv7KzQ0VE8//bQefvhhhYaGqlevXiooKNC+ffv0008/ady4cZ5uW+vXr9czzzzzu7bRoEED2Ww2R/gICAhQ9erV9dhjj+nRRx9VSUmJbr31VuXm5mr37t0KCQlxChme8txzz2ny5MlatWqVGjZsqKysLElScHCwgoODr7huXl6enn76aQ0YMEBRUVE6evSoxo8fr8aNGys+Pv6q+16zZo0uXrx42a/3+vv7KzExUbNnz5bdbtfDDz+sQYMGXfYO5P7+/powYYLGjx8vX19f3XLLLfr++++VkZFR5h3Zy9KkSRO99dZb+vjjjxUWFqY5c+YoOzvbKQA2bNhQqampOnbsmIKDgxUeHu70NfJf+uKLL1RYWKgzZ87o7NmzjrP4bdu2LVc/FdWtWzfdfvvtGjBggObMmaPGjRvryy+/LNfz3Utd7fd1yJAhmj59uvr376+kpCTVqVNHn376qaKjoxUbG+vYTlBQkN577z0lJCQoISFBW7ZscYypatWq6aGHHtKCBQvk4+OjMWPGqEuXLo5g/vjjj2vQoEFq166d4uLitGHDBr3zzjvavn37b/7ZNGzYUHl5edqxY4fatGmjwMDAMi85KL2b/6/Vr1/f8WSIX4ftH374QdLPHyBU9FnlAHCt4vFlAFBJ+Pj4aMGCBVqyZImio6PVr18/SdJf//pXLV26VMuXL1erVq3UrVs3rVixwvFHrScdPXpUR44cKVdwvJIbbrhBTz/9tJ544glFRkZqzJgxkqSpU6dq0qRJSkpKUkxMjHr16qX33nvvmjh26efHLxUWFuruu+9WnTp1HK/Zs2dfdV1vb2999tlnuuuuu9S0aVMNHz5c7du314cffnjVZ4lL0rJly/SnP/3pssGlcePG+tOf/qTevXurZ8+eat269SWP0fq1SZMm6X/+5380efJkxcTE6J577inXtdWlnnzySf3hD39QfHy8unfvrqioKPXv39+p5rHHHpO3t7datGih2rVrKzMz87Lb6927t9q1a6cNGzZo586dateu3SX3B3C1t99+Wx07dtSQIUPUokULjR8//pIzwVdytd9XX19fbd26VREREerdu7datWqlGTNmlPmNkuDgYG3evFmWZalPnz7Kz8+X9PN16hMmTNC9996rW265RcHBwVqzZo1jvf79+2v+/PmaPXu2WrZsqSVLlmj58uVOj0SsqK5du2rUqFG65557VLt2bc2cOfM3bwsAqgKbVXrhDQAALjZnzhxt375dmzZt8nQrQJWwYsUKjR07Vjk5OZ5uBQBwBZwRBwC4Td26dTVx4kRPtwEAAHBNIYgDANxm0KBBuu222zzdxjXpww8/dFwrXtYL5q1cufKy70fLli093R4A4DrCV9MBAPCA8+fP68SJE5dd/uu7lsP9zp49q+zs7DKXVatW7Zq5ezsAoPIjiAMAAAAAYBBfTQcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAg/4/oIDq/a9u2o4AAAAASUVORK5CYII=","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 19981 (\\N{CJK UNIFIED IDEOGRAPH-4E0D}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 26159 (\\N{CJK UNIFIED IDEOGRAPH-662F}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 37325 (\\N{CJK UNIFIED IDEOGRAPH-91CD}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 35201 (\\N{CJK UNIFIED IDEOGRAPH-8981}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 38382 (\\N{CJK UNIFIED IDEOGRAPH-95EE}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 27861 (\\N{CJK UNIFIED IDEOGRAPH-6CD5}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 38169 (\\N{CJK UNIFIED IDEOGRAPH-9519}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 35823 (\\N{CJK UNIFIED IDEOGRAPH-8BEF}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 22238 (\\N{CJK UNIFIED IDEOGRAPH-56DE}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 31572 (\\N{CJK UNIFIED IDEOGRAPH-7B54}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 27491 (\\N{CJK UNIFIED IDEOGRAPH-6B63}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 30830 (\\N{CJK UNIFIED IDEOGRAPH-786E}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n"]},{"name":"stdout","output_type":"stream","text":["********** internlm/internlm2_5-7b-chat-1m_checkpoint-88 **********\n","internlm/internlm2_5-7b-chat-1m_checkpoint-88\n","不是 1288\n","是 1154\n","不重要 470\n","问法错误 53\n","回答正确 35\n","Name: count, dtype: int64\n"]},{"name":"stderr","output_type":"stream","text":["findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAA+IAAAIgCAYAAAABTdNAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJkElEQVR4nO3deXQUZfr28auTkJ0kBEiaSFhkDRgW2QwiomQIEJG8ogwYBUcGRgdUZEaW9weIoAaBcRBFxA3wHUBcAAFlE2RRIoRgBgYxLILgQECFJIQlhKTePzzUz5aAAbufJuT7OafPoeu5q+qu5InHq6urymFZliUAAAAAAGCEj7cbAAAAAACgIiGIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwyM/bDXhKSUmJDh8+rMqVK8vhcHi7HQAAAADAdc6yLJ08eVIxMTHy8bn0ee/rNogfPnxYsbGx3m4DAAAAAFDBHDp0SDVr1rzk+HUbxCtXrizp5x9AWFiYl7sBAAAAAFzv8vPzFRsba+fRS7lug/iFr6OHhYURxAEAAAAAxvzW5dHcrA0AAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEIeLDRs2qEePHoqJiZHD4dDixYvtsaKiIo0YMULx8fEKCQlRTEyM+vXrp8OHD7tsY/fu3erZs6eqVaumsLAwdejQQZ999plLTUZGhjp37qyIiAhVqVJFSUlJ+ve//23iEAEAAADAqwjicHHq1Ck1b95c06dPv2js9OnT2rZtm8aMGaNt27Zp4cKFys7O1t133+1Sd9ddd+n8+fNau3atMjMz1bx5c911113KycmRJBUUFKhr166qVauWNm/erM8//1yVK1dWUlKSioqKjBwnAAAAAHiLw7Isy9tNeEJ+fr7Cw8OVl5ensLAwb7dTLjkcDi1atEgpKSmXrMnIyFDbtm313XffqVatWvrxxx9VvXp1bdiwQbfddpsk6eTJkwoLC9Pq1auVmJiorVu3qk2bNjp48KBiY2MlSTt27FCzZs20Z88e1a9f38ThAQAAAIBblTWHckYcv0teXp4cDociIiIkSVWrVlWjRo30zjvv6NSpUzp//rxmzpypqKgotWrVSpLUqFEjVa1aVW+99ZbOnTunM2fO6K233lJcXJzq1KnjvYMBAAAAAAP8vN0Ayq+zZ89qxIgR6tu3r/1pj8Ph0KeffqqUlBRVrlxZPj4+ioqK0ooVK1SlShVJUuXKlbVu3TqlpKRowoQJkqQGDRpo5cqV8vNjSgIAAAC4vnFGHFelqKhIvXv3lmVZmjFjhr3csiwNHjxYUVFR2rhxo7Zs2aKUlBT16NFDR44ckSSdOXNGAwYM0K233qovv/xSX3zxhW666SYlJyfrzJkz3jokAAAAADCC04+4YhdC+Hfffae1a9e6XPuwdu1aLVu2TCdOnLCXv/rqq1q9erXmzJmjkSNHat68eTpw4IDS09Pl4/PzZ0Hz5s1TlSpV9NFHH6lPnz5eOS4AAAAAMIEgjityIYTv2bNHn332mapWreoyfvr0aUmyA/YFPj4+KikpsWt8fHzkcDhcxh0Oh10DAAAAANcrvpoOFwUFBcrKylJWVpYkaf/+/crKytLBgwdVVFSke++9V1u3btXcuXNVXFysnJwc5eTk6Ny5c5KkhIQEValSRf3799e///1v7d69W0899ZT279+v5ORkSdIf/vAHnThxQoMHD9auXbu0c+dO/elPf5Kfn5/uuOMObx06AAAAABjB48uuQXVGfuy1fZ89uF1H5//fi5aH3NRZER3u139fG1DqetF9n1dgrWaSpMIje5S74R2dy9krq+S8KlWrpYj2fRVUr7Vdf2b/V8r7Yr7O/fidHA6H/KNvVMRt/RRwQ2PPHNhvODAx2Sv7BQAAAHD9KGsOJYhfg7wZxCsqgjgAAACA34vniAMAAAAAcA0iiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAy64iC+YcMG9ejRQzExMXI4HFq8eLE9VlRUpBEjRig+Pl4hISGKiYlRv379dPjwYZdtHD9+XKmpqQoLC1NERIQGDBiggoICl5rt27frtttuU2BgoGJjYzVp0qSrO0IAAAAAAK4hVxzET506pebNm2v69OkXjZ0+fVrbtm3TmDFjtG3bNi1cuFDZ2dm6++67XepSU1O1c+dOrV69WsuWLdOGDRs0aNAgezw/P19dunRR7dq1lZmZqcmTJ2vcuHF6/fXXr+IQAQAAAAC4djgsy7KuemWHQ4sWLVJKSsolazIyMtS2bVt99913qlWrlnbt2qUmTZooIyNDrVu3liStWLFC3bt31/fff6+YmBjNmDFD//M//6OcnBz5+/tLkkaOHKnFixfrm2++KXU/hYWFKiwstN/n5+crNjZWeXl5CgsLu9pD9Io6Iz/2dgsVzoGJyd5uAQAAAEA5l5+fr/Dw8N/MoR6/RjwvL08Oh0MRERGSpPT0dEVERNghXJISExPl4+OjzZs32zUdO3a0Q7gkJSUlKTs7WydOnCh1P2lpaQoPD7dfsbGxnjsoAAAAAACukkeD+NmzZzVixAj17dvX/jQgJydHUVFRLnV+fn6KjIxUTk6OXRMdHe1Sc+H9hZpfGzVqlPLy8uzXoUOH3H04AAAAAAD8bn6e2nBRUZF69+4ty7I0Y8YMT+3GFhAQoICAAI/vBwAAAACA38MjQfxCCP/uu++0du1al+/GO51OHTt2zKX+/PnzOn78uJxOp11z9OhRl5oL7y/UAAAAAABQHrn9q+kXQviePXv06aefqmrVqi7jCQkJys3NVWZmpr1s7dq1KikpUbt27eyaDRs2qKioyK5ZvXq1GjVqpCpVqri7ZQAAAAAAjLniIF5QUKCsrCxlZWVJkvbv36+srCwdPHhQRUVFuvfee7V161bNnTtXxcXFysnJUU5Ojs6dOydJiouLU9euXTVw4EBt2bJFX3zxhYYMGaI+ffooJiZGknT//ffL399fAwYM0M6dO7VgwQK99NJLGjZsmPuOHAAAAAAAL7jix5etW7dOd9xxx0XL+/fvr3Hjxqlu3bqlrvfZZ5+pU6dOkqTjx49ryJAhWrp0qXx8fNSrVy9NmzZNoaGhdv327ds1ePBgZWRkqFq1anrsscc0YsSIMvdZ1tvGX4t4fJl5PL4MAAAAwO/lsceXderUSZZlXfSaPXu26tSpU+qYZVl2CJekyMhIzZs3TydPnlReXp7efvttlxAuSc2aNdPGjRt19uxZff/991cUwgHgcjZs2KAePXooJiZGDodDixcvdhlfuHChunTpoqpVq8rhcNjfAPqlTp06yeFwuLweeeSRUvf3008/qWbNmnI4HMrNzXX/AQEAAKBc8fhzxAHgWnPq1Ck1b95c06dPv+R4hw4d9MILL1x2OwMHDtSRI0fs16RJk0qtGzBggJo1a/a7+wYAAMD1wWOPLwOAa1W3bt3UrVu3S44/+OCDkqQDBw5cdjvBwcG/+SSHGTNmKDc3V2PHjtXy5cuvuFcAAABcfzgjDgBXae7cuapWrZpuuukmjRo1SqdPn3YZ//rrrzV+/Hi988478vHhP7cAAAD4GWfEAeAq3H///apdu7ZiYmK0fft2jRgxQtnZ2Vq4cKEkqbCwUH379tXkyZNVq1Ytffvtt17uGAAAANcKgjgAXIVBgwbZ/46Pj1eNGjXUuXNn7du3T/Xq1dOoUaMUFxenBx54wItdAgAA4FrEdyUBwA3atWsnSdq7d68kae3atXr//ffl5+cnPz8/de7cWZJUrVo1Pf30017rEwAAAN7HGXEAcIMLjzirUaOGJOnDDz/UmTNn7PGMjAw9/PDD2rhxo+rVq+eNFgEAAHCNIIgDqHAKCgrsM9eStH//fmVlZSkyMlK1atXS8ePHdfDgQR0+fFiSlJ2dLUlyOp1yOp3at2+f5s2bp+7du6tq1aravn27nnzySXXs2NF+TNmvw/aPP/4oSYqLi1NERISBowQAAMC1ymFZluXtJjwhPz9f4eHhysvLU1hYmLfbuSJ1Rn7s7RYqnAMTk73dQoXjzXl+9uB2HZ3/fy9aHnJTZ1VLflIFOz7VT59MvWg8/Na+iuiQqvP5P+jHZf9Q0Q/fqaTorPzCqim4QYLC2/eRT0DwZfcZ+8S78gkMdfchlQnzHAAAwLPKmkM5Iw6gwgms1Uy1Ryy75HhofKJC4xMvOe4XVl3O+ye6dZ8AAACoOLhZGwAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABh0xUF8w4YN6tGjh2JiYuRwOLR48WKXccuyNHbsWNWoUUNBQUFKTEzUnj17XGqOHz+u1NRUhYWFKSIiQgMGDFBBQYFLzfbt23XbbbcpMDBQsbGxmjRp0pUfHQAAAAAA15grDuKnTp1S8+bNNX369FLHJ02apGnTpum1117T5s2bFRISoqSkJJ09e9auSU1N1c6dO7V69WotW7ZMGzZs0KBBg+zx/Px8denSRbVr11ZmZqYmT56scePG6fXXX7+KQwQAAAAA4Nrhd6UrdOvWTd26dSt1zLIsTZ06VaNHj1bPnj0lSe+8846io6O1ePFi9enTR7t27dKKFSuUkZGh1q1bS5Jefvllde/eXVOmTFFMTIzmzp2rc+fO6e2335a/v7+aNm2qrKwsvfjiiy6B/ZcKCwtVWFhov8/Pz7/SQwMAAAAAwOPceo34/v37lZOTo8TERHtZeHi42rVrp/T0dElSenq6IiIi7BAuSYmJifLx8dHmzZvtmo4dO8rf39+uSUpKUnZ2tk6cOFHqvtPS0hQeHm6/YmNj3XloAAAAAAC4hVuDeE5OjiQpOjraZXl0dLQ9lpOTo6ioKJdxPz8/RUZGutSUto1f7uPXRo0apby8PPt16NCh339AAAAAAAC42RV/Nf1aFRAQoICAAG+3AQAAAADAZbn1jLjT6ZQkHT161GX50aNH7TGn06ljx465jJ8/f17Hjx93qSltG7/cBwAAAAAA5ZFbg3jdunXldDq1Zs0ae1l+fr42b96shIQESVJCQoJyc3OVmZlp16xdu1YlJSVq166dXbNhwwYVFRXZNatXr1ajRo1UpUoVd7YMAAAAAIBRVxzECwoKlJWVpaysLEk/36AtKytLBw8elMPh0NChQ/Xss89qyZIl2rFjh/r166eYmBilpKRIkuLi4tS1a1cNHDhQW7Zs0RdffKEhQ4aoT58+iomJkSTdf//98vf314ABA7Rz504tWLBAL730koYNG+a2AwcAAAAAwBuu+BrxrVu36o477rDfXwjH/fv31+zZszV8+HCdOnVKgwYNUm5urjp06KAVK1YoMDDQXmfu3LkaMmSIOnfuLB8fH/Xq1UvTpk2zx8PDw7Vq1SoNHjxYrVq1UrVq1TR27NhLProMAAAAAIDywmFZluXtJjwhPz9f4eHhysvLU1hYmLfbuSJ1Rn7s7RYqnAMTk73dQoXDPDePeQ4AAOBZZc2hbr1GHAAAAAAAXB5BHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGCQ24N4cXGxxowZo7p16yooKEj16tXThAkTZFmWXWNZlsaOHasaNWooKChIiYmJ2rNnj8t2jh8/rtTUVIWFhSkiIkIDBgxQQUGBu9sFAAAAAMAotwfxF154QTNmzNArr7yiXbt26YUXXtCkSZP08ssv2zWTJk3StGnT9Nprr2nz5s0KCQlRUlKSzp49a9ekpqZq586dWr16tZYtW6YNGzZo0KBB7m4XAAAAAACj/Ny9wU2bNqlnz55KTk6WJNWpU0fz58/Xli1bJP18Nnzq1KkaPXq0evbsKUl65513FB0drcWLF6tPnz7atWuXVqxYoYyMDLVu3VqS9PLLL6t79+6aMmWKYmJi3N02AAAAAABGuP2MePv27bVmzRrt3r1bkvTvf/9bn3/+ubp16yZJ2r9/v3JycpSYmGivEx4ernbt2ik9PV2SlJ6eroiICDuES1JiYqJ8fHy0efPmUvdbWFio/Px8lxcAAAAAANcat58RHzlypPLz89W4cWP5+vqquLhYzz33nFJTUyVJOTk5kqTo6GiX9aKjo+2xnJwcRUVFuTbq56fIyEi75tfS0tL0zDPPuPtwAAAAAABwK7efEX/vvfc0d+5czZs3T9u2bdOcOXM0ZcoUzZkzx927cjFq1Cjl5eXZr0OHDnl0fwAAAAAAXA23nxF/6qmnNHLkSPXp00eSFB8fr++++05paWnq37+/nE6nJOno0aOqUaOGvd7Ro0fVokULSZLT6dSxY8dctnv+/HkdP37cXv/XAgICFBAQ4O7DAQAAAADArdx+Rvz06dPy8XHdrK+vr0pKSiRJdevWldPp1Jo1a+zx/Px8bd68WQkJCZKkhIQE5ebmKjMz065Zu3atSkpK1K5dO3e3DAAAAACAMW4/I96jRw8999xzqlWrlpo2baqvvvpKL774oh5++GFJksPh0NChQ/Xss8+qQYMGqlu3rsaMGaOYmBilpKRIkuLi4tS1a1cNHDhQr732moqKijRkyBD16dOHO6YDAAAAAMo1twfxl19+WWPGjNFf//pXHTt2TDExMfrLX/6isWPH2jXDhw/XqVOnNGjQIOXm5qpDhw5asWKFAgMD7Zq5c+dqyJAh6ty5s3x8fNSrVy9NmzbN3e0CAAAAAGCUw7Isy9tNeEJ+fr7Cw8OVl5ensLAwb7dzReqM/NjbLVQ4ByYme7uFCod5bh7zHAAAwLPKmkPdfo04AAAAAAC4NII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABnkkiP/3v//VAw88oKpVqyooKEjx8fHaunWrPW5ZlsaOHasaNWooKChIiYmJ2rNnj8s2jh8/rtTUVIWFhSkiIkIDBgxQQUGBJ9oFAAAAAMAYtwfxEydO6NZbb1WlSpW0fPlyff311/rHP/6hKlWq2DWTJk3StGnT9Nprr2nz5s0KCQlRUlKSzp49a9ekpqZq586dWr16tZYtW6YNGzZo0KBB7m4XAAAAAACj/Ny9wRdeeEGxsbGaNWuWvaxu3br2vy3L0tSpUzV69Gj17NlTkvTOO+8oOjpaixcvVp8+fbRr1y6tWLFCGRkZat26tSTp5ZdfVvfu3TVlyhTFxMRctN/CwkIVFhba7/Pz8919aAAAAAAA/G5uPyO+ZMkStW7dWvfdd5+ioqLUsmVLvfHGG/b4/v37lZOTo8TERHtZeHi42rVrp/T0dElSenq6IiIi7BAuSYmJifLx8dHmzZtL3W9aWprCw8PtV2xsrLsPDQAAAACA383tQfzbb7/VjBkz1KBBA61cuVKPPvqoHn/8cc2ZM0eSlJOTI0mKjo52WS86Otoey8nJUVRUlMu4n5+fIiMj7ZpfGzVqlPLy8uzXoUOH3H1oAAAAAAD8bm7/anpJSYlat26t559/XpLUsmVL/ec//9Frr72m/v37u3t3toCAAAUEBHhs+wAAAAAAuIPbz4jXqFFDTZo0cVkWFxengwcPSpKcTqck6ejRoy41R48etcecTqeOHTvmMn7+/HkdP37crgEAAAAAoDxyexC/9dZblZ2d7bJs9+7dql27tqSfb9zmdDq1Zs0aezw/P1+bN29WQkKCJCkhIUG5ubnKzMy0a9auXauSkhK1a9fO3S0DAAAAAGCM27+a/uSTT6p9+/Z6/vnn1bt3b23ZskWvv/66Xn/9dUmSw+HQ0KFD9eyzz6pBgwaqW7euxowZo5iYGKWkpEj6+Qx6165dNXDgQL322msqKirSkCFD1KdPn1LvmA4AAAAAQHnh9iDepk0bLVq0SKNGjdL48eNVt25dTZ06VampqXbN8OHDderUKQ0aNEi5ubnq0KGDVqxYocDAQLtm7ty5GjJkiDp37iwfHx/16tVL06ZNc3e7AAAAAAAY5bAsy/J2E56Qn5+v8PBw5eXlKSwszNvtXJE6Iz/2dgsVzoGJyd5uocJhnpvHPAcAAPCssuZQt18jDgAAAAAALo0gDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAFDBTJw4UQ6HQ0OHDpUkHThwQA6Ho9TX+++/b6938OBBJScnKzg4WFFRUXrqqad0/vx5Lx0FAADll5+3GwAAAOZkZGRo5syZatasmb0sNjZWR44ccal7/fXXNXnyZHXr1k2SVFxcrOTkZDmdTm3atElHjhxRv379VKlSJT3//PNGjwEAgPKOM+IAAFQQBQUFSk1N1RtvvKEqVarYy319feV0Ol1eixYtUu/evRUaGipJWrVqlb7++mv961//UosWLdStWzdNmDBB06dP17lz57x1SAAAlEsEcQAAKojBgwcrOTlZiYmJl63LzMxUVlaWBgwYYC9LT09XfHy8oqOj7WVJSUnKz8/Xzp07PdYzAADXI76aDgBABfDuu+9q27ZtysjI+M3at956S3FxcWrfvr29LCcnxyWES7Lf5+TkuLdZAACuc5wRBwDgOnfo0CE98cQTmjt3rgIDAy9be+bMGc2bN8/lbDgAAHAvgjgAANe5zMxMHTt2TDfffLP8/Pzk5+en9evXa9q0afLz81NxcbFd+8EHH+j06dPq16+fyzacTqeOHj3qsuzCe6fT6fmDAADgOkIQBwDgOte5c2ft2LFDWVlZ9qt169ZKTU1VVlaWfH197dq33npLd999t6pXr+6yjYSEBO3YsUPHjh2zl61evVphYWFq0qSJsWMBAOB6wDXiAABc5ypXrqybbrrJZVlISIiqVq3qsnzv3r3asGGDPvnkk4u20aVLFzVp0kQPPvigJk2apJycHI0ePVqDBw9WQECAx48BAIDrCWfEAQCAJOntt99WzZo11aVLl4vGfH19tWzZMvn6+iohIUEPPPCA+vXrp/Hjx3uhUwAAyjeHZVmWt5vwhPz8fIWHhysvL09hYWHebueK1Bn5sbdbqHAOTEz2dgsVDvPcPOa5ecxz85jnAABvKmsO5Yw4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQR4P4hMnTpTD4dDQoUPtZWfPntXgwYNVtWpVhYaGqlevXjp69KjLegcPHlRycrKCg4MVFRWlp556SufPn/d0uwAAAAAAeJRHg3hGRoZmzpypZs2auSx/8skntXTpUr3//vtav369Dh8+rHvuucceLy4uVnJyss6dO6dNmzZpzpw5mj17tsaOHevJdgEAAAAA8DiPBfGCggKlpqbqjTfeUJUqVezleXl5euutt/Tiiy/qzjvvVKtWrTRr1ixt2rRJX375pSRp1apV+vrrr/Wvf/1LLVq0ULdu3TRhwgRNnz5d586dK3V/hYWFys/Pd3kBAAAAAHCt8VgQHzx4sJKTk5WYmOiyPDMzU0VFRS7LGzdurFq1aik9PV2SlJ6ervj4eEVHR9s1SUlJys/P186dO0vdX1pamsLDw+1XbGysB44KAAAAAIDfxyNB/N1339W2bduUlpZ20VhOTo78/f0VERHhsjw6Olo5OTl2zS9D+IXxC2OlGTVqlPLy8uzXoUOH3HAkAAAAAAC4l5+7N3jo0CE98cQTWr16tQIDA929+UsKCAhQQECAsf0BAAAAAHA13H5GPDMzU8eOHdPNN98sPz8/+fn5af369Zo2bZr8/PwUHR2tc+fOKTc312W9o0ePyul0SpKcTudFd1G/8P5CDQAAAAAA5ZHbg3jnzp21Y8cOZWVl2a/WrVsrNTXV/nelSpW0Zs0ae53s7GwdPHhQCQkJkqSEhATt2LFDx44ds2tWr16tsLAwNWnSxN0tAwAAAABgjNu/ml65cmXddNNNLstCQkJUtWpVe/mAAQM0bNgwRUZGKiwsTI899pgSEhJ0yy23SJK6dOmiJk2a6MEHH9SkSZOUk5Oj0aNHa/DgwXz9HAAAAABQrrk9iJfFP//5T/n4+KhXr14qLCxUUlKSXn31VXvc19dXy5Yt06OPPqqEhASFhISof//+Gj9+vDfaBQAAAADAbYwE8XXr1rm8DwwM1PTp0zV9+vRLrlO7dm198sknHu4MAAAAAACzPPYccQAAAAAAcDGCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAgtwfxtLQ0tWnTRpUrV1ZUVJRSUlKUnZ3tUnP27FkNHjxYVatWVWhoqHr16qWjR4+61Bw8eFDJyckKDg5WVFSUnnrqKZ0/f97d7QIAAAAAYJTbg/j69es1ePBgffnll1q9erWKiorUpUsXnTp1yq558skntXTpUr3//vtav369Dh8+rHvuucceLy4uVnJyss6dO6dNmzZpzpw5mj17tsaOHevudgEAAAAAMMrP3RtcsWKFy/vZs2crKipKmZmZ6tixo/Ly8vTWW29p3rx5uvPOOyVJs2bNUlxcnL788kvdcsstWrVqlb7++mt9+umnio6OVosWLTRhwgSNGDFC48aNk7+/v7vbBgAAAADACI9fI56XlydJioyMlCRlZmaqqKhIiYmJdk3jxo1Vq1YtpaenS5LS09MVHx+v6OhouyYpKUn5+fnauXNnqfspLCxUfn6+ywsAAAAAgGuNR4N4SUmJhg4dqltvvVU33XSTJCknJ0f+/v6KiIhwqY2OjlZOTo5d88sQfmH8wlhp0tLSFB4ebr9iY2PdfDQAAAAAAPx+Hg3igwcP1n/+8x+9++67ntyNJGnUqFHKy8uzX4cOHfL4PgEAAAAAuFJuv0b8giFDhmjZsmXasGGDatasaS93Op06d+6ccnNzXc6KHz16VE6n067ZsmWLy/Yu3FX9Qs2vBQQEKCAgwM1HAQAAAACAe7n9jLhlWRoyZIgWLVqktWvXqm7dui7jrVq1UqVKlbRmzRp7WXZ2tg4ePKiEhARJUkJCgnbs2KFjx47ZNatXr1ZYWJiaNGni7pYBAAAAADDG7WfEBw8erHnz5umjjz5S5cqV7Wu6w8PDFRQUpPDwcA0YMEDDhg1TZGSkwsLC9NhjjykhIUG33HKLJKlLly5q0qSJHnzwQU2aNEk5OTkaPXq0Bg8ezFlvAAAAAEC55vYgPmPGDElSp06dXJbPmjVLDz30kCTpn//8p3x8fNSrVy8VFhYqKSlJr776ql3r6+urZcuW6dFHH1VCQoJCQkLUv39/jR8/3t3tAgAAAABglNuDuGVZv1kTGBio6dOna/r06ZesqV27tj755BN3tgYAAAAAgNd5/DniAAAAAADgfxHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAgOvSuHHj5HA4XF6NGze2x//yl7+oXr16CgoKUvXq1dWzZ0998803XuwYQEVBEAcAAMB1q2nTpjpy5Ij9+vzzz+2xVq1aadasWdq1a5dWrlwpy7LUpUsXFRcXe7FjABWBn7cbAAAAADzFz89PTqez1LFBgwbZ/65Tp46effZZNW/eXAcOHFC9evVMtQigAuKMOAAAAK5be/bsUUxMjG688Ualpqbq4MGDpdadOnVKs2bNUt26dRUbG2u4SwAVDUEcAAAA16V27dpp9uzZWrFihWbMmKH9+/frtttu08mTJ+2aV199VaGhoQoNDdXy5cu1evVq+fv7e7FrABUBQRwAAADXpW7duum+++5Ts2bNlJSUpE8++US5ubl677337JrU1FR99dVXWr9+vRo2bKjevXvr7NmzXuwaQEVAEAcAAECFEBERoYYNG2rv3r32svDwcDVo0EAdO3bUBx98oG+++UaLFi3yYpfAlZkxY4aaNWumsLAwhYWFKSEhQcuXL7fHO3XqdNHTAx555BEvdgyJIA4AAIAKoqCgQPv27VONGjVKHbcsS5ZlqbCw0HBnwNWrWbOmJk6cqMzMTG3dulV33nmnevbsqZ07d9o1AwcOdHl6wKRJk7zYMSTumg4AAIDr1N///nf16NFDtWvX1uHDh/X000/L19dXffv21bfffqsFCxaoS5cuql69ur7//ntNnDhRQUFB6t69u7dbB8qsR48eLu+fe+45zZgxQ19++aWaNm0qSQoODr7k0wPgHQRxAAAAXLU6Iz/2dguX9MPHWzR15iwVn8mXb1C4Amo2UcQ9aWrzjy06f/In/bTiQ41+dpJKzhbINyRCAbFNFXHP82r7Yoa3W7+sAxOTvd0CrlHFxcV6//33derUKSUkJNjL586dq3/9619yOp3q0aOHxowZo+DgYC92CoI4AAAArkvVe4645Jhf5aqKvu8Zg90AnrNjxw4lJCTo7NmzCg0N1aJFi9SkSRNJ0v3336/atWsrJiZG27dv14gRI5Sdna2FCxd6ueuKjSAOAAAAAOVYo0aNlJWVpby8PH3wwQfq37+/1q9fryZNmmjQoEF2XXx8vGrUqKHOnTtr3759qlevnhe7rti4WRsAAAAAlGP+/v6qX7++WrVqpbS0NDVv3lwvvfRSqbXt2rWTJJenB8A8gjgAAAAAXEdKSkoueff/rKwsSbrk0wNgBl9NBwAAAIByatSoUerWrZtq1aqlkydPat68eVq3bp1Wrlypffv2ad68eerevbuqVq2q7du368knn1THjh3VrFkzb7deoRHEAQAAAOAyruWnA/z4SaYmv/q2ik8dl09AiPyr11H1+8Zr4JpzOr9oo35c9p7GPT9ZJUVn5RdWTcENElR0c59r+pik6//pAARxAAAAACinqnV/4pJjfmHV5bx/osFuUFZcIw4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABl3TQXz69OmqU6eOAgMD1a5dO23ZssXbLQEAAAAA8Ltcs0F8wYIFGjZsmJ5++mlt27ZNzZs3V1JSko4dO+bt1gAAAAAAuGp+3m7gUl588UUNHDhQf/rTnyRJr732mj7++GO9/fbbGjly5EX1hYWFKiwstN/n5eVJkvLz88007EYlhae93UKFUx7nSXnHPDePeW4e89w85rl5zHPzmOfmMc/NK6/z/ELflmVdts5h/VaFF5w7d07BwcH64IMPlJKSYi/v37+/cnNz9dFHH120zrhx4/TMM88Y7BIAAAAAgIsdOnRINWvWvOT4NXlG/Mcff1RxcbGio6NdlkdHR+ubb74pdZ1Ro0Zp2LBh9vuSkhIdP35cVatWlcPh8Gi/+Fl+fr5iY2N16NAhhYWFebsdwCOY56gImOeoCJjnqAiY5+ZZlqWTJ08qJibmsnXXZBC/GgEBAQoICHBZFhER4Z1mKriwsDD+0HHdY56jImCeoyJgnqMiYJ6bFR4e/ps11+TN2qpVqyZfX18dPXrUZfnRo0fldDq91BUAAAAAAL/fNRnE/f391apVK61Zs8ZeVlJSojVr1ighIcGLnQEAAAAA8Ptcs19NHzZsmPr376/WrVurbdu2mjp1qk6dOmXfRR3XnoCAAD399NMXXSIAXE+Y56gImOeoCJjnqAiY59eua/Ku6Re88sormjx5snJyctSiRQtNmzZN7dq183ZbAAAAAABctWs6iAMAAAAAcL25Jq8RBwAAAADgekUQBwAAAADAIII4AAAAAAAGEcQBAAAAADDomn18Ga5dRUVFupJ7/Pn4+MjPj6mG8uWJJ57QDz/8UOb6evXqacKECR7sCAAAANcL7pqOK9awYUPVrFnzN8O4w+GQZVk6deqUtmzZYqg7wD2aN2+uJUuWlKnWsiz17t2beY5yZ/78+Tp58mSZ66OiopSSkuK5hgAP6NWrl44cOVLm+iZNmujNN9/0YEeA+zHPyx9OU+KKhYSEaO3atWWub9OmjQe7ATzDx8dHtWvXLnM9n2miPHruuec0fPjwMs/f559/niCOcufbb7/VV199Veb6tm3berAbwDOY5+UPQRxXzOFweLQeuBYwz1ERVKpUSf369Stz/SuvvOLBbgDP4L/PqAiY5+UPN2sDAKCC4gMnAAC8gyAOAAAAAIBBfDUdAEpx5swZjR8/vky1XB8OAACAK0EQxxXz9/dX+/bty1xfrVo1D3YDeMbMmTN15syZMtcnJSV5sBvAM4qKirRhw4Yy1VqWxYdOKJdOnTqlhx9+uEy1zHOUV8zz8ocgjivWtm3bK3q+cv369T3YDeAZHTt29HYLgMc9+OCDWr58eZnrH3roIc81A3jI8uXLVVRUVOb6oKAgD3YDeAbzvPzhOeK4Yi1atNCSJUvK/Enafffdx/OVAeAaVFRUdEVnRXx8fOTnx2f4KF/mz5+vkydPlrk+KiqKx/Sh3GGelz8EcVyxli1bXtFzCtu0aaOMjAwPdgQAuBoNGzZUzZo1y1RrWZZOnz6tzZs3e7grwL1uuukmDR8+vMwfOk2fPp0TCCh3mOflDx9r44rxuBsAuD6EhIRo7dq1Za5v06aNB7sBPKNSpUrq169fmetfeeUVD3YDeAbzvPzh8WUAAFRQfLCKioB5joqAeV7+EMQBAAAAADCIr6bjivF8ZQAAAAC4egRxXDGerwwAAMqLoqIibdiwoUy1PF8Z5RXzvPwhiOOK8XxlALg++Pv7q3379mWur1atmge7ATzjwQcf1PLly8tc/9BDD3muGcBDmOflD48vAwCggnr88cf1ww8/lLm+fv36mjBhggc7AtyvqKjois7++fj4yM+Pc1UoX5jn5Q9BHACACqpFixZasmRJmf/n7b777uO5syh3GjZsqJo1a5ap1rIsnT59Wps3b/ZwV4B7Mc/LHz4GAQCggnI4HKpVq1aZ6/nsHuVRSEiI1q5dW+b6Nm3aeLAbwDOY5+UPjy8DAKCC4rmzqAiY56gImOflD0EcAAAAAACDCOIAAAAAABjENeIAAFRQZ86c0fjx48tUy/XhAAC4D0EcAIAKaubMmTpz5kyZ65OSkjzYDeAZ/v7+at++fZnrq1Wr5sFuAM9gnpc/BHEAACqojh07ersFwOPatm2rH374ocz19evX92A3gGcwz8sfniMOAACA61aLFi20ZMmSMl9ecd9992nLli0e7gpwL+Z5+cMZcQAAAFy3HA6HatWqVeZ6zlGhPGKelz/cNR0AAADXLZ6vjIqAeV7+EMQBAAAAADCIIA4AAAAAgEFcIw4AAIDr1pkzZzR+/Pgy1XLdLMor5nn5w13TAQAAcN3asGGDzpw5U+b68PBw3XLLLR7sCHA/5nn5QxAHAAAAAMAgrhEHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAPCiTp06aejQod5u45Lq1KmjqVOnlpvtupPD4dDixYu93YZHjBs3Ti1atHDrNg8cOCCHw6GsrCy3brc8mT17tiIiIjy6D0/87kpzPc9/ALgWEMQBwIsWLlyoCRMmlKm2vAedOXPmqEOHDpKkjIwMDRo0qMzrrlu3Tg6HQ7m5uR7qzjPeeOMN3XbbbapSpYqqVKmixMREbdmypczrP/TQQ3I4HC6vrl27Xnad2bNnX7TOhdexY8d+7yF5XFk/nDp79qweeughxcfHy8/PTykpKR7vrSI5cuSIunXrVub6K/kQIicnRw8++KCcTqdCQkJ0880368MPP3Sp2b17t3r27Klq1aopLCxMHTp00GeffXYlhwAA1zSCOAB4UWRkpCpXrmx8v0VFRcb3+dFHH+nuu++WJFWvXl3BwcHGe7AsS+fPnze2v3Xr1qlv37767LPPlJ6ertjYWHXp0kX//e9/y7yNrl276siRI/Zr/vz5l63/4x//6FJ/5MgRJSUl6fbbb1dUVNTvPaRrRnFxsYKCgvT4448rMTHR2+1cd5xOpwICAjyy7X79+ik7O1tLlizRjh07dM8996h379766quv7Jq77rpL58+f19q1a5WZmanmzZvrrrvuUk5Ojkd6AgDTCOIA4EW/PPtXp04dPf/883r44YdVuXJl1apVS6+//rpdW7duXUlSy5Yt5XA41KlTJ3vszTffVFxcnAIDA9W4cWO9+uqr9tiFM+kLFizQ7bffrsDAQM2dO1cPPfSQUlJSNGXKFNWoUUNVq1bV4MGDLxvSHQ6HZs6cqbvuukvBwcGKi4tTenq69u7dq06dOikkJETt27fXvn37XNY7e/asVq1aZQfxX3813eFw6M0339T/+T//R8HBwWrQoIGWLFli93/HHXdIkqpUqSKHw6GHHnpIklRSUqK0tDTVrVtXQUFBat68uT744AN7uxfOpC9fvlytWrVSQECAPv/8c3Xq1EmPP/64hg8frsjISDmdTo0bN+6Sx33hZ/jee+/ptttuU1BQkNq0aaPdu3crIyNDrVu3VmhoqLp166YffvjBXm/u3Ln661//qhYtWqhx48Z68803VVJSojVr1lxyX78WEBAgp9Npv6pUqXLZ+qCgIJd6X19frV27VgMGDLiodubMmYqNjVVwcLB69+6tvLy8y267pKREkyZNUv369RUQEKBatWrpueeec6n59ttvdccddyg4OFjNmzdXenq6PfbTTz+pb9++uuGGGxQcHKz4+HiXDxYeeughrV+/Xi+99JJ9Fv/AgQOl9hISEqIZM2Zo4MCBcjqdpdZc+Br322+/rVq1aik0NFR//etfVVxcrEmTJsnpdCoqKuqiY7ic3Nxc/eUvf1F0dLQCAwN10003admyZS41K1euVFxcnEJDQ+0PUn7pcn+vkvT999+rb9++ioyMVEhIiFq3bq3NmzeX2s++fft04403asiQIbIsyz4zvXjxYjVo0ECBgYFKSkrSoUOHXNabMWOG6tWrJ39/fzVq1Ej/7//9P5fxX341/cL8X7hwYam/23Xr1ulPf/qT8vLy7N/b5f6eNm3apMcee0xt27bVjTfeqNGjRysiIkKZmZmSpB9//FF79uzRyJEj1axZMzVo0EATJ07U6dOn9Z///OeS2wWAcsUCAHjN7bffbj3xxBOWZVlW7dq1rcjISGv69OnWnj17rLS0NMvHx8f65ptvLMuyrC1btliSrE8//dQ6cuSI9dNPP1mWZVn/+te/rBo1algffvih9e2331offvihFRkZac2ePduyLMvav3+/JcmqU6eOXXP48GGrf//+VlhYmPXII49Yu3btspYuXWoFBwdbr7/+ut1f7dq1rX/+85/2e0nWDTfcYC1YsMDKzs62UlJSrDp16lh33nmntWLFCuvrr7+2brnlFqtr164ux7ls2TKrYcOGl91uzZo1rXnz5ll79uyxHn/8cSs0NNT66aefrPPnz1sffvihJcnKzs62jhw5YuXm5lqWZVnPPvus1bhxY2vFihXWvn37rFmzZlkBAQHWunXrLMuyrM8++8ySZDVr1sxatWqVtXfvXuunn36ybr/9dissLMwaN26ctXv3bmvOnDmWw+GwVq1a5dLTokWLXH6GF/Z14ThbtWplderUyfr888+tbdu2WfXr17ceeeSRS/6+8/PzrcDAQGvp0qVlmR5W//79rfDwcKt69epWw4YNrUceecT68ccfy7TuBVOmTLHCw8Ot06dP28uefvppKyQkxLrzzjutr776ylq/fr1Vv3596/7777/stoYPH25VqVLFmj17trV3715r48aN1htvvGFZluvPaNmyZVZ2drZ17733WrVr17aKioosy7Ks77//3po8ebL11VdfWfv27bOmTZtm+fr6Wps3b7Ysy7Jyc3OthIQEa+DAgdaRI0esI0eOWOfPny/Tz6lnz54XLX/66aet0NBQ695777V27txpLVmyxPL397eSkpKsxx57zPrmm2+st99+25Jkffnll7+5n+LiYuuWW26xmjZtaq1atcrat2+ftXTpUuuTTz6xLMuyZs2aZVWqVMlKTEy0MjIyrMzMTCsuLs7l5/pbf68nT560brzxRuu2226zNm7caO3Zs8dasGCBtWnTJvuYmjdvblmWZf373/+2nE6n9T//8z/29i/00Lp1a2vTpk3W1q1brbZt21rt27e3axYuXGhVqlTJmj59upWdnW394x//sHx9fa21a9faNZea/6X9bgsLC62pU6daYWFh9u/t5MmTl/w5/uEPf7CSk5Otn376ySouLrbmz59vBQcHW3v27LEsy7JKSkqsRo0aWX/+85+tgoICq6ioyJo8ebIVFRVlHT9+/Dd/TwBQHhDEAcCLfh3EH3jgAXuspKTEioqKsmbMmGFZ1v/+z/BXX33lso169epZ8+bNc1k2YcIEKyEhwWW9qVOnutT079/fql27tkvQue+++6w//vGP9vvSAvPo0aPt9+np6ZYk66233rKXzZ8/3woMDHTZ18CBA62///3vZd5uQUGBJclavny5ZVn/G6hPnDhh15w9e9YKDg62A8oFAwYMsPr27euy3uLFi11qbr/9dqtDhw4uy9q0aWONGDHCpadfB5E333zT5TglWWvWrLGXpaWlWY0aNbIu5dFHH7VuvPFG68yZM5es+aX58+dbH330kbV9+3Zr0aJFVlxcnNWmTZsyhdML4uLirEcffdRl2dNPP235+vpa33//vb1s+fLllo+Pj3XkyJFSt5Ofn28FBATYwfvXSvsZ7dy505Jk7dq165L9JScnW3/729/s97/8myirywXx4OBgKz8/316WlJRk1alTxyouLraXNWrUyEpLS/vN/axcudLy8fGxsrOzSx2fNWuWJcnau3evvWz69OlWdHS0/f63/l5nzpxpVa5c2f6grbRjat68ufXFF19YVapUsaZMmVJqD7/8YGHXrl2WJPsDj/bt21sDBw50We++++6zunfvbr//rfn/69/trFmzrPDw8FJ7/rUTJ05YXbp0sSRZfn5+VlhYmLVy5UqXmkOHDlmtWrWyHA6H5evra9WoUcPatm1bmbYPAOUBX00HgGtIs2bN7H87HA45nc7L3mDr1KlT2rdvnwYMGKDQ0FD79eyzz1709fDWrVtftH7Tpk3l6+trv69Ro8Zv3tDrlz1GR0dLkuLj412WnT17Vvn5+ZJ+vi576dKl9tfSy7LdkJAQhYWFXbaXvXv36vTp0/rDH/7gcuzvvPNOmY79l/uT3Hfsl9rGxIkT9e6772rRokUKDAy87H4u6NOnj+6++27Fx8crJSVFy5YtU0ZGhtatWydJ6tatm33cTZs2vWj99PR07dq1q9SvpdeqVUs33HCD/T4hIUElJSXKzs7Wxo0bXX6mc+fO1a5du1RYWKjOnTtftudf/oxq1KghSfbPpLi4WBMmTFB8fLwiIyMVGhqqlStX6uDBg5fdZtOmTe1eruQGYtLPl0H88j4M0dHRatKkiXx8fFyWleVGdllZWapZs6YaNmx4yZrg4GDVq1fPfv/LeVWWv9esrCy1bNlSkZGRl9zHwYMH9Yc//EFjx47V3/72t4vG/fz81KZNG/t948aNFRERoV27dkmSdu3apVtvvdVlnVtvvdUev5TL/W5L8/zzz7sc54Xf85gxY5Sbm6tPP/1UW7du1bBhw9S7d2/t2LFD0s//zRg8eLCioqK0ceNGbdmyRSkpKerRo8dFX/MHgPLKz9sNAAD+V6VKlVzeOxwOlZSUXLK+oKBA0s93527Xrp3L2C8DtvRzuP29+/v1Og6H45LLLmxny5YtOn/+vNq3b1/m7ZallwvH/vHHH7sESkkX3WTK5LGXto0pU6Zo4sSJ+vTTTy/6AOBK3HjjjapWrZr27t2rzp07680339SZM2dKPR7p52uRW7RooVatWl3Rflq3bu1yd/7o6OhLXqv9a5ebC5MnT9ZLL72kqVOnKj4+XiEhIRo6dKjOnTt32W1+8skn9r0LgoKCruBISv89X83vvqz7Lm3blmVJKtvfa1n2Ub16dcXExGj+/Pl6+OGHFRYW9pvruMPlfreleeSRR9S7d2/7fUxMjPbt26dXXnlF//nPf+wPj5o3b66NGzdq+vTpeu2117R27VotW7ZMJ06csI/t1Vdf1erVqzVnzhyNHDnSE4cHAEYRxAGgnPD395f081nFC6KjoxUTE6Nvv/1Wqamp3mrtsj766CMlJydf9MHAlSjt2Js0aaKAgAAdPHhQt99+++/u01MmTZqk5557TitXriz1zPyV+P777/XTTz/ZZyN//QHELxUUFOi9995TWlpaqeMHDx7U4cOHFRMTI0n68ssv5ePjo0aNGikoKEj169d3qW/QoIGCgoK0Zs0a/fnPf76q/r/44gv17NlTDzzwgKSfQ9zu3bvVpEkTu8bf39/l9yxJtWvXvqr9uVuzZs30/fffa/fu3Zc9K34pZfl7bdasmd58800dP378kmfFg4KCtGzZMnXv3l1JSUlatWqVy1n/8+fPa+vWrWrbtq0kKTs7W7m5uYqLi5MkxcXF6YsvvlD//v3tdb744guX38OVKu33FhkZedExnD59WpJcvpEg/fxBxIVQf6kaHx+fMn1gAgDlAUEcAMqJqKgoBQUFacWKFapZs6YCAwMVHh6uZ555Ro8//rjCw8PVtWtXFRYWauvWrTpx4oSGDRvm7ba1ZMkSjR8//ndto3bt2nI4HHb4CAoKUuXKlfX3v/9dTz75pEpKStShQwfl5eXpiy++UFhYmEvI8JYXXnhBY8eO1bx581SnTh370UsXvqp7OQUFBXrmmWfUq1cvOZ1O7du3T8OHD1f9+vWVlJT0m/tesGCBzp8/b4feXwsMDFT//v01ZcoU5efn6/HHH1fv3r0veQfywMBAjRgxQsOHD5e/v79uvfVW/fDDD9q5c2epX30vTYMGDfTBBx9o06ZNqlKlil588UUdPXrUJQDWqVNHmzdv1oEDBxQaGqrIyMiLAtkFX3/9tc6dO6fjx4/r5MmT9ln8Fi1alKmfK3X77berY8eO6tWrl1588UXVr19f33zzTZme737Bb/299u3bV88//7xSUlKUlpamGjVq6KuvvlJMTIwSEhLs7YSEhOjjjz9Wt27d1K1bN61YscKeU5UqVdJjjz2madOmyc/PT0OGDNEtt9xiB/OnnnpKvXv3VsuWLZWYmKilS5dq4cKF+vTTT6/6Z1OnTh0VFBRozZo1at68uYKDg0t9RGHjxo1Vv359/eUvf9GUKVNUtWpVLV68WKtXr7bvPp+QkKAqVaqof//+Gjt2rIKCgvTGG29o//79Sk5OvuoeAeBawjXiAFBO+Pn5adq0aZo5c6ZiYmLUs2dPSdKf//xnvfnmm5o1a5bi4+N1++23a/bs2fbjzrxp37592rt3b5mC4+XccMMNeuaZZzRy5EhFR0dryJAhkqQJEyZozJgxSktLU1xcnLp27aqPP/74mjh26edHRJ07d0733nuvatSoYb+mTJnym+v6+vpq+/btuvvuu9WwYUMNGDBArVq10saNG8v0fOe33npL99xzjyIiIkodr1+/vu655x51795dXbp0UbNmzS56jNavjRkzRn/72980duxYxcXF6Y9//GOZrq2+YPTo0br55puVlJSkTp06yel0KiUlxaXm73//u3x9fdWkSRNVr179stePd+/eXS1bttTSpUu1bt06tWzZUi1btixzP1fjww8/VJs2bdS3b181adJEw4cPv+hM8OX81t+rv7+/Vq1apaioKHXv3l3x8fGaOHFiqd8oCQ0N1fLly2VZlpKTk3Xq1ClJP1+nPmLECN1///269dZbFRoaqgULFtjrpaSk6KWXXtKUKVPUtGlTzZw5U7NmzXJ5JOKVat++vR555BH98Y9/VPXq1TVp0qRS6ypVqqRPPvlE1atXV48ePdSsWTO98847mjNnjrp37y5JqlatmlasWKGCggLdeeedat26tT7//HN99NFHat68+VX3CADXEod14cIlAADc7MUXX9Snn36qTz75xNutABXC7NmzNXToUOXm5nq7FQDAZXBGHADgMTVr1tSoUaO83QYAAMA1hSAOAPCY3r1767bbbvN2G9ekXz8i7NcvmDd37txL/j5KezwcAABXi6+mAwDgBWfOnNF///vfS47/+q7l8LyTJ0/q6NGjpY5VqlTpmrl7OwCg/COIAwAAAABgEF9NBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACD/j8x+o9mFVKQBwAAAABJRU5ErkJggg==","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 19981 (\\N{CJK UNIFIED IDEOGRAPH-4E0D}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 26159 (\\N{CJK UNIFIED IDEOGRAPH-662F}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 37325 (\\N{CJK UNIFIED IDEOGRAPH-91CD}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 35201 (\\N{CJK UNIFIED IDEOGRAPH-8981}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 38382 (\\N{CJK UNIFIED IDEOGRAPH-95EE}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 27861 (\\N{CJK UNIFIED IDEOGRAPH-6CD5}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 38169 (\\N{CJK UNIFIED IDEOGRAPH-9519}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 35823 (\\N{CJK UNIFIED IDEOGRAPH-8BEF}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 22238 (\\N{CJK UNIFIED IDEOGRAPH-56DE}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 31572 (\\N{CJK UNIFIED IDEOGRAPH-7B54}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 27491 (\\N{CJK UNIFIED IDEOGRAPH-6B63}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 30830 (\\N{CJK UNIFIED IDEOGRAPH-786E}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n"]},{"name":"stdout","output_type":"stream","text":["********** internlm/internlm2_5-7b-chat-1m_checkpoint-132 **********\n","internlm/internlm2_5-7b-chat-1m_checkpoint-132\n","不是 1314\n","是 1211\n","不重要 398\n","问法错误 40\n","回答正确 37\n","Name: count, dtype: int64\n"]},{"name":"stderr","output_type":"stream","text":["findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAA+IAAAIgCAYAAAABTdNAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABH+UlEQVR4nO3de1hVZd7/8c9G5CDISQVkxEOZxzylpqilJSMeJuXJNMtJKh99crQyZ9J8njTTPKSOmUVqZVrXaDlNaWpqmsfygIgxOeaQmg02ClYKKCog3L8/+rnHnahQe9+AvF/Xta+rtdZ3rfVde9/M+Nlr7bUcxhgjAAAAAABghVdZNwAAAAAAQGVCEAcAAAAAwCKCOAAAAAAAFhHEAQAAAACwiCAOAAAAAIBFBHEAAAAAACwiiAMAAAAAYJF3WTfgKUVFRTp+/LiqV68uh8NR1u0AAAAAAG5wxhidOXNGUVFR8vK6+nnvGzaIHz9+XNHR0WXdBgAAAACgkjl27Jjq1Klz1eU3bBCvXr26pJ/egKCgoDLuBgAAAABwo8vJyVF0dLQzj17NDRvEL12OHhQURBAHAAAAAFhzvZ9Hc7M2AAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcLrZv36577rlHUVFRcjgcWrlypcvySZMmqUmTJgoICFBoaKhiY2OVlJTkUjN16lR16tRJ1apVU0hIyDX39+OPP6pOnTpyOBzKyspy78EAAAAAQDlEEIeL3NxctWrVSomJicUub9SokV599VXt379fn3/+uerXr68ePXro+++/d9bk5+drwIABGjFixHX3N3ToULVs2dJt/QMAAABAeecwxpiybsITcnJyFBwcrOzsbAUFBZV1OxWSw+HQihUrFB8ff9WaS+/zp59+qu7du7ssW7JkiUaPHn3VM93z58/X8uXLNXHiRHXv3l2nT5++7hl0AAAAACivSppDvS32hBtMfn6+Xn/9dQUHB6tVq1alWverr77S5MmTlZSUpG+++cZDHQIAAABA+cOl6Si1NWvWKDAwUH5+fnrppZe0ceNG1axZs8Tr5+Xl6YEHHtCsWbNUt25dD3YKAAAAAOUPQRyldtdddyk1NVU7d+5Uz549NXDgQJ08ebLE648fP15NmzbV73//ew92CQAAAADlE0EcpRYQEKCGDRuqY8eOWrRokby9vbVo0aISr79582a9//778vb2lre3t/O35TVr1tRzzz3nqbYBAAAAoFzgN+L41YqKipSXl1fi+g8++EDnz593TicnJ+vRRx/VZ599pptvvtkTLQIAAABAuUEQh4uzZ8/q8OHDzumjR48qNTVVYWFhqlGjhqZOnaq+ffuqdu3a+uGHH5SYmKh///vfGjBggHOd9PR0nTp1Sunp6SosLFRqaqokqWHDhgoMDLwibP/www+SpKZNm3LXdAAAAAA3PB5fVg7Vf+bjMtv3hfQvlfnu/14xP+DW7qoRN1Lfr56l/ONpKjyfoyr+QfKJvEXBne6Xb+1GztofPn5Juf/YdMU2Ih6YJr+6Vz4z/NI+o598T15+ge49oBL6dkafMtkvAAAAgBtHSXMoQbwcKssgXlkRxAEAAAD8WiXNodysDQAAAAAAiwjiAAAAAABYRBAHAAAAAMAigjgAAAAAABYRxAEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcAAAAAACLCOIAAAAAAFhEEAcAAAAAwCKCOAAAAAAAFhHEAQAAAACwiCAOAAAAAIBFBHEAAAAAACwiiAOodLZv36577rlHUVFRcjgcWrlypXNZQUGBxo0bpxYtWiggIEBRUVEaMmSIjh8/7rKNqVOnqlOnTqpWrZpCQkKK3c8TTzyhtm3bytfXV61bt/bcAQEAAKBCIYgDqHRyc3PVqlUrJSYmXrHs3Llz2rdvnyZMmKB9+/bpww8/VFpamvr27etSl5+frwEDBmjEiBHX3Nejjz6q+++/3639AwAAoGLzLusGAMC2Xr16qVevXsUuCw4O1saNG13mvfrqq7r99tuVnp6uunXrSpKef/55SdKSJUuuup958+ZJkr7//nt9+eWXbugcAAAANwLOiAPAdWRnZ8vhcFz1EnQAAACgNAjiAHANFy5c0Lhx4/TAAw8oKCiorNsBAADADYAgDgBXUVBQoIEDB8oYo/nz55d1OwAAALhB8BtxACjGpRD+r3/9S5s3b+ZsOAAAANyGIA4AP3MphB86dEhbtmxRjRo1yrolAAAA3EAI4gAqnbNnz+rw4cPO6aNHjyo1NVVhYWGqXbu27rvvPu3bt09r1qxRYWGhMjIyJElhYWHy8fGRJKWnp+vUqVNKT09XYWGhUlNTJUkNGzZUYGCgJOnw4cM6e/asMjIydP78eWdNs2bNnNsBAABA5eMwxpiybsITcnJyFBwcrOzs7Ap3SWn9Zz4u6xYqnW9n9CnrFmDR1q1bddddd10xPyEhQZMmTVKDBg2KXW/Lli3q1q2bJOnhhx/W22+/fc2abt26adu2bVfUHD16VPXr1//F/QMAAKB8KmkOLXUQ3759u2bNmqWUlBSdOHFCK1asUHx8vKSfLud89tlntXbtWn3zzTcKDg5WbGysZsyYoaioKOc2Tp06pccff1yrV6+Wl5eX+vfvr5dfftl5FkmSvvzyS40cOVLJycmqVauWHn/8cY0dO9btb0B5RBC3jyBuH+PcPsY5AACAZ5U0h5b6rum5ublq1aqVEhMTr1h27tw57du3TxMmTNC+ffv04YcfKi0tTX379nWpGzx4sA4cOKCNGzdqzZo12r59u4YPH+7SfI8ePVSvXj2lpKRo1qxZmjRpkl5//fXStgsAAAAAQLlS6t+I9+rVS7169Sp2WXBwsDZu3Ogy79VXX9Xtt9+u9PR01a1bVwcPHtT69euVnJysdu3aSZJeeeUV9e7dW7Nnz1ZUVJSWLl2q/Px8vfXWW/Lx8VHz5s2VmpqqOXPmuAT2y+Xl5SkvL885nZOTU9pDAwAAAADA4zz+HPHs7Gw5HA6FhIRIknbt2qWQkBBnCJek2NhYeXl5KSkpyVlz5513utzMKC4uTmlpaTp9+nSx+5k+fbqCg4Odr+joaM8dFAAAAAAAv5BHg/iFCxc0btw4PfDAA87r4zMyMhQeHu5S5+3trbCwMOediTMyMhQREeFSc2n6Us3PjR8/XtnZ2c7XsWPH3H04AAAAAAD8ah57fNml5/AaYzR//nxP7cbJ19dXvr6+Ht8PAAAAAAC/hkeC+KUQ/q9//UubN292uVtcZGSkTp486VJ/8eJFnTp1SpGRkc6azMxMl5pL05dqAAAAAACoiNx+afqlEH7o0CF9+umnqlGjhsvymJgYZWVlKSUlxTlv8+bNKioqUocOHZw127dvV0FBgbNm48aNaty4sUJDQ93dMgAAAAAA1pQ6iJ89e1apqalKTU2VJB09elSpqalKT09XQUGB7rvvPu3du1dLly5VYWGhMjIylJGRofz8fElS06ZN1bNnTw0bNkx79uzRjh07NGrUKA0aNMj5rPEHH3xQPj4+Gjp0qA4cOKDly5fr5Zdf1pgxY9x35AAAAAAAlIFSX5q+d+9e3XXXXc7pS+E4ISFBkyZN0qpVqyRJrVu3dllvy5Yt6tatmyRp6dKlGjVqlLp37y4vLy/1799f8+bNc9YGBwdrw4YNGjlypNq2bauaNWtq4sSJV310GQAAAAAAFUWpg3i3bt1kjLnq8mstuyQsLEzLli27Zk3Lli312WeflbY9AAAAAADKNY8/RxwAAAAAAPwHQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcAAAAAACLCOIAAAAAAFhEEAcAAAAAwCKCOAAAAAAAFhHEAQAAAACwiCAOAAAAAIBFBHEAAAAAACwiiAMAAAAAYBFBHAAAAAAAiwjiAAAAAABYRBAHAAAAAMAigjgAAAAAABYRxAEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcAAAAAACLCOIAAAAAAFhEEAcAAAAAwCKCOAAAAAAAFhHEAQAAAACwiCAOAAAAAIBFBHEAAAAAACwiiAMAAAAAYBFBHAAAAAAAiwjiAAAAAABYRBAHAAAAAMAigjgAAAAAABYRxAEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCp1EN++fbvuueceRUVFyeFwaOXKlS7LjTGaOHGiateuLX9/f8XGxurQoUMuNadOndLgwYMVFBSkkJAQDR06VGfPnnWp+fLLL3XHHXfIz89P0dHRmjlzZumPDgAAAACAcqbUQTw3N1etWrVSYmJisctnzpypefPmacGCBUpKSlJAQIDi4uJ04cIFZ83gwYN14MABbdy4UWvWrNH27ds1fPhw5/KcnBz16NFD9erVU0pKimbNmqVJkybp9ddf/wWHCAAAAABA+eFd2hV69eqlXr16FbvMGKO5c+fq2WefVb9+/SRJ77zzjiIiIrRy5UoNGjRIBw8e1Pr165WcnKx27dpJkl555RX17t1bs2fPVlRUlJYuXar8/Hy99dZb8vHxUfPmzZWamqo5c+a4BPbL5eXlKS8vzzmdk5NT2kMDAAAAAMDj3Pob8aNHjyojI0OxsbHOecHBwerQoYN27dolSdq1a5dCQkKcIVySYmNj5eXlpaSkJGfNnXfeKR8fH2dNXFyc0tLSdPr06WL3PX36dAUHBztf0dHR7jw0AAAAAADcwq1BPCMjQ5IUERHhMj8iIsK5LCMjQ+Hh4S7Lvb29FRYW5lJT3DYu38fPjR8/XtnZ2c7XsWPHfv0BAQAAAADgZqW+NL288vX1la+vb1m3AQAAAADANbn1jHhkZKQkKTMz02V+Zmamc1lkZKROnjzpsvzixYs6deqUS01x27h8HwAAAAAAVERuDeINGjRQZGSkNm3a5JyXk5OjpKQkxcTESJJiYmKUlZWllJQUZ83mzZtVVFSkDh06OGu2b9+ugoICZ83GjRvVuHFjhYaGurNlAAAAAACsKnUQP3v2rFJTU5Wamirppxu0paamKj09XQ6HQ6NHj9YLL7ygVatWaf/+/RoyZIiioqIUHx8vSWratKl69uypYcOGac+ePdqxY4dGjRqlQYMGKSoqSpL04IMPysfHR0OHDtWBAwe0fPlyvfzyyxozZozbDhwAAAAAgLJQ6t+I7927V3fddZdz+lI4TkhI0JIlSzR27Fjl5uZq+PDhysrKUpcuXbR+/Xr5+fk511m6dKlGjRql7t27y8vLS/3799e8efOcy4ODg7VhwwaNHDlSbdu2Vc2aNTVx4sSrProMAAAAAICKwmGMMWXdhCfk5OQoODhY2dnZCgoKKut2SqX+Mx+XdQuVzrcz+pR1C5UO49w+xjkAAIBnlTSHuvU34gAAAAAA4NoI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcAAAAAACLCOIAAAAAAFhEEAcAAAAAwCKCOAAAAAAAFhHEAQAAAACwiCAOAAAAAIBFBHEAAAAAACwiiAMAAAAAYBFBHAAAAAAAiwjiAAAAAABYRBAHAAAAAMAigjgAAAAAABYRxAEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcAAAAAACLCOIAAAAAAFhEEAcAAAAAwCKCOAAAAAAAFhHEAQAAAACwiCAOAAAAAIBFBHEAAAAAACwiiAMAAAAAYBFBHAAAAAAAiwjiAAAAAABYRBAHAAAAAMAigjgAAAAAABYRxAEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgkduDeGFhoSZMmKAGDRrI399fN998s6ZMmSJjjLPGGKOJEyeqdu3a8vf3V2xsrA4dOuSynVOnTmnw4MEKCgpSSEiIhg4dqrNnz7q7XQAAAAAArHJ7EH/xxRc1f/58vfrqqzp48KBefPFFzZw5U6+88oqzZubMmZo3b54WLFigpKQkBQQEKC4uThcuXHDWDB48WAcOHNDGjRu1Zs0abd++XcOHD3d3uwAAAAAAWOXt7g3u3LlT/fr1U58+fSRJ9evX17vvvqs9e/ZI+uls+Ny5c/Xss8+qX79+kqR33nlHERERWrlypQYNGqSDBw9q/fr1Sk5OVrt27SRJr7zyinr37q3Zs2crKirqiv3m5eUpLy/POZ2Tk+PuQwMAAAAA4Fdz+xnxTp06adOmTfr6668lSX//+9/1+eefq1evXpKko0ePKiMjQ7Gxsc51goOD1aFDB+3atUuStGvXLoWEhDhDuCTFxsbKy8tLSUlJxe53+vTpCg4Odr6io6PdfWgAAAAAAPxqbj8j/swzzygnJ0dNmjRRlSpVVFhYqKlTp2rw4MGSpIyMDElSRESEy3oRERHOZRkZGQoPD3dt1NtbYWFhzpqfGz9+vMaMGeOczsnJIYwDAAAAAModtwfxv/71r1q6dKmWLVum5s2bKzU1VaNHj1ZUVJQSEhLcvTsnX19f+fr6emz7AAAAAAC4g9uD+NNPP61nnnlGgwYNkiS1aNFC//rXvzR9+nQlJCQoMjJSkpSZmanatWs718vMzFTr1q0lSZGRkTp58qTLdi9evKhTp0451wcAAAAAoCJy+2/Ez507Jy8v181WqVJFRUVFkqQGDRooMjJSmzZtci7PyclRUlKSYmJiJEkxMTHKyspSSkqKs2bz5s0qKipShw4d3N0yAAAAAADWuP2M+D333KOpU6eqbt26at68ub744gvNmTNHjz76qCTJ4XBo9OjReuGFF3TLLbeoQYMGmjBhgqKiohQfHy9Jatq0qXr27Klhw4ZpwYIFKigo0KhRozRo0KBi75gOAAAAAEBF4fYg/sorr2jChAn6wx/+oJMnTyoqKkr/8z//o4kTJzprxo4dq9zcXA0fPlxZWVnq0qWL1q9fLz8/P2fN0qVLNWrUKHXv3l1eXl7q37+/5s2b5+52AQAAAACwymGMMWXdhCfk5OQoODhY2dnZCgoKKut2SqX+Mx+XdQuVzrcz+pR1C5UO49w+xjkAAIBnlTSHuv034gAAAAAA4OoI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcAAAAAACLCOIAAAAAAFhEEAcAAAAAwCKCOAAAAAAAFhHEAQAAAACwiCAOAAAAAIBFBHEAAAAAACwiiAMAAAAAYBFBHAAAAAAAiwjiAAAAAABYRBAHAAAAAMAigjgAAAAAABYRxAEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcAAAAAACLCOIAAAAAAFhEEAcAAAAAwCKCOAAAAAAAFhHEAQAAAACwiCAOAAAAAIBFBHEAAAAAACwiiAMAAAAAYBFBHAAAAAAAiwjiAAAAAABYRBAHAAAAAMAigjgAAAAAABYRxAEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgkUeC+L///W/9/ve/V40aNeTv768WLVpo7969zuXGGE2cOFG1a9eWv7+/YmNjdejQIZdtnDp1SoMHD1ZQUJBCQkI0dOhQnT171hPtAgAAAABgjduD+OnTp9W5c2dVrVpV69at01dffaU///nPCg0NddbMnDlT8+bN04IFC5SUlKSAgADFxcXpwoULzprBgwfrwIED2rhxo9asWaPt27dr+PDh7m4XAAAAAACrvN29wRdffFHR0dFavHixc16DBg2c/22M0dy5c/Xss8+qX79+kqR33nlHERERWrlypQYNGqSDBw9q/fr1Sk5OVrt27SRJr7zyinr37q3Zs2crKirqiv3m5eUpLy/POZ2Tk+PuQwMAAAAA4Fdz+xnxVatWqV27dhowYIDCw8PVpk0bvfHGG87lR48eVUZGhmJjY53zgoOD1aFDB+3atUuStGvXLoWEhDhDuCTFxsbKy8tLSUlJxe53+vTpCg4Odr6io6PdfWgAAAAAAPxqbg/i33zzjebPn69bbrlFn3zyiUaMGKEnnnhCb7/9tiQpIyNDkhQREeGyXkREhHNZRkaGwsPDXZZ7e3srLCzMWfNz48ePV3Z2tvN17Ngxdx8aAAAAAAC/mtsvTS8qKlK7du00bdo0SVKbNm30j3/8QwsWLFBCQoK7d+fk6+srX19fj20fAAAAAAB3cPsZ8dq1a6tZs2Yu85o2bar09HRJUmRkpCQpMzPTpSYzM9O5LDIyUidPnnRZfvHiRZ06dcpZAwAAAABAReT2IN65c2elpaW5zPv6669Vr149ST/duC0yMlKbNm1yLs/JyVFSUpJiYmIkSTExMcrKylJKSoqzZvPmzSoqKlKHDh3c3TIAAAAAANa4/dL0p556Sp06ddK0adM0cOBA7dmzR6+//rpef/11SZLD4dDo0aP1wgsv6JZbblGDBg00YcIERUVFKT4+XtJPZ9B79uypYcOGacGCBSooKNCoUaM0aNCgYu+YDgAAAABAReH2IN6+fXutWLFC48eP1+TJk9WgQQPNnTtXgwcPdtaMHTtWubm5Gj58uLKystSlSxetX79efn5+zpqlS5dq1KhR6t69u7y8vNS/f3/NmzfP3e0CAAAAAGCVwxhjyroJT8jJyVFwcLCys7MVFBRU1u2USv1nPi7rFiqdb2f0KesWKh3GuX2McwAAAM8qaQ51+2/EAQAAAADA1RHEAQAAAACwiCAOAAAAAIBFBHEAAAAAACwiiAMAAAAAYBFBHAAAAAAAiwjiAAAAAABYRBAHAAAAAMAigjgAAAAAABYRxAEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcAAAAAACLCOIAAAAAAFhEEAcAAAAAwCKCOAAAAAAAFhHEAQAAAACwiCAOAAAAAIBFBHEAAAAAACwiiAMAAAAAYBFBHAAAAAAAiwjiAAAAAABYRBAHAAAAAMAigjgAAAAAABYRxAEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcAAAAAACLCOIAAAAAAFhEEAcAAAAAwCKCOAAAAAAAFhHEAQAAAACwiCAOAAAAAIBFBHEAACqB+fPnq2XLlgoKClJQUJBiYmK0bt065/IjR47ov/7rv1SrVi0FBQVp4MCByszMdNnG119/rX79+qlmzZoKCgpSly5dtGXLFtuHAgBAhUcQBwCgEqhTp45mzJihlJQU7d27V3fffbf69eunAwcOKDc3Vz169JDD4dDmzZu1Y8cO5efn65577lFRUZFzG7/73e908eJFbd68WSkpKWrVqpV+97vfKSMjowyPDACAisdhjDFl3YQn5OTkKDg4WNnZ2QoKCirrdkql/jMfl3ULlc63M/qUdQuVDuPcPsY5fi4sLEyzZs1SdHS0evXqpdOnTzv/PzM7O1uhoaHasGGDYmNj9cMPP6hWrVravn277rjjDknSmTNnFBQUpI0bNyo2NrYsDwUAgHKhpDmUM+IAAFQyhYWFeu+995Sbm6uYmBjl5eXJ4XDI19fXWePn5ycvLy99/vnnkqQaNWqocePGeuedd5Sbm6uLFy9q4cKFCg8PV9u2bcvqUAAAqJC8y7oBAABgx/79+xUTE6MLFy4oMDBQK1asULNmzVSrVi0FBARo3LhxmjZtmowxeuaZZ1RYWKgTJ05IkhwOhz799FPFx8erevXq8vLyUnh4uNavX6/Q0NAyPjIAACoWj58RnzFjhhwOh0aPHu2cd+HCBY0cOVI1atRQYGCg+vfvf8UNYdLT09WnTx9Vq1ZN4eHhevrpp3Xx4kVPtwsAwA2rcePGSk1NVVJSkkaMGKGEhAR99dVXqlWrlt5//32tXr1agYGBCg4OVlZWlm677TZ5ef30TwVjjEaOHKnw8HB99tln2rNnj+Lj43XPPfc4wzoAACgZj54RT05O1sKFC9WyZUuX+U899ZQ+/vhjvf/++woODtaoUaN07733aseOHZJ+umSuT58+ioyM1M6dO3XixAkNGTJEVatW1bRp0zzZMgAANywfHx81bNhQktS2bVslJyfr5Zdf1sKFC9WjRw8dOXJEP/zwg7y9vRUSEqLIyEjddNNNkqTNmzdrzZo1Lr8jf+2117Rx40a9/fbbeuaZZ8rsuAAAqGg8dkb87NmzGjx4sN544w2XS9ays7O1aNEizZkzR3fffbfatm2rxYsXa+fOndq9e7ckacOGDfrqq6/0l7/8Ra1bt1avXr00ZcoUJSYmKj8/v9j95eXlKScnx+UFAACurqioSHl5eS7zatasqZCQEG3evFknT55U3759JUnnzp2TJOcZ8ku8vLxc7qwOAACuz2NBfOTIkerTp88Vd1FNSUlRQUGBy/wmTZqobt262rVrlyRp165datGihSIiIpw1cXFxysnJ0YEDB4rd3/Tp0xUcHOx8RUdHe+CoAAComMaPH6/t27fr22+/1f79+zV+/Hht3bpVgwcPliQtXrxYu3fv1pEjR/SXv/xFAwYM0FNPPaXGjRtLkmJiYhQaGqqEhAT9/e9/19dff62nn35aR48eVZ8+3JEfAIDS8Mil6e+995727dun5OTkK5ZlZGTIx8dHISEhLvMjIiKczyHNyMhwCeGXll9aVpzx48drzJgxzumcnBzCOACgTJWnx/T9sDZFs157S4W5p+TlGyCfWvVVa8BkDduUL236WKe3rtXZf4xR0fmz8g4OV/XW/6W/ed+lDy47hqp9ntXa7e9oZcc7ZIouqmrNugrt93/q9+530rvfleHR/QeP6QMAVARuD+LHjh3Tk08+qY0bN8rPz8/dm78qX19fl8euAACA/6jZ+8lrLg/t9rBCuz18zRrf2rco4v4pbuwKAIDKye2XpqekpOjkyZO67bbb5O3tLW9vb23btk3z5s2Tt7e3IiIilJ+fr6ysLJf1MjMzFRkZKUmKjIy84i7ql6Yv1QAAAAAAUBG5PYh3795d+/fvV2pqqvPVrl07DR482PnfVatW1aZNm5zrpKWlKT09XTExMZJ++h3a/v37dfLkSWfNxo0bFRQUpGbNmrm7ZQAAAAAArHH7penVq1fXrbfe6jIvICBANWrUcM4fOnSoxowZo7CwMAUFBenxxx9XTEyMOnbsKEnq0aOHmjVrpoceekgzZ85URkaGnn32WY0cOZLLzwEAAAAAFZpHnyN+NS+99JK8vLzUv39/5eXlKS4uTq+99ppzeZUqVbRmzRqNGDFCMTExCggIUEJCgiZPnlwW7QIAAAAA4DZWgvjWrVtdpv38/JSYmKjExMSrrlOvXj2tXbvWw50BAAAAAGCXx54jDgAAAAAArkQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcAAAAAACLCOIAAAAAAFhEEAcAAAAAwCKCOAAAAAAAFhHEAQAAAACwiCAOAAAAAIBFBHEAAAAAACwiiAMAAAAAYBFBHAAAAAAAiwjiAAAAAABYRBAHAAAAAMAigjgAAAAAABYRxAEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcAAAAAACLCOIAAAAAAFhEEAcAAAAAwCKCOAAAAAAAFhHEAQAAAACwiCAOAAAAAIBFBHEAAAAAACwiiAMAAAAAYBFBHAAAAAAAiwjiAAAAAABYRBAHAAAAAMAigjgAAAAAABYRxAEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcAAAAAACL3B7Ep0+frvbt26t69eoKDw9XfHy80tLSXGouXLigkSNHqkaNGgoMDFT//v2VmZnpUpOenq4+ffqoWrVqCg8P19NPP62LFy+6u10AAAAAAKxyexDftm2bRo4cqd27d2vjxo0qKChQjx49lJub66x56qmntHr1ar3//vvatm2bjh8/rnvvvde5vLCwUH369FF+fr527typt99+W0uWLNHEiRPd3S4AAAAAAFZ5u3uD69evd5lesmSJwsPDlZKSojvvvFPZ2dlatGiRli1bprvvvluStHjxYjVt2lS7d+9Wx44dtWHDBn311Vf69NNPFRERodatW2vKlCkaN26cJk2aJB8fnyv2m5eXp7y8POd0Tk6Ouw8NAAAAAIBfzeO/Ec/OzpYkhYWFSZJSUlJUUFCg2NhYZ02TJk1Ut25d7dq1S5K0a9cutWjRQhEREc6auLg45eTk6MCBA8XuZ/r06QoODna+oqOjPXVIAAAAAAD8Yh4N4kVFRRo9erQ6d+6sW2+9VZKUkZEhHx8fhYSEuNRGREQoIyPDWXN5CL+0/NKy4owfP17Z2dnO17Fjx9x8NAAAAAAA/HpuvzT9ciNHjtQ//vEPff75557cjSTJ19dXvr6+Ht8PAAAAAAC/hsfOiI8aNUpr1qzRli1bVKdOHef8yMhI5efnKysry6U+MzNTkZGRzpqf30X90vSlGgAAAAAAKiK3B3FjjEaNGqUVK1Zo8+bNatCggcvytm3bqmrVqtq0aZNzXlpamtLT0xUTEyNJiomJ0f79+3Xy5ElnzcaNGxUUFKRmzZq5u2UAAAAAAKxx+6XpI0eO1LJly/TRRx+pevXqzt90BwcHy9/fX8HBwRo6dKjGjBmjsLAwBQUF6fHHH1dMTIw6duwoSerRo4eaNWumhx56SDNnzlRGRoaeffZZjRw5ksvPAQAAAAAVmtuD+Pz58yVJ3bp1c5m/ePFiPfzww5Kkl156SV5eXurfv7/y8vIUFxen1157zVlbpUoVrVmzRiNGjFBMTIwCAgKUkJCgyZMnu7tdAAAAAACscnsQN8Zct8bPz0+JiYlKTEy8ak29evW0du1ad7YGAAAAAECZ8/hzxAEAAAAAwH8QxAEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcAAAAAACLCOIAAAAAAFhEEAcAAAAAwCKCOAAAAAAAFhHEAQAAAACwiCAOAAAAAIBFBHEAAAAAACwiiAMAAAAAYBFBHAAAAAAAiwjiAAAAAABYRBAHAAAAAMAigjgAAAAAABYRxAEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCIIA4AAAAAgEUEcQAAAAAALCKIAwAAAABgEUEcAAAAlcKMGTPkcDg0evRo57wLFy5o5MiRqlGjhgIDA9W/f39lZmaWXZMAKgWCOAAAAG54ycnJWrhwoVq2bOky/6mnntLq1av1/vvva9u2bTp+/LjuvffeMuoSKL358+erZcuWCgoKUlBQkGJiYrRu3TpJ0rfffiuHw1Hs6/333y/jzis3gjgAAABuaGfPntXgwYP1xhtvKDQ01Dk/OztbixYt0pw5c3T33Xerbdu2Wrx4sXbu3Kndu3eXYcdAydWpU0czZsxQSkqK9u7dq7vvvlv9+vXTgQMHFB0drRMnTri8nn/+eQUGBqpXr15l3XqlRhAHAADADW3kyJHq06ePYmNjXeanpKSooKDAZX6TJk1Ut25d7dq1y3abwC9yzz33qHfv3rrlllvUqFEjTZ06VYGBgdq9e7eqVKmiyMhIl9eKFSs0cOBABQYGlnXrlZp3WTcAAAAAeMp7772nffv2KTk5+YplGRkZ8vHxUUhIiMv8iIgIZWRkWOoQcJ/CwkK9//77ys3NVUxMzBXLU1JSlJqaqsTExDLoDpcjiAMAAOCGdOzYMT355JPauHGj/Pz8yrodwGP279+vmJgYXbhwQYGBgVqxYoWaNWt2Rd2iRYvUtGlTderUqQy6xOW4NB0AAAA3pJSUFJ08eVK33XabvL295e3trW3btmnevHny9vZWRESE8vPzlZWV5bJeZmamIiMjy6Zp4Bdo3LixUlNTlZSUpBEjRighIUFfffWVS8358+e1bNkyDR06tIy6xOU4Iw4AAIAbUvfu3bV//36XeY888oiaNGmicePGKTo6WlWrVtWmTZvUv39/SVJaWprS09OLvawXKK98fHzUsGFDSVLbtm2VnJysl19+WQsXLnTW/O1vf9O5c+c0ZMiQsmoTlyGIAwAA4IZUvXp13XrrrS7zAgICVKNGDef8oUOHasyYMQoLC1NQUJAef/xxxcTEqGPHjmXRMuAWRUVFysvLc5m3aNEi9e3bV7Vq1SqjrnA5gjgAAAB+sfrPfFzWLZRKxjc/at/Zo1r5//s2AT10qsYxxfbuK1NYIL8Gt6nGb/9Qro/r2xl9yroFlCPjx49Xr169VLduXZ05c0bLli3T1q1b9cknnzhrDh8+rO3bt2vt2rVl2CkuRxAHAABApRH54AyXaYe3j2r0GKEaPUaUUUeoCMrzFzM/rE3RrNfeUmHuKXn5BsinVn3VGjBZwzblS5t+6vv0trflFVhT/7OlQI6t5fdYLnejf+FEEAcAAACACqpm7yevWxPaNUGhXRMsdIOS4q7pAAAAAABYRBAHAAAAAMAigjgAAAAAABYRxAEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGBRuQ7iiYmJql+/vvz8/NShQwft2bOnrFsCAAAAAOBXKbdBfPny5RozZoyee+457du3T61atVJcXJxOnjxZ1q0BAAAAAPCLeZd1A1czZ84cDRs2TI888ogkacGCBfr444/11ltv6ZlnnrmiPi8vT3l5ec7p7OxsSVJOTo6dht2oKO9cWbdQ6VTEcVLRMc7tY5zbxzi3j3FuH+PcPsa5fYxz+yrqOL/UtzHmmnUOc72KMpCfn69q1arpb3/7m+Lj453zExISlJWVpY8++uiKdSZNmqTnn3/eYpcAAAAAAFzp2LFjqlOnzlWXl8sz4j/88IMKCwsVERHhMj8iIkL//Oc/i11n/PjxGjNmjHO6qKhIp06dUo0aNeRwODzaL36Sk5Oj6OhoHTt2TEFBQWXdDuARjHNUBoxzVAaMc1QGjHP7jDE6c+aMoqKirllXLoP4L+Hr6ytfX1+XeSEhIWXTTCUXFBTEHzpueIxzVAaMc1QGjHNUBoxzu4KDg69bUy5v1lazZk1VqVJFmZmZLvMzMzMVGRlZRl0BAAAAAPDrlcsg7uPjo7Zt22rTpk3OeUVFRdq0aZNiYmLKsDMAAAAAAH6dcntp+pgxY5SQkKB27drp9ttv19y5c5Wbm+u8izrKH19fXz333HNX/EQAuJEwzlEZMM5RGTDOURkwzsuvcnnX9EteffVVzZo1SxkZGWrdurXmzZunDh06lHVbAAAAAAD8YuU6iAMAAAAAcKMpl78RBwAAAADgRkUQBwAAAADAIoI4AAAAAAAWEcQBAAAAALCo3D6+DOVXQUGBSnOPPy8vL3l7M9RQsTz55JP6/vvvS1x/8803a8qUKR7sCAAAADcK7pqOUmvUqJHq1Klz3TDucDhkjFFubq727NljqTvAPVq1aqVVq1aVqNYYo4EDBzLOUeG8++67OnPmTInrw8PDFR8f77mGAA/o37+/Tpw4UeL6Zs2a6c033/RgR4D7Mc4rHk5TotQCAgK0efPmEte3b9/eg90AnuHl5aV69eqVuJ7vNFERTZ06VWPHji3x+J02bRpBHBXON998oy+++KLE9bfffrsHuwE8g3Fe8RDEUWoOh8Oj9UB5wDhHZVC1alUNGTKkxPWvvvqqB7sBPIP/fUZlwDiveLhZGwAAlRRfOAEAUDYI4gAAAAAAWMSl6QBQjPPnz2vy5MklquX34QAAACgNgjhKzcfHR506dSpxfc2aNT3YDeAZCxcu1Pnz50tcHxcX58FuAM8oKCjQ9u3bS1RrjOFLJ1RIubm5evTRR0tUyzhHRcU4r3gI4ii122+/vVTPV27YsKEHuwE848477yzrFgCPe+ihh7Ru3boS1z/88MOeawbwkHXr1qmgoKDE9f7+/h7sBvAMxnnFw3PEUWqtW7fWqlWrSvxN2oABA3i+MgCUQwUFBaU6K+Ll5SVvb77DR8Xy7rvv6syZMyWuDw8P5zF9qHAY5xUPQRyl1qZNm1I9p7B9+/ZKTk72YEcAgF+iUaNGqlOnTolqjTE6d+6ckpKSPNwV4F633nqrxo4dW+IvnRITEzmBgAqHcV7x8LU2So3H3QDAjSEgIECbN28ucX379u092A3gGVWrVtWQIUNKXP/qq696sBvAMxjnFQ+PLwMAoJLii1VUBoxzVAaM84qHIA4AAAAAgEVcmo5S4/nKAAAAAPDLEcRRajxfGQAAVBQFBQXavn17iWp5vjIqKsZ5xUMQR6nxfGUAuDH4+PioU6dOJa6vWbOmB7sBPOOhhx7SunXrSlz/8MMPe64ZwEMY5xUPjy8DAKCSeuKJJ/T999+XuL5hw4aaMmWKBzsC3K+goKBUZ/+8vLzk7c25KlQsjPOKhyAOAEAl1bp1a61atarE/3gbMGAAz51FhdOoUSPVqVOnRLXGGJ07d05JSUke7gpwL8Z5xcPXIAAAVFIOh0N169YtcT3f3aMiCggI0ObNm0tc3759ew92A3gG47zi4fFlAABUUjx3FpUB4xyVAeO84iGIAwAAAABgEUEcAAAAAACL+I04AACV1Pnz5zV58uQS1fL7cAAA3IcgDgBAJbVw4UKdP3++xPVxcXEe7AbwDB8fH3Xq1KnE9TVr1vRgN4BnMM4rHoI4AACV1J133lnWLQAed/vtt+v7778vcX3Dhg092A3gGYzziofniAMAAOCG1bp1a61atarEP68YMGCA9uzZ4+GuAPdinFc8nBEHAADADcvhcKhu3bolruccFSoixnnFw13TAQAAcMPi+cqoDBjnFQ9BHAAAAAAAiwjiAAAAAABYxG/EAQAAcMM6f/68Jk+eXKJafjeLiopxXvFw13QAAADcsLZv367z58+XuD44OFgdO3b0YEeA+zHOKx6COAAAAAAAFvEbcQAAAAAALCKIAwAAAABgEUEcAAAAAACLCOIAAAAAAFhEEAcAi7p166bRo0eXdRtXVb9+fc2dO7fCbNedHA6HVq5cWdZteMSkSZPUunVrt27z22+/lcPhUGpqqlu3W5EsWbJEISEhHt2HJz674tzI4x8AyiOCOABY9OGHH2rKlCklqq3oQeftt99Wly5dJEnJyckaPnx4idfdunWrHA6HsrKyPNSdZ7zxxhu64447FBoaqtDQUMXGxmrPnj0lXv/hhx+Ww+FwefXs2fOa6yxZsuSKdS69Tp48+WsPyeNK+uXUhQsX9PDDD6tFixby9vZWfHy8x3urTE6cOKFevXqVuL40X0K8/vrr6tatm4KCgq76d923b1/VrVtXfn5+ql27th566CEdP37cuXzr1q3q16+fateurYCAALVu3VpLly4tcb8AUN4QxAHAorCwMFWvXt36fgsKCqzv86OPPlLfvn0lSbVq1VK1atWs92CM0cWLF63tb+vWrXrggQe0ZcsW7dq1S9HR0erRo4f+/e9/l3gbPXv21IkTJ5yvd99995r1999/v0v9iRMnFBcXp65duyo8PPzXHlK5UVhYKH9/fz3xxBOKjY0t63ZuOJGRkfL19fXIts+dO6eePXvqf//3f69ac9ddd+mvf/2r0tLS9MEHH+jIkSO67777nMt37typli1b6oMPPtCXX36pRx55REOGDNGaNWs80jMAeJwBAFjTtWtX8+STTxpjjKlXr56ZOnWqeeSRR0xgYKCJjo42CxcudNZKcnl17drVueyNN94wTZo0Mb6+vqZx48YmMTHRuezo0aNGknnvvffMnXfeaXx9fc3ixYtNQkKC6devn5k1a5aJjIw0YWFh5g9/+IPJz893rluvXj3z0ksvufSwYMEC06dPH+Pv72+aNGlidu7caQ4dOmS6du1qqlWrZmJiYszhw4ddjvP8+fMmICDAHDx48KrbfeONN0x8fLzx9/c3DRs2NB999JFL/5e/EhISjDHGFBYWmmnTppn69esbPz8/07JlS/P+++87t7tlyxYjyaxdu9bcdtttpmrVqmbLli2ma9eu5vHHHzdPP/20CQ0NNREREea5555z6VmSWbFihUsPy5cvN126dDF+fn6mXbt2Ji0tzezZs8e0bdvWBAQEmJ49e5qTJ09e9fO+ePGiqV69unn77bevWnO5S5/Rr3Hy5ElTtWpV88477zjnPffcc6ZVq1ZmwYIFpk6dOsbf398MGDDAZGVlXXNbhYWF5sUXXzQ333yz8fHxMdHR0eaFF14wxvznPfrggw9Mt27djL+/v2nZsqXZuXOnc/0ffvjBDBo0yERFRRl/f39z6623mmXLlrkc788/66NHj173GK/2Pl06zkWLFpno6GgTEBBgRowYYS5evGhefPFFExERYWrVquU8hpI4ffq0GT58uAkPDze+vr6mefPmZvXq1cYYYxYvXmyCg4PN+vXrTZMmTUxAQICJi4szx48fd9nGtf5ejTHm2LFjZtCgQSY0NNRUq1bNtG3b1uzevdvlmC45fPiwadCggRk5cqQpKipy9rBixQrTsGFD4+vra3r06GHS09Nd9vHaa6+Zm266yVStWtU0atTIZXwYU/z4v9pne+nv7PLXz/+einNpvdOnT1+39qOPPjIOh8Plf59+rnfv3uaRRx657rYAoDwiiAOART8P4mFhYSYxMdEcOnTITJ8+3Xh5eZl//vOfxhhj9uzZYySZTz/91Jw4ccL8+OOPxhhj/vKXv5jatWubDz74wHzzzTfmgw8+MGFhYWbJkiXGmP/8I7p+/frOmuPHj5uEhAQTFBRkHnvsMXPw4EGzevVqU61aNfP66687+ysuMP/mN78xy5cvN2lpaSY+Pt7Ur1/f3H333Wb9+vXmq6++Mh07djQ9e/Z0Oc41a9aYRo0aXXO7derUMcuWLTOHDh0yTzzxhAkMDDQ//vijuXjxovnggw+MJJOWlmZOnDjhDIwvvPCCadKkiVm/fr05cuSIWbx4sfH19TVbt241xvznH/otW7Y0GzZsMIcPHzY//vij6dq1qwkKCjKTJk0yX3/9tXn77beNw+EwGzZscOnp50Hk0r4uHWfbtm1Nt27dzOeff2727dtnGjZsaB577LGrft45OTnGz8/PGdyuJyEhwQQHB5tatWqZRo0amccee8z88MMPJVr3ktmzZ5vg4GBz7tw557znnnvOBAQEmLvvvtt88cUXZtu2baZhw4bmwQcfvOa2xo4da0JDQ82SJUvM4cOHzWeffWbeeOMNY4zre7RmzRqTlpZm7rvvPlOvXj1TUFBgjDHmu+++M7NmzTJffPGFOXLkiJk3b56pUqWKSUpKMsYYk5WVZWJiYsywYcPMiRMnzIkTJ8zFixdL9D5dLYgHBgaa++67zxw4cMCsWrXK+Pj4mLi4OPP444+bf/7zn+att94ykpxB91oKCwtNx44dTfPmzc2GDRvMkSNHzOrVq83atWuNMT8F8apVq5rY2FiTnJxsUlJSTNOmTV3e1+v9vZ45c8bcdNNN5o477jCfffaZOXTokFm+fLkz9F4exP/+97+byMhI83//93/O7V/qoV27dmbnzp1m79695vbbbzedOnVy1nz44YematWqJjEx0aSlpZk///nPpkqVKmbz5s3OmquN/+I+27y8PDN37lwTFBTk/NzOnDlz3fezpEH8xx9/NAMHDjSdO3e+Zl3nzp3NH//4x+vuFwDKI4I4AFj08yD++9//3rmsqKjIhIeHm/nz5xtj/vOP4S+++MJlGzfffLPLWUVjjJkyZYqJiYlxWW/u3LkuNQkJCaZevXouQWfAgAHm/vvvd04XF5ifffZZ5/SuXbuMJLNo0SLnvHfffdf4+fm57GvYsGHmT3/6U4m3e/bsWSPJrFu3zhhT/D/YL1y4YKpVq+ZyxtUYY4YOHWoeeOABl/VWrlzpUtO1a1fTpUsXl3nt27c348aNc+np50HkzTffdDlOSWbTpk3OedOnTzeNGzc2VzNixAhz0003mfPnz1+15nLvvvuu+eijj8yXX35pVqxYYZo2bWrat29fonB6SdOmTc2IESNc5j333HOmSpUq5rvvvnPOW7dunfHy8jInTpwodjs5OTnG19fXGbx/rrj36MCBA0aS80qI4vTp08clPF3+N1FS1wri1apVMzk5Oc55cXFxpn79+qawsNA5r3Hjxmb69OnX3c8nn3xivLy8TFpaWrHLFy9ebCS5XBGSmJhoIiIinNPX+3tduHChqV69uvOLtuKOqVWrVmbHjh0mNDTUzJ49u9geLv9i4eDBg0aS8wuPTp06mWHDhrmsN2DAANO7d2/n9PXG/88/20tn4kvjekF87Nixplq1akaS6dix4zW/hFq+fLnx8fEx//jHP0rVAwCUF/xGHADKUMuWLZ3/7XA4FBkZec0bbOXm5urIkSMaOnSoAgMDna8XXnhBR44ccalt167dFes3b95cVapUcU7Xrl37ujf0urzHiIgISVKLFi1c5l24cEE5OTmSfvpd9urVq52/Dy/JdgMCAhQUFHTNXg4fPqxz587pt7/9rcuxv/POOyU69sv3J7nv2K+2jRkzZui9997TihUr5Ofnd839XDJo0CD17dtXLVq0UHx8vNasWaPk5GRt3bpVktSrVy/ncTdv3vyK9Xft2qWDBw9q6NChVyyrW7eufvOb3zinY2JiVFRUpLS0NH322Wcu7+nSpUt18OBB5eXlqXv37tfs+fL3qHbt2pLkfE8KCws1ZcoUtWjRQmFhYQoMDNQnn3yi9PT0a26zefPmzl5KcwMx6ac79F9+H4aIiAg1a9ZMXl5eLvNKciO71NRU1alTR40aNbpqTbVq1XTzzTc7py8fVyX5e01NTVWbNm0UFhZ21X2kp6frt7/9rSZOnKg//vGPVyz39vZW+/btndNNmjRRSEiIDh48KEk6ePCgOnfu7LJO586dncuv5lqfbXGmTZvmcpzX+5x/7umnn9YXX3yhDRs2qEqVKhoyZIiMMVfUbdmyRY888ojeeOONYv8OAKAi8C7rBgCgMqtatarLtMPhUFFR0VXrz549K+mnu3N36NDBZdnlAVv6Kdz+2v39fB2Hw3HVeZe2s2fPHl28eFGdOnUq8XZL0sulY//4449dAqWkK24yZfPYi9vG7NmzNWPGDH366adXfAFQGjfddJNq1qypw4cPq3v37nrzzTd1/vz5Yo9Hkt588021bt1abdu2LdV+2rVr53J3/oiICH377bclWvdaY2HWrFl6+eWXNXfuXLVo0UIBAQEaPXq08vPzr7nNtWvXOm8w6O/vX4ojKf5z/iWffUn3Xdy2L4XHkvy9lmQftWrVUlRUlN599109+uijCgoKuu467nCtz7Y4jz32mAYOHOicjoqKKtX+atasqZo1a6pRo0Zq2rSpoqOjtXv3bsXExDhrtm3bpnvuuUcvvfSShgwZUqrtA0B5QhAHgHLKx8dH0k9nFS+JiIhQVFSUvvnmGw0ePLisWrumjz76SH369Lnii4HSKO7YmzVrJl9fX6Wnp6tr166/uk9PmTlzpqZOnapPPvmk2DPzpfHdd9/pxx9/dJ6N/PkXEJc7e/as/vrXv2r69OnFLk9PT9fx48ed4Wj37t3y8vJS48aN5e/vr4YNG7rU33LLLfL399emTZv03//937+o/x07dqhfv376/e9/L+mnEPf111+rWbNmzhofHx+Xz1mS6tWr94v2524tW7bUd999p6+//vqaZ8WvpiR/ry1bttSbb76pU6dOXfWsuL+/v9asWaPevXsrLi5OGzZscDnrf/HiRe3du1e33367JCktLU1ZWVlq2rSpJKlp06basWOHEhISnOvs2LHD5XMoreI+t7CwsGue2S+NS4E/Ly/POW/r1q363e9+pxdffLFUj0MEgPKIIA4A5VR4eLj8/f21fv161alTR35+fgoODtbzzz+vJ554QsHBwerZs6fy8vK0d+9enT59WmPGjCnrtrVq1SpNnjz5V22jXr16cjgczvDh7++v6tWr609/+pOeeuopFRUVqUuXLsrOztaOHTsUFBTkEjLKyosvvqiJEydq2bJlql+/vjIyMiTJeanutZw9e1bPP/+8+vfvr8jISB05ckRjx45Vw4YNFRcXd919L1++XBcvXnSG3p/z8/NTQkKCZs+erZycHD3xxBMaOHCgIiMjr1o/btw4jR07Vj4+PurcubO+//57HThwoNhL34tzyy236G9/+5t27typ0NBQzZkzR5mZmS4BsH79+kpKStK3336rwMBAhYWFuVxGfrmvvvpK+fn5OnXqlM6cOeM8i9+6desS9VNaXbt21Z133qn+/ftrzpw5atiwof75z3+W6Pnul1zv7/WBBx7QtGnTFB8fr+nTp6t27dr64osvFBUV5XImOCAgQB9//LF69eqlXr16af369c4xVbVqVT3++OOaN2+evL29NWrUKHXs2NEZzJ9++mkNHDhQbdq0UWxsrFavXq0PP/xQn3766S9+b+rXr6+zZ89q06ZNatWqlapVq3bVRxRmZGQoIyNDhw8fliTt379f1atXV926dRUWFqakpCQlJyerS5cuCg0N1ZEjRzRhwgTdfPPNzvdgy5Yt+t3vfqcnn3xS/fv3d/5t+fj4uC38A4BN/EYcAMopb29vzZs3TwsXLlRUVJT69esnSfrv//5vvfnmm1q8eLFatGihrl27asmSJWrQoEEZdywdOXJEhw8fLlFwvJbf/OY3ev755/XMM88oIiJCo0aNkiRNmTJFEyZM0PTp09W0aVP17NlTH3/8cbk4dkmaP3++8vPzdd9996l27drO1+zZs6+7bpUqVfTll1+qb9++atSokYYOHaq2bdvqs88+K9HznRctWqR7771XISEhxS5v2LCh7r33XvXu3Vs9evRQy5Yt9dprr11zmxMmTNAf//hHTZw4UU2bNtX9999fot9WX/Lss8/qtttuU1xcnLp166bIyEjFx8e71PzpT39SlSpV1KxZM9WqVeuavyvu3bu32rRpo9WrV2vr1q1q06aN2rRpU+J+fokPPvhA7du31wMPPKBmzZpp7NixV5wJvpbr/b36+Phow4YNCg8PV+/evdWiRQvNmDGj2CtKAgMDtW7dOhlj1KdPH+Xm5kr66Xfq48aN04MPPqjOnTsrMDBQy5cvd64XHx+vl19+WbNnz1bz5s21cOFCLV68WN26dfvF70unTp302GOP6f7771etWrU0c+bMq9YuWLBAbdq00bBhwyRJd955p9q0aaNVq1Y5+//www/VvXt3NW7cWEOHDlXLli21bds259h/++23de7cOeeXFZde99577y8+BgAoSw5T3F0wAAD4BebMmaNPP/1Ua9euLetWgEphyZIlGj16tLKyssq6FQBAKXBGHADgNnXq1NH48ePLug0AAIByjSAOAHCbgQMH6o477ijrNsqlnz8i7Ocv2Ld06dKrfh48FgsA4Elcmg4AgAXnz5/Xv//976su//ldy+F5Z86cUWZmZrHLqlatWm7u3g4AuPEQxAEAAAAAsIhL0wEAAAAAsIggDgAAAACARQRxAAAAAAAsIogDAAAAAGARQRwAAAAAAIsI4gAAAAAAWEQQBwAAAADAov8Hnf3swaC608cAAAAASUVORK5CYII=","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stderr","output_type":"stream","text":["findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 19981 (\\N{CJK UNIFIED IDEOGRAPH-4E0D}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 26159 (\\N{CJK UNIFIED IDEOGRAPH-662F}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 37325 (\\N{CJK UNIFIED IDEOGRAPH-91CD}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 35201 (\\N{CJK UNIFIED IDEOGRAPH-8981}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 38382 (\\N{CJK UNIFIED IDEOGRAPH-95EE}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 27861 (\\N{CJK UNIFIED IDEOGRAPH-6CD5}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 38169 (\\N{CJK UNIFIED IDEOGRAPH-9519}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 35823 (\\N{CJK UNIFIED IDEOGRAPH-8BEF}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 22238 (\\N{CJK UNIFIED IDEOGRAPH-56DE}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 31572 (\\N{CJK UNIFIED IDEOGRAPH-7B54}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 27491 (\\N{CJK UNIFIED IDEOGRAPH-6B63}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 30830 (\\N{CJK UNIFIED IDEOGRAPH-786E}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 27515 (\\N{CJK UNIFIED IDEOGRAPH-6B7B}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 20129 (\\N{CJK UNIFIED IDEOGRAPH-4EA1}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 24456 (\\N{CJK UNIFIED IDEOGRAPH-5F88}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 20037 (\\N{CJK UNIFIED IDEOGRAPH-4E45}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/IPython/core/pylabtools.py:170: UserWarning: Glyph 20102 (\\N{CJK UNIFIED IDEOGRAPH-4E86}) missing from font(s) DejaVu Sans.\n"," fig.canvas.print_figure(bytes_io, **kw)\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n"]},{"name":"stdout","output_type":"stream","text":["********** internlm/internlm2_5-7b-chat-1m_checkpoint-176 **********\n","internlm/internlm2_5-7b-chat-1m_checkpoint-176\n","不是 1243\n","是 1155\n","不重要 497\n","问法错误 69\n","回答正确 35\n","死亡很久了 1\n","Name: count, dtype: int64\n"]},{"name":"stderr","output_type":"stream","text":["findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n","findfont: Font family 'STHeiti' not found.\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAA+IAAAIpCAYAAAAmQoKIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABK1ElEQVR4nO3de1hVZf7//9dGziggKqdE8JSC4SHxAJZaMiL6LZmxzHJKy3RqNFOn0fiNmlmJmtOY5ZhmofP5aNlMZmppmmSUkWdGxwyPjToKNhkgqIiwvn/0Y33biQYGN4jPx3Xt63Lf673Wei+5yV577bWWw7IsSwAAAAAAwAiXmm4AAAAAAIAbCUEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAxyrekGqktpaalOnjypBg0ayOFw1HQ7AAAAAIA6zrIsnT17VqGhoXJxufJ57zobxE+ePKmwsLCabgMAAAAAcIM5fvy4mjZtesXldTaIN2jQQNIPfwG+vr413A0AAAAAoK7Lz89XWFiYnUevpM4G8bKvo/v6+hLEAQAAAADG/Nzl0dysDQAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4nVMenq67rrrLoWGhsrhcGjVqlX2suLiYk2aNEnR0dHy8fFRaGioHnroIZ08ebLcbRUVFaljx45yOBzKzMy0x7OysnTHHXcoKChInp6eatGihSZPnqzi4uJqPjoAAAAAuP4RxOuYwsJCdejQQfPnz79s2blz57Rr1y5NmTJFu3bt0sqVK5WVlaW777673G1NnDhRoaGhl427ubnpoYce0oYNG5SVlaW5c+fq9ddf1zPPPFPlxwMAAAAAdY1rTTeAqpWYmKjExMRyl/n5+Wnjxo1OY6+++qq6du2qY8eOqVmzZvb4unXrtGHDBr377rtat26d0zotWrRQixYt7Pfh4eHavHmzPvvssyo8EgAAAAComzgjfoPLy8uTw+GQv7+/PZaTk6ORI0fqf/7nf+Tt7f2z2zh06JDWr1+vXr16VWOnAAAAAFA3EMRvYBcuXNCkSZN0//33y9fXV5JkWZaGDx+uxx57TDExMVddPy4uTp6enmrdurVuv/12TZ8+3UTbAAAAAHBdI4jfoIqLizV48GBZlqUFCxbY46+88orOnj2r5OTkn93GihUrtGvXLi1fvlwffPCB5syZU50tAwAAAECdwDXiN6CyEP7vf/9baWlp9tlwSUpLS1NGRoY8PDyc1omJidHQoUO1dOlSeywsLEySFBUVpZKSEo0aNUp/+MMfVK9ePTMHAgAAAADXIYL4DaYshB88eFCffPKJGjVq5LR83rx5ev755+33J0+eVEJCglasWKFu3bpdcbulpaUqLi5WaWkpQRwAAAAAroIgXscUFBTo0KFD9vujR48qMzNTAQEBCgkJ0T333KNdu3Zp7dq1KikpUXZ2tiQpICBA7u7uTndOl6T69etLklq2bKmmTZtKkpYtWyY3NzdFR0fLw8NDO3bsUHJysu677z65ubkZOlIAAAAAuD4RxOuYHTt26I477rDfT5gwQZI0bNgwTZs2TatXr5YkdezY0Wm9Tz75RL17967QPlxdXTVr1iwdOHBAlmUpPDxcY8aM0fjx46vkGAAAAACgLnNYlmXVdBPVIT8/X35+fsrLy3O6Brq2iHj6g5pu4brzzcwBNd0CAAAAAFxRRXMod00HAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGVTqIp6en66677lJoaKgcDodWrVplLysuLtakSZMUHR0tHx8fhYaG6qGHHtLJkyedtnHmzBkNHTpUvr6+8vf314gRI1RQUOBUs2fPHt1+++3y9PRUWFiYZs+efW1HCAAAAABALVLpIF5YWKgOHTpo/vz5ly07d+6cdu3apSlTpmjXrl1auXKlsrKydPfddzvVDR06VPv27dPGjRu1du1apaena9SoUfby/Px89e3bV+Hh4dq5c6defPFFTZs2TYsWLbqGQwQAAAAAoPZwWJZlXfPKDofee+89JSUlXbFm+/bt6tq1q/7973+rWbNm2r9/v6KiorR9+3bFxMRIktavX6/+/fvrxIkTCg0N1YIFC/SnP/1J2dnZcnd3lyQ9/fTTWrVqlb7++usK9Zafny8/Pz/l5eXJ19f3Wg+x2kQ8/UFNt3Dd+WbmgJpuAQAAAACuqKI5tNqvEc/Ly5PD4ZC/v78kKSMjQ/7+/nYIl6T4+Hi5uLho69atdk3Pnj3tEC5JCQkJysrK0vfff1/ufoqKipSfn+/0AgAAAACgtqnWIH7hwgVNmjRJ999/v/1pQHZ2tgIDA53qXF1dFRAQoOzsbLsmKCjIqabsfVnNT6WkpMjPz89+hYWFVfXhAAAAAADwi1VbEC8uLtbgwYNlWZYWLFhQXbuxJScnKy8vz34dP3682vcJAAAAAEBluVbHRstC+L///W+lpaU5fTc+ODhYp0+fdqq/dOmSzpw5o+DgYLsmJyfHqabsfVnNT3l4eMjDw6MqDwMAAAAAgCpX5WfEy0L4wYMH9fHHH6tRo0ZOy2NjY5Wbm6udO3faY2lpaSotLVW3bt3smvT0dBUXF9s1GzduVJs2bdSwYcOqbhkAAAAAAGMqHcQLCgqUmZmpzMxMSdLRo0eVmZmpY8eOqbi4WPfcc4927NihZcuWqaSkRNnZ2crOztbFixclSZGRkerXr59Gjhypbdu2acuWLRozZoyGDBmi0NBQSdIDDzwgd3d3jRgxQvv27dOKFSv08ssva8KECVV35AAAAAAA1IBKP75s8+bNuuOOOy4bHzZsmKZNm6bmzZuXu94nn3yi3r17S5LOnDmjMWPGaM2aNXJxcdGgQYM0b9481a9f367fs2ePRo8ere3bt6tx48Z64oknNGnSpAr3yePL6h4eXwYAAACgNqu2x5f17t1blmVd9lqyZIkiIiLKXWZZlh3CJSkgIEDLly/X2bNnlZeXpzfffNMphEtS+/bt9dlnn+nChQs6ceJEpUI4gOqXnp6uu+66S6GhoXI4HFq1apXT8pUrV6pv375q1KiRHA6H/S2aH+vdu7ccDofT67HHHnOq+elyh8Oht99+uxqPDAAAAKhe1f4ccQB1U2FhoTp06KD58+dfcfltt92mWbNmXXU7I0eO1KlTp+zX7NmzL6tJTU11qklKSqqKQwAAAABqRLXcNR1A3ZeYmKjExMQrLn/wwQclSd98881Vt+Pt7X3FpyGU8ff3/9kaAAAA4HrBGXEANWrZsmVq3LixbrnlFiUnJ+vcuXOX1YwePVqNGzdW165d9eabb6qSt7YAAAAAahXOiAOoMQ888IDCw8MVGhqqPXv2aNKkScrKytLKlSvtmunTp+vOO++Ut7e3NmzYoN///vcqKCjQ2LFja7BzAAAA4NoRxAHUmFGjRtl/jo6OVkhIiPr06aPDhw+rZcuWkqQpU6bYNZ06dVJhYaFefPFFgjgAAACuW3w1HUCt0a1bN0nSoUOHrlpz4sQJFRUVmWoLAAAAqFIEcQC1RtkjzkJCQq5a07BhQ3l4eBjqCgAAAKhafDUdwDUpKChwOnN99OhRZWZmKiAgQM2aNdOZM2d07NgxnTx5UpKUlZUlSQoODlZwcLAOHz6s5cuXq3///mrUqJH27Nmj8ePHq2fPnmrfvr0kac2aNcrJyVH37t3l6empjRs3asaMGXrqqafMHzAAAABQRQjiAK7Jjh07dMcdd9jvJ0yYIEkaNmyYlixZotWrV+vhhx+2lw8ZMkSS9Mwzz2jatGlyd3fXxx9/rLlz56qwsFBhYWEaNGiQJk+ebK/j5uam+fPna/z48bIsS61atdJLL72kkSNHGjpKAAAAoOo5rDr6HKD8/Hz5+fkpLy9Pvr6+Nd3OZSKe/qCmW7jufDNzQE23cF1irlUecw0AAADXoqI5lGvEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBlQ7i6enpuuuuuxQaGiqHw6FVq1Y5LbcsS1OnTlVISIi8vLwUHx+vgwcPOtWcOXNGQ4cOla+vr/z9/TVixAgVFBQ41ezZs0e33367PD09FRYWptmzZ1f+6AAAAAAAqGUqHcQLCwvVoUMHzZ8/v9zls2fP1rx58/Taa69p69at8vHxUUJCgi5cuGDXDB06VPv27dPGjRu1du1apaena9SoUfby/Px89e3bV+Hh4dq5c6defPFFTZs2TYsWLbqGQwQAAAAAoPZwrewKiYmJSkxMLHeZZVmaO3euJk+erIEDB0qS/va3vykoKEirVq3SkCFDtH//fq1fv17bt29XTEyMJOmVV15R//79NWfOHIWGhmrZsmW6ePGi3nzzTbm7u6tdu3bKzMzUSy+95BTYAQAAAAC43lTpNeJHjx5Vdna24uPj7TE/Pz9169ZNGRkZkqSMjAz5+/vbIVyS4uPj5eLioq1bt9o1PXv2lLu7u12TkJCgrKwsff/99+Xuu6ioSPn5+U4vAAAAAABqmyoN4tnZ2ZKkoKAgp/GgoCB7WXZ2tgIDA52Wu7q6KiAgwKmmvG38eB8/lZKSIj8/P/sVFhb2yw8IAAAAAIAqVmfump6cnKy8vDz7dfz48ZpuCQAAAACAy1RpEA8ODpYk5eTkOI3n5OTYy4KDg3X69Gmn5ZcuXdKZM2ecasrbxo/38VMeHh7y9fV1egEAAAAAUNtUaRBv3ry5goODtWnTJnssPz9fW7duVWxsrCQpNjZWubm52rlzp12Tlpam0tJSdevWza5JT09XcXGxXbNx40a1adNGDRs2rMqWAQAAAAAwqtJBvKCgQJmZmcrMzJT0ww3aMjMzdezYMTkcDo0bN07PP/+8Vq9erb179+qhhx5SaGiokpKSJEmRkZHq16+fRo4cqW3btmnLli0aM2aMhgwZotDQUEnSAw88IHd3d40YMUL79u3TihUr9PLLL2vChAlVduAAAAAAANSESj++bMeOHbrjjjvs92XheNiwYVqyZIkmTpyowsJCjRo1Srm5ubrtttu0fv16eXp62ussW7ZMY8aMUZ8+feTi4qJBgwZp3rx59nI/Pz9t2LBBo0ePVufOndW4cWNNnTqVR5cBAAAAAK57DsuyrJpuojrk5+fLz89PeXl5tfJ68YinP6jpFq4738wcUNMtXJeYa5XHXAMAAMC1qGgOrTN3TQcAAAAA4HpAEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAZVeRAvKSnRlClT1Lx5c3l5eally5Z67rnnZFmWXWNZlqZOnaqQkBB5eXkpPj5eBw8edNrOmTNnNHToUPn6+srf318jRoxQQUFBVbcLAAAAAIBRVR7EZ82apQULFujVV1/V/v37NWvWLM2ePVuvvPKKXTN79mzNmzdPr732mrZu3SofHx8lJCTowoULds3QoUO1b98+bdy4UWvXrlV6erpGjRpV1e0CAAAAAGCUa1Vv8IsvvtDAgQM1YMAASVJERITeeustbdu2TdIPZ8Pnzp2ryZMna+DAgZKkv/3tbwoKCtKqVas0ZMgQ7d+/X+vXr9f27dsVExMjSXrllVfUv39/zZkzR6GhoVXdNgAAAAAARlT5GfG4uDht2rRJBw4ckCT985//1Oeff67ExERJ0tGjR5Wdna34+Hh7HT8/P3Xr1k0ZGRmSpIyMDPn7+9shXJLi4+Pl4uKirVu3VnXLAAAAAAAYU+VnxJ9++mnl5+erbdu2qlevnkpKSvTCCy9o6NChkqTs7GxJUlBQkNN6QUFB9rLs7GwFBgY6N+rqqoCAALvmp4qKilRUVGS/z8/Pr7JjAgAAAACgqlT5GfF33nlHy5Yt0/Lly7Vr1y4tXbpUc+bM0dKlS6t6V05SUlLk5+dnv8LCwqp1fwAAAAAAXIsqD+J//OMf9fTTT2vIkCGKjo7Wgw8+qPHjxyslJUWSFBwcLEnKyclxWi8nJ8deFhwcrNOnTzstv3Tpks6cOWPX/FRycrLy8vLs1/Hjx6v60AAAAAAA+MWqPIifO3dOLi7Om61Xr55KS0slSc2bN1dwcLA2bdpkL8/Pz9fWrVsVGxsrSYqNjVVubq527txp16Slpam0tFTdunUrd78eHh7y9fV1egEAAAAAUNtU+TXid911l1544QU1a9ZM7dq10+7du/XSSy/pkUcekSQ5HA6NGzdOzz//vFq3bq3mzZtrypQpCg0NVVJSkiQpMjJS/fr108iRI/Xaa6+puLhYY8aM0ZAhQ7hjOgAAAADgulblQfyVV17RlClT9Pvf/16nT59WaGiofve732nq1Kl2zcSJE1VYWKhRo0YpNzdXt912m9avXy9PT0+7ZtmyZRozZoz69OkjFxcXDRo0SPPmzavqdgEAAAAAMMphWZZV001Uh/z8fPn5+SkvL69Wfk094ukParqF6843MwfUdAvXJeZa5THXAAAAcC0qmkOr/BpxAAAAAABwZQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDqiWI/+c//9Fvf/tbNWrUSF5eXoqOjtaOHTvs5ZZlaerUqQoJCZGXl5fi4+N18OBBp22cOXNGQ4cOla+vr/z9/TVixAgVFBRUR7sAAAAAABhT5UH8+++/V48ePeTm5qZ169bpq6++0p///Gc1bNjQrpk9e7bmzZun1157TVu3bpWPj48SEhJ04cIFu2bo0KHat2+fNm7cqLVr1yo9PV2jRo2q6nYBAAAAADDKtao3OGvWLIWFhSk1NdUea968uf1ny7I0d+5cTZ48WQMHDpQk/e1vf1NQUJBWrVqlIUOGaP/+/Vq/fr22b9+umJgYSdIrr7yi/v37a86cOQoNDa3qtgEAAAAAMKLKz4ivXr1aMTExuvfeexUYGKhOnTrp9ddft5cfPXpU2dnZio+Pt8f8/PzUrVs3ZWRkSJIyMjLk7+9vh3BJio+Pl4uLi7Zu3VrufouKipSfn+/0AgAAAACgtqnyIH7kyBEtWLBArVu31kcffaTHH39cY8eO1dKlSyVJ2dnZkqSgoCCn9YKCguxl2dnZCgwMdFru6uqqgIAAu+anUlJS5OfnZ7/CwsKq+tAAAAAAAPjFqjyIl5aW6tZbb9WMGTPUqVMnjRo1SiNHjtRrr71W1btykpycrLy8PPt1/Pjxat0fAAAAAADXosqDeEhIiKKiopzGIiMjdezYMUlScHCwJCknJ8epJicnx14WHBys06dPOy2/dOmSzpw5Y9f8lIeHh3x9fZ1eAAAAAADUNlUexHv06KGsrCynsQMHDig8PFzSDzduCw4O1qZNm+zl+fn52rp1q2JjYyVJsbGxys3N1c6dO+2atLQ0lZaWqlu3blXdMgAAAAAAxlT5XdPHjx+vuLg4zZgxQ4MHD9a2bdu0aNEiLVq0SJLkcDg0btw4Pf/882rdurWaN2+uKVOmKDQ0VElJSZJ+OIPer18/+yvtxcXFGjNmjIYMGcId0wEAAAAA17UqD+JdunTRe++9p+TkZE2fPl3NmzfX3LlzNXToULtm4sSJKiws1KhRo5Sbm6vbbrtN69evl6enp12zbNkyjRkzRn369JGLi4sGDRqkefPmVXW7AAAAAAAY5bAsy6rpJqpDfn6+/Pz8lJeXVyuvF494+oOabuG6883MATXdwnWJuVZ5zDUAAABci4rm0Cq/RhwAAAAAAFwZQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgA4Lo2c+ZMORwOjRs3zh47fPiwfv3rX6tJkyby9fXV4MGDlZOTYy/fvHmzHA5Hua/t27fXwFEAAIAbCUEcAHDd2r59uxYuXKj27dvbY4WFherbt68cDofS0tK0ZcsWXbx4UXfddZdKS0slSXFxcTp16pTT69FHH1Xz5s0VExNTU4cDAABuEK413QAAANeioKBAQ4cO1euvv67nn3/eHt+yZYu++eYb7d69W76+vpKkpUuXqmHDhkpLS1N8fLzc3d0VHBxsr1NcXKz3339fTzzxhBwOh/FjAQAANxbOiAMArkujR4/WgAEDFB8f7zReVFQkh8MhDw8Pe8zT01MuLi76/PPPy93W6tWr9d133+nhhx+u1p4BAAAkgjgA4Dr09ttva9euXUpJSblsWffu3eXj46NJkybp3LlzKiws1FNPPaWSkhKdOnWq3O298cYbSkhIUNOmTau7dQAAAII4AOD6cvz4cT355JNatmyZPD09L1vepEkT/f3vf9eaNWtUv359+fn5KTc3V7feeqtcXC7/Z+/EiRP66KOPNGLECBPtAwAAcI04AOD6snPnTp0+fVq33nqrPVZSUqL09HS9+uqrKioqUt++fXX48GH997//laurq/z9/RUcHKwWLVpctr3U1FQ1atRId999t8nDAAAANzCCOADgutKnTx/t3bvXaezhhx9W27ZtNWnSJNWrV88eb9y4sSQpLS1Np0+fvixsW5al1NRUPfTQQ3Jzc6v+5gEAAEQQBwBcZxo0aKBbbrnFaczHx0eNGjWyx1NTUxUZGakmTZooIyNDTz75pMaPH682bdo4rZeWlqajR4/q0UcfNdY/AAAAQRwAUOdkZWUpOTlZZ86cUUREhP70pz9p/Pjxl9W98cYbiouLU9u2bWugSwAAcKNyWJZl1XQT1SE/P19+fn7Ky8uznyNbm0Q8/UFNt3Dd+WbmgJpu4brEXKs85tq1Ya5VHnMNAIC6paI5lLumAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABlV7EJ85c6YcDofGjRtnj124cEGjR49Wo0aNVL9+fQ0aNEg5OTlO6x07dkwDBgyQt7e3AgMD9cc//lGXLl2q7nYBAAAAAKhW1RrEt2/froULF6p9+/ZO4+PHj9eaNWv097//XZ9++qlOnjyp3/zmN/bykpISDRgwQBcvXtQXX3yhpUuXasmSJZo6dWp1tgsAAAAAQLWrtiBeUFCgoUOH6vXXX1fDhg3t8by8PL3xxht66aWXdOedd6pz585KTU3VF198oS+//FKStGHDBn311Vf63//9X3Xs2FGJiYl67rnnNH/+fF28eLG6WgYAAAAAoNpVWxAfPXq0BgwYoPj4eKfxnTt3qri42Gm8bdu2atasmTIyMiRJGRkZio6OVlBQkF2TkJCg/Px87du3r9z9FRUVKT8/3+kFAAAAAEBt41odG3377be1a9cubd++/bJl2dnZcnd3l7+/v9N4UFCQsrOz7Zofh/Cy5WXLypOSkqJnn322CroHAAAAAKD6VPkZ8ePHj+vJJ5/UsmXL5OnpWdWbv6Lk5GTl5eXZr+PHjxvbNwAAAAAAFVXlQXznzp06ffq0br31Vrm6usrV1VWffvqp5s2bJ1dXVwUFBenixYvKzc11Wi8nJ0fBwcGSpODg4Mvuol72vqzmpzw8POTr6+v0AgAAAACgtqnyIN6nTx/t3btXmZmZ9ismJkZDhw61/+zm5qZNmzbZ62RlZenYsWOKjY2VJMXGxmrv3r06ffq0XbNx40b5+voqKiqqqlsGAAAAAMCYKr9GvEGDBrrlllucxnx8fNSoUSN7fMSIEZowYYICAgLk6+urJ554QrGxserevbskqW/fvoqKitKDDz6o2bNnKzs7W5MnT9bo0aPl4eFR1S0DAAAAAGBMtdys7ef85S9/kYuLiwYNGqSioiIlJCTor3/9q728Xr16Wrt2rR5//HHFxsbKx8dHw4YN0/Tp02uiXQAAAAAAqoyRIL5582an956enpo/f77mz59/xXXCw8P14YcfVnNnAAAAAACYVW3PEQcAAAAAAJcjiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGFTlQTwlJUVdunRRgwYNFBgYqKSkJGVlZTnVXLhwQaNHj1ajRo1Uv359DRo0SDk5OU41x44d04ABA+Tt7a3AwED98Y9/1KVLl6q6XQAAAAAAjKryIP7pp59q9OjR+vLLL7Vx40YVFxerb9++KiwstGvGjx+vNWvW6O9//7s+/fRTnTx5Ur/5zW/s5SUlJRowYIAuXryoL774QkuXLtWSJUs0derUqm4XAAAAAACjXKt6g+vXr3d6v2TJEgUGBmrnzp3q2bOn8vLy9MYbb2j58uW68847JUmpqamKjIzUl19+qe7du2vDhg366quv9PHHHysoKEgdO3bUc889p0mTJmnatGlyd3ev6rYBAAAAADCi2q8Rz8vLkyQFBARIknbu3Kni4mLFx8fbNW3btlWzZs2UkZEhScrIyFB0dLSCgoLsmoSEBOXn52vfvn3l7qeoqEj5+flOLwAAAAAAaptqDeKlpaUaN26cevTooVtuuUWSlJ2dLXd3d/n7+zvVBgUFKTs72675cQgvW162rDwpKSny8/OzX2FhYVV8NAAAAAAA/HLVGsRHjx6tf/3rX3r77berczeSpOTkZOXl5dmv48ePV/s+AQAAAACorCq/RrzMmDFjtHbtWqWnp6tp06b2eHBwsC5evKjc3Fyns+I5OTkKDg62a7Zt2+a0vbK7qpfV/JSHh4c8PDyq+CgAAAAAAKhaVX5G3LIsjRkzRu+9957S0tLUvHlzp+WdO3eWm5ubNm3aZI9lZWXp2LFjio2NlSTFxsZq7969On36tF2zceNG+fr6KioqqqpbBgAAAADAmCo/Iz569GgtX75c77//vho0aGBf0+3n5ycvLy/5+flpxIgRmjBhggICAuTr66snnnhCsbGx6t69uySpb9++ioqK0oMPPqjZs2crOztbkydP1ujRoznrDQAAAAC4rlV5EF+wYIEkqXfv3k7jqampGj58uCTpL3/5i1xcXDRo0CAVFRUpISFBf/3rX+3aevXqae3atXr88ccVGxsrHx8fDRs2TNOnT6/qdgEAAAAAMKrKg7hlWT9b4+npqfnz52v+/PlXrAkPD9eHH35Yla0BAAAAAFDjqv054gAAAAAA4P8hiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwAAAAAAIMI4gAAAAAAGEQQBwAAAADAIII4AAAAAAAGEcQBAAAAADCIIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgEEEcAAAAAACDCOIAAAAAABhEEAcAAAAAwCCCOAAAAAAABhHEAQAAAAAwiCAOAAAAAIBBBHEAAAAAAAwiiAMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAACroP//5j37729+qUaNG8vLyUnR0tHbs2GEvz8nJ0fDhwxUaGipvb2/169dPBw8erMGOAQC1EUEcAACgAr7//nv16NFDbm5uWrdunb766iv9+c9/VsOGDSVJlmUpKSlJR44c0fvvv6/du3crPDxc8fHxKiwsrOHuAQC1iWtNNwAAAHA9mDVrlsLCwpSammqPNW/e3P7zwYMH9eWXX+pf//qX2rVrJ0lasGCBgoOD9dZbb+nRRx813jMAoHbijDgAAEAFrF69WjExMbr33nsVGBioTp066fXXX7eXFxUVSZI8PT3tMRcXF3l4eOjzzz833i8AoPYiiAMAAFTAkSNHtGDBArVu3VofffSRHn/8cY0dO1ZLly6VJLVt21bNmjVTcnKyvv/+e128eFGzZs3SiRMndOrUqRruHgBQm/DVdAAAgAooLS1VTEyMZsyYIUnq1KmT/vWvf+m1117TsGHD5ObmppUrV2rEiBEKCAhQvXr1FB8fr8TERFmWVcPdAwBqE86IAwAAVEBISIiioqKcxiIjI3Xs2DH7fefOnZWZmanc3FydOnVK69ev13fffacWLVqYbhcAUIsRxAEAACqgR48eysrKcho7cOCAwsPDL6v18/NTkyZNdPDgQe3YsUMDBw401SYA4DrAV9MBAAAqYPz48YqLi9OMGTM0ePBgbdu2TYsWLdKiRYvsmr///e9q0qSJmjVrpr179+rJJ59UUlKS+vbtW4OdAwBqG4I4AAC4rkQ8/UGN7bvhwP9P0/6ySH+aOk2ufkHyvf0R/Wmvv/70//eUv+Nj5W9bqZLCXNWr31D1292pHS2G1GjPkvTNzAE1un8AgDOCOAAAQAV5t+oq71Zdr7jcN+Zu+cbcbbAjAMD1iGvEAQAAAAAwiCAOAAAA1DILFixQ+/bt5evrK19fX8XGxmrdunX28t69e8vhcDi9HnvssRrsGEBl8NV0AAAAoJZp2rSpZs6cqdatW8uyLC1dulQDBw7U7t271a5dO0nSyJEjNX36dHsdb2/vmmoXQCURxAEAAIBa5q677nJ6/8ILL2jBggX68ssv7SDu7e2t4ODgmmgPwC/EV9MBAACAWqykpERvv/22CgsLFRsba48vW7ZMjRs31i233KLk5GSdO3euBrsEUBmcEQcAAABqob179yo2NlYXLlxQ/fr19d577ykqKkqS9MADDyg8PFyhoaHas2ePJk2apKysLK1cubKGuwZQEQRxAAAAoBZq06aNMjMzlZeXp3/84x8aNmyYPv30U0VFRWnUqFF2XXR0tEJCQtSnTx8dPnxYLVu2rMGuAVQEX00HAAAAaiF3d3e1atVKnTt3VkpKijp06KCXX3653Npu3bpJkg4dOmSyRQDXiCAOAAAAXAdKS0tVVFRU7rLMzExJUkhIiMGOAFwrvpoOAAAA1DLJyclKTExUs2bNdPbsWS1fvlybN2/WRx99pMOHD2v58uXq37+/GjVqpD179mj8+PHq2bOn2rdvX9OtA6gAgjgAAABQjoinP6ixff/3w5168a9vqqTwjFw8fOTeJEJN7p2ukZsu6tJ7n+m/a9/RtBkvqrT4glx9G8u7dayKbx1Soz1L0jczB9To/oHrBUEcAAAAqGUa93/yistcfZso+IGZBrsBUNW4RhwAAAAAAIMI4gAAAAAASVJ6erruuusuhYaGyuFwaNWqVTXdUp1EEAcAAAAASJIKCwvVoUMHzZ8/v6ZbqdO4RhwAAAAAIElKTExUYmJiTbdR53FGHAAAAAAAgwjiAAAAAAAYVKuD+Pz58xURESFPT09169ZN27Ztq+mWAAAAAAD4RWptEF+xYoUmTJigZ555Rrt27VKHDh2UkJCg06dP13RrAAAAAABcs1obxF966SWNHDlSDz/8sKKiovTaa6/J29tbb775Zk23BgAAAADANauVQfzixYvauXOn4uPj7TEXFxfFx8crIyOjBjsDAAAAgLqroKBAmZmZyszMlCQdPXpUmZmZOnbsWM02VsfUyseX/fe//1VJSYmCgoKcxoOCgvT111+Xu05RUZGKiors93l5eZKk/Pz86mv0FygtOlfTLVx3auvPsrZjrlUec+3aMNcqj7l2bZhrlcdcuzbMtcpjrl2bW575qKZbsF04vk/fvvus/X7ChAmSJO/IXmqUMLqm2rrMv55NqOkWylX2O2BZ1lXramUQvxYpKSl69tlnLxsPCwurgW5QHfzm1nQHuFEw12AKcw2mMNdgCnOt7jq3/1Od2/9pTbdhq+1z7ezZs/Lz87vi8loZxBs3bqx69eopJyfHaTwnJ0fBwcHlrpOcnGx/WiNJpaWlOnPmjBo1aiSHw1Gt/dYV+fn5CgsL0/Hjx+Xr61vT7aAOY67BFOYaTGGuwRTmGkxhrl0by7J09uxZhYaGXrWuVgZxd3d3de7cWZs2bVJSUpKkH4L1pk2bNGbMmHLX8fDwkIeHh9OYv79/NXdaN/n6+vLLBiOYazCFuQZTmGswhbkGU5hrlXe1M+FlamUQl364FmHYsGGKiYlR165dNXfuXBUWFurhhx+u6dYAAAAAALhmtTaI33ffffr22281depUZWdnq2PHjlq/fv1lN3ADAAAAAOB6UmuDuCSNGTPmil9FR9Xz8PDQM888c9lX/IGqxlyDKcw1mMJcgynMNZjCXKteDuvn7qsOAAAAAACqjEtNNwAAAAAAwI2EIA4AAAAAgEEEcQAAAAAADCKIAwAAAABgUK2+azqqT3FxsSpznz4XFxe5ujJdUHlPPvmkvv322wrXt2zZUs8991w1dgQAAADULO6afoO6+eab1bRp058N4w6HQ5ZlqbCwUNu2bTPUHeqSDh06aPXq1RWqtSxLgwcPZq7hmrz11ls6e/ZshesDAwOVlJRUfQ2hzho0aJBOnTpV4fqoqCgtXry4GjtCXcVcgylHjx5VcXFxheu9vLwUFhZWjR3VfZzivEH5+PgoLS2twvVdunSpxm5Ql7m4uCg8PLzC9Xw2iGv1wgsvaOLEiRWeQzNmzCCI45ocOXJEu3fvrnB9165dq7Eb1GXMNZiSmJiouLi4Cv8bum/fPk6c/EIE8RuUw+Go1nqgDHMNpri5uemhhx6qcP2rr75ajd2gLuO/UzCFuQZTvLy89Oabb1a4npN0vxw3awMA1Al86AMAwLXh31DzCOIAAAAAABjEV9MBVKvz589r+vTpFarl+nAAAADcCAjiNyh3d3fFxcVVuL5x48bV2A3qsoULF+r8+fMVrk9ISKjGblCXFRcXKz09vUK1lmXxwQ+uWWFhoR555JEK1TLX8Esw11BbMdd+OYL4Dapr166VerZzq1atqrEb1GU9e/as6RZwg3jwwQe1bt26CtcPHz68+ppBnbZu3bpKP+YHuBbMNZgSHh6u2NjYCtdHR0dXYzc3Bp4jfoPq2LGjVq9eXeFPs+69914eUQCgVisuLq7UJ/QuLi5ydeXzaFQez6yHKcw1oO4iiN+gOnXqVKnnUnbp0kXbt2+vxo4A4Je5+eab1bRp0wrVWpalc+fOaevWrdXcFeqiW265pVLPrJ8/fz4fZuOaMNdgyqBBg3Tq1KkK10dFRWnx4sXV2FHdx6mAGxSPKABQ1/j4+CgtLa3C9TwDFdeKZ9bDFOYaTDly5EilTtJ17dq1Gru5MfD4MgBAncAHjDCFuQZTmGswhbljHkEcAAAAAACD+Gr6DYpnOwMAAABAzSCI36B4tjMAANeGZ9bDFOYaUHcRxG9QPNsZQF3j7u6uuLi4Ctc3bty4GrtBXcYz62EKcw2mFBYW6pFHHqlQLR/6VA0eXwYAqBPGjh2rb7/9tsL1rVq10nPPPVeNHaGu4pn1MIW5BlOOHDmi4uLiCtd7eXmpWbNm1dhR3UcQBwDUCR07dtTq1asr/D+t9957L8/bxTXhmfUwhbkGU9566y2dPXu2wvWBgYFKSkqqvoZuAHxkBgCoExwOR6U+nedzaFwrnlkPU5hrMOWFF17QxIkTK/xv44wZMwjivxBBHABQJ/C8XZjCXIMpzDWY4ubmpoceeqjC9a+++mo1dnNj4DniAAAAAHAD40Mf8wjiAAAAAAAYxFfTAQB1wvnz5zV9+vQK1XJ9OAAAqEkEcQBAnbBw4UKdP3++wvUJCQnV2A3qMp5ZD1OYazCluLhY6enpFarlOeJVgyAOAKgTevbsWdMt4AbRtWvXSj+zHrgWzDWY8uCDD2rdunUVrh8+fHj1NXOD4DniAAAAlcAz62EKcw2mFBcXV+ost4uLi1xdOaf7S/C3BwAAUAk8sx6mMNdgSrt27dS0adMK1VqWpXPnzmnr1q3V3FXdRhAHAACoBB7zA1OYazDFx8dHaWlpFa7v0qVLNXZzY+DxZQAAAABwA+NDH/MI4gAAAAAAGMRX0wEAACqBZ9bDFOYaUHcRxAEAACqBZ9bDFOYaUHfx+DIAAAAAuIF1795dLi4Vv2rZ399fH374YTV2VPdxRhwAAAAAbmBdu3bVt99+W+H6Vq1aVWM3NwbOiAMAAADADaxjx45avXp1he81cO+992rbtm3V3FXdxhlxAAAAALiBORwONWvWrML1nMv95Xh8GQAAAADcwHiOuHkEcQAAAAAADCKIAwAAAABgENeIAwAAAMAN7Pz585o+fXqFark+vGpw13QAAAAAuIGlp6fr/PnzFa738/NT9+7dq7Gjuo8gDgAAAACAQVwjDgAAAACAQQRxAAAAAAAMIogDAAAAAGAQQRwADOndu7fGjRtX021cUUREhObOnXvdbLcqORwOrVq1qqbbqBbTpk1Tx44dq3Sb33zzjRwOhzIzM6t0u9eTJUuWyN/fv1r3UR0/u/LU5fkPALUVQRwADFm5cqWee+65CtVe70Fn6dKluu222yRJ27dv16hRoyq87ubNm+VwOJSbm1tN3VWP119/XbfffrsaNmyohg0bKj4+Xtu2bavw+sOHD5fD4XB69evX76rrLFmy5LJ1yl6nT5/+pYdU7Sr64dSFCxc0fPhwRUdHy9XVVUlJSdXe243k1KlTSkxMrHB9ZT6EWLRokXr37i1fX99yf6/Lft/Le23fvt2usyxLc+bM0c033ywPDw/ddNNNeuGFFyrcMwDUNjxHHAAMCQgIqJH9FhcXy83Nzeg+33//fd19992SpCZNmhjddxnLslRSUiJXVzP/1G3evFn333+/4uLi5OnpqVmzZqlv377at2+fbrrppgpto1+/fkpNTbXfe3h4XLX+vvvuuyysDx8+XBcuXFBgYGDlD6KWKikpkZeXl8aOHat33323ptupc4KDg6tt2+fOnVO/fv3Ur18/JScnX7Y8Li5Op06dchqbMmWKNm3apJiYGHvsySef1IYNGzRnzhxFR0frzJkzOnPmTLX1DQDVjTPiAGDIj8/+RUREaMaMGXrkkUfUoEEDNWvWTIsWLbJrmzdvLknq1KmTHA6HevfubS9bvHixIiMj5enpqbZt2+qvf/2rvazsTPqKFSvUq1cveXp6atmyZRo+fLiSkpI0Z84chYSEqFGjRho9erSKi4uv2K/D4dDChQv1f/7P/5G3t7ciIyOVkZGhQ4cOqXfv3vLx8VFcXJwOHz7stN6FCxe0YcMGO4j/9KvpDodDixcv1q9//Wt5e3urdevWWr16td3/HXfcIUlq2LChHA6Hhg8fLkkqLS1VSkqKmjdvLi8vL3Xo0EH/+Mc/7O2WnVlbt26dOnfuLA8PD33++efq3bu3xo4dq4kTJyogIEDBwcGaNm3aFY+77O/wnXfe0e233y4vLy916dJFBw4c0Pbt2xUTE6P69esrMTFR3377rb3esmXL9Pvf/14dO3ZU27ZttXjxYpWWlmrTpk1X3NdPeXh4KDg42H41bNjwqvVeXl5O9fXq1VNaWppGjBhxWe3ChQsVFhYmb29vDR48WHl5eVfddmlpqWbPnq1WrVrJw8NDzZo1u+wM5JEjR3THHXfI29tbHTp0UEZGhr3su+++0/3336+bbrpJ3t7eio6O1ltvvWUvHz58uD799FO9/PLL9hnQb775ptxefHx8tGDBAo0cOfKKobHsa9xvvvmmmjVrpvr16+v3v/+9SkpKNHv2bAUHByswMLBSZ1Fzc3P1u9/9TkFBQfL09NQtt9yitWvXOtV89NFHioyMVP369dWvX7/LQuXVfl8l6cSJE7r//vsVEBAgHx8fxcTEaOvWreX2c/jwYbVo0UJjxoyRZVn2melVq1apdevW8vT0VEJCgo4fP+603oIFC9SyZUu5u7urTZs2+p//+R+n5T/+anrZ/F+5cmW5P9vNmzfr4YcfVl5env1zu9rv07hx4/T0009f8XnD7u7uTnO4UaNGev/99/Xwww/L4XBIkvbv368FCxbYH/A1b95cnTt31q9+9asr7hcAaj0LAGBEr169rCeffNKyLMsKDw+3AgICrPnz51sHDx60UlJSLBcXF+vrr7+2LMuytm3bZkmyPv74Y+vUqVPWd999Z1mWZf3v//6vFRISYr377rvWkSNHrHfffdcKCAiwlixZYlmWZR09etSSZEVERNg1J0+etIYNG2b5+vpajz32mLV//35rzZo1lre3t7Vo0SK7v/DwcOsvf/mL/V6SddNNN1krVqywsrKyrKSkJCsiIsK68847rfXr11tfffWV1b17d6tfv35Ox7l27Vrr5ptvvup2mzZtai1fvtw6ePCgNXbsWKt+/frWd999Z126dMl69913LUlWVlaWderUKSs3N9eyLMt6/vnnrbZt21rr16+3Dh8+bKWmploeHh7W5s2bLcuyrE8++cSSZLVv397asGGDdejQIeu7776zevXqZfn6+lrTpk2zDhw4YC1dutRyOBzWhg0bnHp67733nP4Oy/ZVdpydO3e2evfubX3++efWrl27rFatWlmPPfbYFX/e+fn5lqenp7VmzZqKTA9r2LBhlp+fn9WkSRPr5ptvth577DHrv//9b4XWLTNnzhzLz8/POnfunD32zDPPWD4+Ptadd95p7d692/r000+tVq1aWQ888MBVtzVx4kSrYcOG1pIlS6xDhw5Zn332mfX6669bluX8d7R27VorKyvLuueee6zw8HCruLjYsizLOnHihPXiiy9au3fvtg4fPmzNmzfPqlevnrV161bLsiwrNzfXio2NtUaOHGmdOnXKOnXqlHXp0qUK/T0NHDjwsvFnnnnGql+/vnXPPfdY+/bts1avXm25u7tbCQkJ1hNPPGF9/fXX1ptvvmlJsr788suf3U9JSYnVvXt3q127dtaGDRusw4cPW2vWrLE+/PBDy7IsKzU11XJzc7Pi4+Ot7du3Wzt37rQiIyOd/l5/7vf17NmzVosWLazbb7/d+uyzz6yDBw9aK1assL744gv7mDp06GBZlmX985//tIKDg60//elP9vbLeoiJibG++OILa8eOHVbXrl2tuLg4u2blypWWm5ubNX/+fCsrK8v685//bNWrV89KS0uza640/8v72RYVFVlz5861fH197Z/b2bNnf/bvs+z38/vvv79q3T/+8Q/LxcXFOn78uD02a9Ys6+abb7bmzJljRUREWOHh4daIESPs/y4CwPWIIA4Ahvw0iP/2t7+1l5WWllqBgYHWggULLMv6f/8zvHv3bqdttGzZ0lq+fLnT2HPPPWfFxsY6rTd37lynmmHDhlnh4eFOQefee++17rvvPvt9eYF58uTJ9vuMjAxLkvXGG2/YY2+99Zbl6enptK+RI0daTz31VIW3W1BQYEmy1q1bZ1lW+f/DfuHCBcvb29sOKGVGjBhh3X///U7rrVq1yqmmV69e1m233eY01qVLF2vSpElOPf00iCxevNjpOCVZmzZtssdSUlKsNm3aWFfy+OOPWy1atLDOnz9/xZofe+utt6z333/f2rNnj/Xee+9ZkZGRVpcuXSoUTstERkZajz/+uNPYM888Y9WrV886ceKEPbZu3TrLxcXFOnXqVLnbyc/Ptzw8POzg/VPl/R3t27fPkmTt37//iv0NGDDA+sMf/mC///HvREVdLYh7e3tb+fn59lhCQoIVERFhlZSU2GNt2rSxUlJSfnY/H330keXi4mJlZWWVuzw1NdWSZB06dMgemz9/vhUUFGS//7nf14ULF1oNGjS4YqAsC+JbtmyxGjZsaM2ZM6fcHn78wcL+/fstSfYHHnFxcdbIkSOd1rv33nut/v372+9/bv7/9Gebmppq+fn5ldvzlVQ0iCcmJlqJiYlOY7/73e8sDw8Pq1u3blZ6err1ySefWB07drTuuOOOSvUAALUJ14gDQA1p3769/WeHw6Hg4OCr3mCrsLBQhw8f1ogRIzRy5Eh7/NKlS/Lz83Oq/fG1lWXatWunevXq2e9DQkK0d+/eCvcYFBQkSYqOjnYau3DhgvLz8+Xr6yvLsrRmzRq98847Fd6uj4+PfH19r3rshw4d0rlz5y77KurFixfVqVMnp7Hyjv3H+5N+OPafu5lZRY79StuYOXOm3n77bW3evFmenp5X3U+ZIUOG2H+Ojo5W+/bt1bJlS23evFl9+vRRYmKiPvvsM0lSeHi49u3b57R+RkaG9u/ff9nXjiWpWbNmTtepx8bGqrS0VFlZWTp48KDTjboWLlyo1q1bq6ioSH369Llqzz/+OwoJCZEknT59Wm3btlVJSYlmzJihd955R//5z3908eJFFRUVydvb+6rbbNeunf79739Lkm6//XatW7fuqvU/FhERoQYNGtjvg4KCVK9ePbm4uDiNVeRGdpmZmWratKluvvnmK9Z4e3urZcuW9vsfz6uK/L5mZmaqU6dOV71/xLFjx/SrX/1KL7zwQrk3tnN1dVWXLl3s923btpW/v7/279+vrl27av/+/ZfdLLFHjx56+eWXr3r8V/vZlmfGjBmaMWOG/f6rr75Ss2bNrrqPnzpx4oQ++uijy/77UVpaqqKiIv3tb3+zfx5vvPGGOnfurKysLLVp06ZS+wGA2oAgDgA15Kc3UHM4HCotLb1ifUFBgaQf7s7drVs3p2U/DtjSD+H2l+7vp+uUXa9Z3ljZdrZt26ZLly4pLi6uwtutSC9lx/7BBx9cduOzn97QzOSxl7eNOXPmaObMmfr4448v+wCgMlq0aKHGjRvr0KFD6tOnjxYvXqzz58+XezzSD9cid+zYUZ07d67UfmJiYpzuzh8UFHTFa7V/6mpz4cUXX9TLL7+suXPnKjo6Wj4+Pho3bpwuXrx41W1++OGH9r0LvLy8KnEk5f+cr+VnX9F9l7dty7IkVez3tSL7aNKkiUJDQ/XWW2/pkUceka+v78+uUxWu9rMtz2OPPabBgwfb70NDQyu9z9TUVDVq1Mi+v0SZkJAQubq6On0oEhkZKemHDyoI4gCuRwRxAKiF3N3dJf1wt+gyQUFBCg0N1ZEjRzR06NCaau2q3n//fQ0YMOCyDwYqo7xjj4qKkoeHh44dO6ZevXr94j6ry+zZs/XCCy/oo48+KvfMfGWcOHFC3333nX028mp3Xi8oKNA777yjlJSUcpcfO3ZMJ0+etMPRl19+KRcXF7Vp00ZeXl5q1aqVU33r1q3l5eWlTZs26dFHH72m/rds2aKBAwfqt7/9raQfQtyBAwcUFRVl17i7uzv9nKUfzvbXBu3bt9eJEyd04MCBq54Vv5KK/L62b99eixcv1pkzZ654VtzLy0tr165V//79lZCQoA0bNjid9b906ZJ27Nihrl27SpKysrKUm5trB9XIyEht2bJFw4YNs9fZsmWL08+hssr7uQUEBPyiJ0NYlqXU1FQ99NBDl33A0aNHD126dEmHDx+2v4Fw4MABSbVnvgBAZRHEAaAWCgwMlJeXl9avX6+mTZvK09NTfn5+evbZZzV27Fj5+fmpX79+Kioq0o4dO/T9999rwoQJNd22Vq9erenTp/+ibYSHh8vhcNjhw8vLSw0aNNBTTz2l8ePHq7S0VLfddpvy8vK0ZcsW+fr6OoWMmjJr1ixNnTpVy5cvV0REhLKzsyVJ9evXV/369a+6bkFBgZ599lkNGjRIwcHBOnz4sCZOnKhWrVopISHhZ/e9YsUKXbp0yQ69P+Xp6alhw4Zpzpw5ys/P19ixYzV48OAr3oHc09NTkyZN0sSJE+Xu7q4ePXro22+/1b59+8q9I3t5WrdurX/84x/64osv1LBhQ7300kvKyclxCoARERHaunWrvvnmG9WvX18BAQFOXyP/sa+++koXL17UmTNndPbsWfssfseOHSvUT2X16tVLPXv21KBBg/TSSy+pVatW+vrrryv0fPcyP/f7ev/992vGjBlKSkpSSkqKQkJCtHv3boWGhio2Ntbejo+Pjz744AMlJiYqMTFR69evt+eUm5ubnnjiCc2bN0+urq4aM2aMunfvbgfzP/7xjxo8eLA6deqk+Ph4rVmzRitXrtTHH398zX83ERERKigo0KZNm9ShQwd5e3tf8ZKD7OxsZWdn69ChQ5KkvXv32k+K+HFwT0tL09GjR8v94Cc+Pl633nqrHnnkEc2dO1elpaUaPXq0fvWrX13ThyQAUBvw+DIAqIVcXV01b948LVy4UKGhoRo4cKAk6dFHH9XixYuVmpqq6Oho9erVS0uWLLEfd1aTDh8+rEOHDlUoOF7NTTfdpGeffVZPP/20goKCNGbMGEnSc889pylTpiglJUWRkZHq16+fPvjgg1px7NIPj4i6ePGi7rnnHoWEhNivOXPm/Oy69erV0549e3T33Xfr5ptv1ogRI9S5c2d99tlnP/sscemH62V/85vfyN/fv9zlrVq10m9+8xv1799fffv2Vfv27S97jNZPTZkyRX/4wx80depURUZG6r777qvQtdVlJk+erFtvvVUJCQnq3bu3goODlZSU5FTz1FNPqV69eoqKilKTJk107NixK26vf//+6tSpk9asWaPNmzerU6dOl90foKq9++676tKli+6//35FRUVp4sSJl50Jvpqf+311d3fXhg0bFBgYqP79+ys6OlozZ84s9xsl9evX17p162RZlgYMGKDCwkJJP1ynPmnSJD3wwAPq0aOH6tevrxUrVtjrJSUl6eWXX9acOXPUrl07LVy4UKmpqU6PRKysuLg4PfbYY7rvvvvUpEkTzZ49+4q1r732mjp16mRfJ9+zZ0916tTJfmRhmTfeeENxcXHlXoPu4uKiNWvWqHHjxurZs6cGDBigyMhIvf3229d8DABQ0xxW2cVMAAD8Ai+99JI+/vhjffjhhzXdCnBDWLJkicaNG6fc3NyabgUAUEmcEQcAVImmTZsqOTm5ptsAAACo9QjiAIAqMXjwYN1+++013Uat9Nlnn9nXipf3gnnLli274s+jXbt2Nd0eAKCO46vpAABUs/Pnz+s///nPFZf/9K7lqH5nz55VTk5Oucvc3Ny4GzcAoFoRxAEAAAAAMIivpgMAAAAAYBBBHAAAAAAAgwjiAAAAAAAYRBAHAAAAAMAggjgAAAAAAAYRxAEAAAAAMIggDgAAAACAQQRxAAAAAAAM+r+jGeKyzR6oCAAAAABJRU5ErkJggg==","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["for col in df.columns[5:]:\n"," print(\"*\" * 10, col, \"*\" * 10)\n"," print(df[col].value_counts())\n"," plot_value_counts(df, col)"]},{"cell_type":"code","execution_count":null,"metadata":{},"outputs":[],"source":["import pandas as pd\n","import numpy as np\n","from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score\n","\n","\n","def calc_metrics_for_col(df, col):\n"," y_true = df[\"label\"]\n"," y_pred = df[col]\n","\n"," accuracy = accuracy_score(y_true, y_pred)\n"," precision = precision_score(y_true, y_pred, average=\"weighted\", labels=np.unique(y_pred))\n"," recall = recall_score(y_true, y_pred, average=\"weighted\", labels=np.unique(y_pred))\n"," f1 = f1_score(y_true, y_pred, average=\"weighted\", labels=np.unique(y_pred))\n","\n"," return accuracy, float(precision), float(recall), float(f1)"]},{"cell_type":"code","execution_count":null,"metadata":{},"outputs":[{"name":"stderr","output_type":"stream","text":["/tmp/ipykernel_26059/961288552.py:9: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n"," perf_df = pd.concat([perf_df, pd.DataFrame([new_model_metrics])], ignore_index=True)\n","/home/inflaton/miniconda3/envs/llama-factory/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1517: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.\n"," _warn_prf(average, modifier, f\"{metric.capitalize()} is\", len(result))\n"]},{"data":{"text/html":["
\n","\n","
\n"," \n","
\n","
\n","
epoch
\n","
model
\n","
accuracy
\n","
precision
\n","
recall
\n","
f1
\n","
\n"," \n"," \n","
\n","
0
\n","
0
\n","
internlm/internlm2_5-7b-chat-1m
\n","
0.759667
\n","
0.741854
\n","
0.781014
\n","
0.758887
\n","
\n","
\n","
1
\n","
1
\n","
internlm/internlm2_5-7b-chat-1m_checkpoint-44
\n","
0.761667
\n","
0.810873
\n","
0.761667
\n","
0.780018
\n","
\n","
\n","
2
\n","
2
\n","
internlm/internlm2_5-7b-chat-1m_checkpoint-88
\n","
0.741333
\n","
0.816182
\n","
0.741333
\n","
0.769524
\n","
\n","
\n","
3
\n","
3
\n","
internlm/internlm2_5-7b-chat-1m_checkpoint-132
\n","
0.755000
\n","
0.809829
\n","
0.755000
\n","
0.775657
\n","
\n","
\n","
4
\n","
4
\n","
internlm/internlm2_5-7b-chat-1m_checkpoint-176
\n","
0.719000
\n","
0.803611
\n","
0.719000
\n","
0.750460
\n","
\n"," \n","
\n","
"],"text/plain":[" epoch model accuracy precision \\\n","0 0 internlm/internlm2_5-7b-chat-1m 0.759667 0.741854 \n","1 1 internlm/internlm2_5-7b-chat-1m_checkpoint-44 0.761667 0.810873 \n","2 2 internlm/internlm2_5-7b-chat-1m_checkpoint-88 0.741333 0.816182 \n","3 3 internlm/internlm2_5-7b-chat-1m_checkpoint-132 0.755000 0.809829 \n","4 4 internlm/internlm2_5-7b-chat-1m_checkpoint-176 0.719000 0.803611 \n","\n"," recall f1 \n","0 0.781014 0.758887 \n","1 0.761667 0.780018 \n","2 0.741333 0.769524 \n","3 0.755000 0.775657 \n","4 0.719000 0.750460 "]},"execution_count":19,"metadata":{},"output_type":"execute_result"}],"source":["import pandas as pd\n","\n","perf_df = pd.DataFrame(columns=[\"epoch\", \"model\", \"accuracy\", \"precision\", \"recall\", \"f1\"])\n","for i, col in enumerate(df.columns[5:]):\n"," accuracy, precision, recall, f1 = calc_metrics_for_col(df, col)\n"," new_model_metrics = {\"epoch\": i, \"model\": col, \"accuracy\": accuracy, \"precision\": precision, \"recall\": recall, \"f1\": f1}\n","\n"," # Convert the dictionary to a DataFrame and concatenate it with the existing DataFrame\n"," perf_df = pd.concat([perf_df, pd.DataFrame([new_model_metrics])], ignore_index=True)\n","\n","perf_df"]},{"cell_type":"code","execution_count":null,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABE0AAAHACAYAAABXiZaAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABduUlEQVR4nO3de1hU1f7H8c+AAqKCIglqKHnJSyKoKKGWpiRZx7I6hVaK5OVUUhrdJC9oVqiVaWlSpmmnVLrnOXpQI7HyEgpRmoSXVKwEtIsKFigzvz/6OTmxUQZnQOT9ep55Hmfttff+7pkRnQ9rrW2yWCwWAQAAAAAAwIZLdRcAAAAAAABwMSI0AQAAAAAAMEBoAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAzUqe4CKsJsNuunn35Sw4YNZTKZqrscAAAAAMAlzmKx6MSJE2revLlcXBhvUFvViNDkp59+UkBAQHWXAQAAAACoZQ4dOqTLL7+8ustANakRoUnDhg0l/flh9fLyquZqAAAAAACXuuPHjysgIMD6fRS1U40ITc5MyfHy8iI0AQAAAABUGZaIqN2YmAUAAAAAAGCA0AQAAAAAAMAAoQkAANVswYIFCgwMlIeHh8LCwpSenn7O/nPnzlX79u1Vr149BQQE6OGHH9Yff/xh3Z6YmKgePXqoYcOGatq0qYYMGaKcnBxnXwYAAMAlh9AEAIBqlJycrLi4OCUkJCgzM1PBwcGKjIxUQUGBYf/ly5dr4sSJSkhIUHZ2thYvXqzk5GQ9+eST1j4bN27UuHHjtHXrVq1fv16nTp3SwIEDVVRUVFWXBQAAcEkwWSwWS3UXcT7Hjx+Xt7e3jh07xkKwAIBLSlhYmHr06KH58+dLksxmswICAvTggw9q4sSJZfrHxsYqOztbqamp1rZHHnlEX375pb744gvDcxw5ckRNmzbVxo0bde211zrnQgAAuMTwPRQSI00AXOQcPW3hs88+0+DBg9W8eXOZTCZ99NFHTr4CoHwlJSXKyMhQRESEtc3FxUURERHasmWL4T69evVSRkaG9e/C999/rzVr1ujGG28s9zzHjh2TJPn4+DiwesA+/DwHANREhCYALlrOmLZQVFSk4OBgLViwoKouAyjX0aNHVVpaKj8/P5t2Pz8/5eXlGe5z11136amnnlKfPn1Ut25dtWnTRv369bP5nJ/NbDZrwoQJ6t27tzp37uzwawAqgp/nAICaqk51FwAA5ZkzZ47GjBmjmJgYSVJSUpJWr16tJUuWGE5b2Lx5s3r37q277rpLkhQYGKhhw4bpyy+/tPYZNGiQBg0aVDUXADhBWlqann32Wb3yyisKCwvT3r17NX78eM2YMUNTpkwp03/cuHHauXNnuVN3gKrAz3MAQE3FSBMAF6WqmrYAVCdfX1+5uroqPz/fpj0/P1/+/v6G+0yZMkXDhw/X6NGjFRQUpFtvvVXPPvusEhMTZTabbfrGxsbqv//9rzZs2KDLL7/cadcBnAs/z1GbOHoaWmWOCcCxCE0AXJSqYtoCUN3c3NzUvXt3m0VdzWazUlNTFR4ebrjPyZMn5eJi+8+3q6urJOnM2u4Wi0WxsbH68MMP9emnn+qKK65w0hUA58fPc9QWzpiGZu8xATgeoQmAS8bZ0xYyMzP1wQcfaPXq1ZoxY0Z1lwaUKy4uTosWLdKyZcuUnZ2t+++/X0VFRdZpDCNGjFB8fLy1/+DBg7Vw4UKtXLlS+/fv1/r16zVlyhQNHjzYGp6MGzdOb731lpYvX66GDRsqLy9PeXl5+v3336vlGgF78fMcNdHZ09A6deqkpKQkeXp6asmSJYb9z56GFhgYqIEDB2rYsGE2I0nsPSYAx2NNEwAXpQudtiBJQUFBKioq0tixYzVp0qQyv50HLgZRUVE6cuSIpk6dqry8PIWEhCglJcX6W/nc3Fybz+7kyZNlMpk0efJk/fjjj7rssss0ePBgPfPMM9Y+CxculCT169fP5lxvvPGGRo4c6fRrAs7Gz3PUBmemoZ0dcldkGtpbb72l9PR09ezZ0zoNbfjw4ZU+JgDHIzQBcFE6e9rCkCFDJP01bSE2NtZwn4pMWwAuRrGxseV+rtPS0mye16lTRwkJCUpISCj3eHzecTHh5zlqg3NNQ/vuu+8M97nrrrt09OhR9enTRxaLRadPn9Z9991nnZ5TmWMCcDxCEwAXrbi4OEVHRys0NFQ9e/bU3Llzy0xbaNGihRITEyX9OW1hzpw56tq1q/WuIn+ftlBYWKi9e/daz7F//35lZWXJx8dHLVu2rPqLBIBagJ/nQFn23g0NQPUgNAFw0XLGtIXt27fruuuusz6Pi4uTJEVHR2vp0qVVc2EAUMvw8xyXOmdMQ6vMMQE4nslSA8Y4Hj9+XN7e3jp27Ji8vLyquxwAABxrmreTj3/MuccHACgsLEw9e/bUyy+/LOnPaWgtW7ZUbGysJk6cWKZ/9+7dFRERoVmzZlnbVqxYoVGjRunEiRNydXW1+5hwLL6HQmKkCQAAAABcMGdMQzvfMQE4H6EJgIsbv4EHAAA1gDOmoZ3vmACcr1LTcxYsWKDnnntOeXl5Cg4O1ssvv6yePXuW23/u3LlauHChcnNz5evrq3/+859KTEyUh4dHhc7HsKiqZ8973K9fP23cuLFM+4033qjVq1dL+nOxtokTJ+qjjz7Szz//rCuuuEIPPfSQ7rvvPqdeBy4BhCaoDficozbgcw6ghuF7KCTJ7pvcJycnKy4uTgkJCcrMzFRwcLAiIyNVUFBg2H/58uWaOHGiEhISlJ2drcWLFys5Odl6Ky1cfOx9jz/44AMdPnzY+ti5c6dcXV11xx13WPvExcUpJSVFb731lrKzszVhwgTFxsZq1apVVXVZQJVasGCBAgMD5eHhobCwMKWnp5fbt1+/fjKZTGUeN910k7VPYWGhYmNjdfnll6tevXrq1KmTkpKSquJSAAAAgFrL7tBkzpw5GjNmjGJiYqz/aff09NSSJUsM+2/evFm9e/fWXXfdpcDAQA0cOFDDhg075xcIVC9732MfHx/5+/tbH+vXr5enp6dNaLJ582ZFR0erX79+CgwM1NixYxUcHMznAJckgkcAAADg0mDXmiYlJSXKyMhQfHy8tc3FxUURERHasmWL4T69evXSW2+9pfT0dPXs2VPff/+91qxZo+HDh5d7nuLiYhUXF1ufHz9+3J4ycQEq8x7/3eLFizV06FDVr1/f2tarVy+tWrVK9957r5o3b660tDTt3r1bL774osOvAahuZwePkpSUlKTVq1dryZIlhivd+/j42DxfuXLlOYNHSRo7dqxeffVVpaen6+abb3bexQBALceUZdiFaWjAJceukSZHjx5VaWlpmYWH/Pz8lJeXZ7jPXXfdpaeeekp9+vRR3bp11aZNG/Xr1++c03MSExPl7e1tfQQEBNhTJi5AZd7js6Wnp2vnzp3W+82f8fLLL6tTp066/PLL5ebmphtuuEELFizQtdde69D6gep2JniMiIiwtjkyePzxxx9lsVi0YcMG7d69WwMHDnT4NQAA/sTIQQCA3dNz7JWWlqZnn31Wr7zyijIzM/XBBx9o9erVmjFjRrn7xMfH69ixY9bHoUOHnF0mHGTx4sUKCgoq8xuYl19+WVu3btWqVauUkZGhF154QePGjdMnn3xSTZUCzkHwiNrE0Wv3GG03mUx67rnnquJygDKYsgwAsGt6jq+vr1xdXZWfn2/Tnp+fL39/f8N9pkyZouHDh1u/AAQFBamoqEhjx47VpEmTbG67dYa7u7vc3d3tKQ0OUpn3+IyioiKtXLlSTz31lE3777//rieffFIffvih9T/HXbp0UVZWlp5//nmb38gDtV1FgsdWrVrps88+07hx49S8eXP+DqFanPkNfFJSksLCwjR37lxFRkYqJydHTZs2LdP/gw8+UElJifX5zz//rODgYJsvk4cPH7bZ53//+59GjRql22+/3XkXApSDKcsAAMnOkSZubm7q3r27UlNTrW1ms1mpqakKDw833OfkyZNlghFXV1dJUiXudgwnq8x7fMa7776r4uJi3XPPPTbtp06d0qlTpww/B2az2XHFAxcBRwSPo0aNsmk/EzzOmTNHgwcPVpcuXRQbG6uoqCg9//zzDr8GoCKc8Rv4s7f7+/vr448/1nXXXafWrVtX1WUBVowcBABIlZieExcXp0WLFmnZsmXKzs7W/fffr6KiIuuChyNGjLBJ5AcPHqyFCxdq5cqV2r9/v9avX68pU6Zo8ODB1vAEFxd73+MzFi9erCFDhqhJkyY27V5eXurbt68ee+wxpaWlaf/+/Vq6dKnefPNN3XrrrVVyTUBVIXhEbeCstXvOlp+fr9WrV5cJEYGaginLAHBpsDs0OfObzalTpyokJERZWVlKSUmxpvC5ubk2w2snT56sRx55RJMnT1anTp00atQoRUZG6tVXX3XcVcCh7H2PJSknJ0dffPFFuf+5XblypXr06KG7775bnTp10syZM/XMM8+wUvwlwNFrGkhSdna2br75Znl7e6v+s8fVY1Ghco85PhxYkF7ilNpPnz6t+fPny93dXZ07d9bw4cMJHnFJcdZv4M+2bNkyNWzYULfddtsF1wtUBiMHAQBSJReCjY2N1cGDB1VcXKwvv/xSYWFh1m1paWlaunSp9XmdOnWUkJCgvXv36vfff1dubq4WLFigRo0aXWjtFz2nf5msX189evRQbm6uw2u35z2WpPbt28tisej66683PJ6/v7/eeOMN/fjjj3r++ef1xx9/6Mknn9TVV19do14X2HLGXQX27dunPn36qEOHDkpLS9M39zXQlGvd5WHXCkwVqH3nKcWt+8MptQ8YMECPP/64fH19lZOTo+zsbIJH4Czl/Qb+bEuWLNHdd98tDw+PKqwM+AsjBwEAkp0LwaLinLFA3pkvZKNGjdL06dPl5eWlb7/9tkb9h5LX5dJy9poGkpSUlKTVq1dryZIlmjhxYpn+Pj4+Ns9XrlxZZk2DSZMm6cYbb9Ts2bP/bPjYRW18HH+jrzlbizWmW12n1j5r1izDc6elpZVpOxM8ludM8AhcDJyxaPjZPv/8c+Xk5Cg5Odkh9QKVFRcXp+joaIWGhqpnz56aO3dumZGDLVq0UGJios1+FRk5WK9ePbVq1UobN27Um2++qTlz5lTZdQEAKs7ptxyurZyxQN7ZX8i6du2qNm3a6OabbzYMGy5WvC6XDmesaWA2m7V69WpdeeWVioyMVNOmTRX2eqE++u6UY2svtSjjJ7MiWv+VGzul9rAwffTRRw6tHbgYOOM38GdbvHixunfvruDgYIfVjPNjumXZ2t9++22ZTCbFxMToqquuUnp6OiMHAaCWYaSJEzjjFnVnvpA9/vjjioyM1FdffaUrrrhC8fHxGjJkiDMuQ0HLghx6PPNps3Zt36W8sDzN13xJNfN1wZ/OtabBd999d979z6xpsHjxYmtbQUGBCgsLNXPmTD399NOaNWuWUh69Wrcl/64N0Sb1DXTMj6yjJy0qtUh+9U1Orf3N6wfqtltv1dKAlurh6emQ2s/o+F22Q48H2MvRv4E/4/jx43r33Xf1wgsvOP0a8JcqGQn6xrX69kip06ZbJi1KcPoo1quvvtrmmIwcBIBLHyNNnMAZC+Sd/YXshhtu0Lp163Trrbfqtttu08aNGx1+Dc5QeqJUMkt1vG3/t1TbX5faymhNgzPzuW+55RY9/PDDCgkJ0cQ+7vrHlXWUlFFS3qGqXEVrH9OkifrVb6Dk336trlIBp3HGouHSn7+Ft1gsGjZsmFPrh60qGQnq46Kb29dV0/qO/e/n2dMtGcUKVI6jR5qNHDmyzPYbbrihKi4FcDhGmlyEKvKFTJJCQkK0efNmJSUlqW/fvtVSa1Xidbm4OGNNA19fX9WpU0edOnWyae/o66IvDpU6pnBJvp4muZqk/CLb3wQ6o/bW7m7KPPm7YwoHLjKxsbGKjY013FaZ38BL0tixYzV27FhHlIcKqrIRsm6Fiu/jriEd6jqu9v+fbhnfx92ptfufOKExPk0U0bChw2o/g5GDqG7OGGkmSTfccIPNqCp3d3cBNREjTZzAGbeoK/fLZMeONeYuMa4NXSUX6fSx0zbttf11qamcsaaBm5ubevTooZycHJv23b+Y1crbdirNBdXualL35i5K/f6vz6Kzaj9QUqLmdR33BQEAHK3KRsh2qKvbkn/XxgOnz3E0O2s/x3RLR9Ye0aChxv/0o7adPOmw2oGLhTNGmkl/hiRn92vcuHFVXA7gcIQmTlClXyZ371arVq0cV7wTudRxUb3AeircVWht43Wp2eLi4rRo0SItW7ZM2dnZuv/++8usaXD2by7PONeaBo899piSk5O1aNEi7d27V/PTS/SfnNN6oIebY2u/2l2LMk85tfa3f/1VaYWFGloLbrEOoPZiuiVQczljYf8z0tLS1LRpU7Vv317333+/fv75Z4fWDlQVQhMnqYovk3feeac++ugjvf/++w5bKf6M++67TztH7tTRtUcr+QoY84301a8bf3Xul+z58/Wf//xHDzzwgENrR1nOWNPg1ltvVVJSkmbPnq2goCC9nlmi9++spz4tHTubMKpzXT0/0MOptb937DfNbd5C3R28CCyqnjPuKnLGfffdJ9P045q7tdg5tTvhriI2tZtMim/qp+wOHR3+QNWo0hGyvi7KPXbuKVr2cMR0y4rW3trdTYdPOW6UDHAxcMZIM+nPqTlvvvmmUlNTNWvWLG3cuFGDBg1SaanjplsDVYU1TZwkKipKR44c0dSpU5WXl6eQkJAyX8hcXGwzqzNfyNatW2d4zDNfyBITEzVu3DidPn1aDz74oO677z6HzT2UpA8//FBbt25VnUaO/3h4h3nr9InTTntdHnroIbVv317vv/+++vTp4/D6UZYz1jS49957de+99/75ZJr3hZZYrtiebopdc9BwmyNq50vfpcFZc72lv37eNm/ouOlnNrU74a4if6+9aR3+K1HTnT1C9syd586MBC3v5/sZF9N0yyH/3+as2pluCZRlNFpLkoYOHWr9c1BQkLp06aI2bdooLS1NAwYMqOoygQvC/3ScyJlfJsPCwtSjRw+99NJLkqSkpCStXr1aS5Ys0cSJE8vs5+PjY/N85cqVhnMPf/zxRz344INau3atuvbtes5aKqtJRBPt+PcOw20O+ZINAA509lxvyTk/b2/q7dhbvFtrP+uuIs6qfWBIiFNqR9Vyxi2kH3vsMUVFRenaa6/Vddddp5T/n26ZNtKxo+/irnZX9Ee/K3TZMqfVfma65dKAlg6tHahuzljY30jr1q3l6+urvXv3EpqgxmF6Tg3krLmHZrNZw4cP12OPPaarrrrK4XUDQE1Tk3/enrmrSETrv34/UlNqR9VjuuW5a2e6JS5VzliL0cgPP/ygn3/+Wc2aNbvgmoGqxkgTJwucuNrhxzx94udy5x5+9913593/zNzDxYsX27TPmjVLderU0UMPPeTQenHpc8bn/IwDHk47tCQpaJlzfsMvSe847cioKuea632x/7w9111FLvbaUT2YbmmL6ZaoLRw90qywsFDTp0/X7bffLn9/f+3bt0+PP/642rZtq8jIyCq7LsBRCE1qIaO5hxkZGZo3b54yMzNlMjlnbv3ZnPmfj47fZTvt2ABgj4vh521l1eTaAQAV5+i1GF1dXfXNN99o2bJl+u2339S8eXMNHDhQM2bMkLu7e5VcE+BIhCY1kKunl2Rycejcw88//1wFBQVq2fKvubqlpaXKW5mnn9f9rPYvtHfcBQBADeGMud7GP28temRdseZuLdGBCQ0dU7sD7ipS0X8rZh8p0Ju//qJP2rR1SO0AgKrlyJFm9erV09q1ax1ZHlCtCE1qIJNrXbn5t3XoKvfDhw+3mbMvSV2v6apGvRqp8TWNHVo/ANQUzririNHP28heXTS8S13FhDjuzhzOuKuIUe0DunbVzV5eutXbeVMvUHWYbmmM6ZYAUHsRmtRQXj2GaNGieQ6be9ikSZMybSZXk+p415F7M4bRAai9HD3X2+jnbV0Xyb+BSe19XR1bu4PvKmJUex1Jvq51dIUb/1YAAIBLD6FJDVW/47VKuD7AYXMPAQDGHD3XuypFda6rIyctNbJ2AEDVYs1BwBihSQ3mjFXubfqzjgkASHL+z1tHrWNixBl3FTkb65gAqEkWLFig5557Tnl5eQoODtbLL79ss+D12fr166eNGzeWab/xxhu1evVqnTp1SpMnT9aaNWv0/fffy9vbWxGX/a6ZEe5q3tDF4IgXWHt6iZ4LDHRa7T2KihR32WVqWsdxU0WBS4Hj/zYDAAAAwEUmOTlZcXFxSkhIUGZmpoKDgxUZGamCggLD/h988IEOHz5sfezcuVOurq664447JEknT55UZmampkyZoszMTH3wwQfK+blUN6846fjad55S3Lo/nFr7/pISjfvhR4fXDtR0jDSpyaY5edG9K1qevw8AAABQA8yZM0djxoyxruuUlJSk1atXa8mSJZo4cWKZ/j4+PjbPV65cKU9PT2vw4O3trfXr19v0mT+onnq+XqTcY2a19Hbc76fnbC3WmG51nVr75KZ+iso9qJ9OnVLzuow2Ac4gNAEAoAK4q4gx7ioCoCYoKSlRRkaG4uPjrW0uLi6KiIjQli1bKnSMxYsXa+jQoapfv365fY4VW2SS1MjDdKElW5WUWpTxk1nxff5acNsZtZ8wm2WS5OXCZATgbPyNAAAAAHBJO3r0qEpLS60LYZ/h5+envLy88+6fnp6unTt3avTo0eX2+eOPP/TEJ39oWFAdebk7LjQ5etKiUovkV9/2mI6ufc6RAt3Y0EsNXB17JzegpiM0AQAAAIBzWLx4sYKCgspdePXUqVO68847ZbFIC2+qV8XVnVuFa5eU8LdQCQChCQAAAIBLnK+vr1xdXZWfn2/Tnp+fL39//3PuW1RUpJUrV2rUqFGG28+EDgcPHtT64Z4OHWUiSb6eJrmapPwi2zubObr2xQEtGWUCGCA0AQAAAHBJc3NzU/fu3ZWammptM5vNSk1NVXh4+Dn3fffdd1VcXKx77rmnzLYzocOePXv0ySefqImn479eubma1L25i1K/P+3U2hsRmACGCE0AAAAAXPLi4uK0aNEiLVu2TNnZ2br//vtVVFRkvSPNiBEjbBaKPWPx4sUaMmSImjRpYtN+6tQp/fOf/9T27dv19ttvq7S0VHmFZuUVmlVSailznAuq/Wp3Lco85dTaj5w+rSOnT6vE4tjagZqOu+cAAAAAuORFRUXpyJEjmjp1qvLy8hQSEqKUlBTr4rC5ubly+dudY3JycvTFF19o3bp1ZY73448/atWqVZKkkJAQm20boj3VL9BxX7WiOtfVkZOWKql9aUCAenqWf5cdoLYhNAEAAABQK8TGxio2NtZwW1paWpm29u3by1LOyIvAwMCy26Z5X2iJ5Yrt6abYNQcNtzmi9uwOHS+4RuBSxPQcAAAAAAAAA4QmAAAAAAAABpieAwAAAKDWCJy42mnHPuDhtENLkoKWBTnt2O847chAzcZIEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAxUKjRZsGCBAgMD5eHhobCwMKWnp5fbt1+/fjKZTGUeN910U6WLBgAAAAAAcDa7Q5Pk5GTFxcUpISFBmZmZCg4OVmRkpAoKCgz7f/DBBzp8+LD1sXPnTrm6uuqOO+644OIBAAAAAACcxe7QZM6cORozZoxiYmLUqVMnJSUlydPTU0uWLDHs7+PjI39/f+tj/fr18vT0JDQBAAAAAAAXNbtCk5KSEmVkZCgiIuKvA7i4KCIiQlu2bKnQMRYvXqyhQ4eqfv365fYpLi7W8ePHbR4AAAAAAABVya7Q5OjRoyotLZWfn59Nu5+fn/Ly8s67f3p6unbu3KnRo0efs19iYqK8vb2tj4CAAHvKBAAAAAAAuGBVevecxYsXKygoSD179jxnv/j4eB07dsz6OHToUBVVCAAAAAAA8Kc69nT29fWVq6ur8vPzbdrz8/Pl7+9/zn2Lioq0cuVKPfXUU+c9j7u7u9zd3e0pDQAAAAAAwKHsGmni5uam7t27KzU11dpmNpuVmpqq8PDwc+777rvvqri4WPfcc0/lKgUAAAAAAKhCdo00kaS4uDhFR0crNDRUPXv21Ny5c1VUVKSYmBhJ0ogRI9SiRQslJiba7Ld48WINGTJETZo0cUzlAAAAAAAATmR3aBIVFaUjR45o6tSpysvLU0hIiFJSUqyLw+bm5srFxXYAS05Ojr744gutW7fOMVUDAAAAAAA4md2hiSTFxsYqNjbWcFtaWlqZtvbt28tisVTmVAAAAAAAANWiSu+eAwAAAAAAUFMQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYqFRosmDBAgUGBsrDw0NhYWFKT08/Z//ffvtN48aNU7NmzeTu7q4rr7xSa9asqVTBAAAAAAAAVaGOvTskJycrLi5OSUlJCgsL09y5cxUZGamcnBw1bdq0TP+SkhJdf/31atq0qd577z21aNFCBw8eVKNGjRxRPwAAAAAAgFPYHZrMmTNHY8aMUUxMjCQpKSlJq1ev1pIlSzRx4sQy/ZcsWaJffvlFmzdvVt26dSVJgYGBF1Y1AAAAAACAk9k1PaekpEQZGRmKiIj46wAuLoqIiNCWLVsM91m1apXCw8M1btw4+fn5qXPnznr22WdVWlpa7nmKi4t1/PhxmwcAAAAAAEBVsis0OXr0qEpLS+Xn52fT7ufnp7y8PMN9vv/+e7333nsqLS3VmjVrNGXKFL3wwgt6+umnyz1PYmKivL29rY+AgAB7ygQAAAAAALhgTr97jtlsVtOmTfXaa6+pe/fuioqK0qRJk5SUlFTuPvHx8Tp27Jj1cejQIWeXCQAAAAAAYMOuNU18fX3l6uqq/Px8m/b8/Hz5+/sb7tOsWTPVrVtXrq6u1raOHTsqLy9PJSUlcnNzK7OPu7u73N3d7SkNAAAAAADAoewaaeLm5qbu3bsrNTXV2mY2m5Wamqrw8HDDfXr37q29e/fKbDZb23bv3q1mzZoZBiYAAAAAAAAXA7un58TFxWnRokVatmyZsrOzdf/996uoqMh6N50RI0YoPj7e2v/+++/XL7/8ovHjx2v37t1avXq1nn32WY0bN85xVwEAAAAAAOBgdt9yOCoqSkeOHNHUqVOVl5enkJAQpaSkWBeHzc3NlYvLX1lMQECA1q5dq4cfflhdunRRixYtNH78eD3xxBOOuwoAAAAAAAAHszs0kaTY2FjFxsYabktLSyvTFh4erq1bt1bmVAAAAAAAANXC6XfPAQAAAAAAqIkITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAbqVHcBAAAAAADURGazWSUlJdVdBuxUt25dubq6VqgvoQkAAAAAAHYqKSnR/v37ZTabq7sUVEKjRo3k7+8vk8l0zn6EJgAAAAAA2MFisejw4cNydXVVQECAXFxY+aKmsFgsOnnypAoKCiRJzZo1O2d/QhMAAAAAAOxw+vRpnTx5Us2bN5enp2d1lwM71atXT5JUUFCgpk2bnnOqDnEYAAAAAAB2KC0tlSS5ublVcyWorDNh16lTp87Zj9AEAAAAAIBKON96GLh4VfS9IzQBAAAAAAAwQGgCAAAAAABggIVgAQAAAABwgMCJq6v0fAdm3lSl56uNKjXSZMGCBQoMDJSHh4fCwsKUnp5ebt+lS5fKZDLZPDw8PCpdMAAAAAAAuDScbyHW6mZ3aJKcnKy4uDglJCQoMzNTwcHBioyMtN7j2IiXl5cOHz5sfRw8ePCCigYAAAAAAPZLSUlRnz591KhRIzVp0kT/+Mc/tG/fPuv2H374QcOGDZOPj4/q16+v0NBQffnll9bt//nPf9SjRw95eHjI19dXt956q3WbyWTSRx99ZHO+Ro0aaenSpZKkAwcOyGQyKTk5WX379pWHh4fefvtt/fzzzxo2bJhatGghT09PBQUFacWKFTbHMZvNmj17ttq2bSt3d3e1bNlSzzzzjCSpf//+io2Ntel/5MgRubm5KTU19YJeL7tDkzlz5mjMmDGKiYlRp06dlJSUJE9PTy1ZsqTcfUwmk/z9/a0PPz+/CyoaAAAAAADYr6ioSHFxcdq+fbtSU1Pl4uKiW2+9VWazWYWFherbt69+/PFHrVq1Sl9//bUef/xxmc1mSdLq1at166236sYbb9RXX32l1NRU9ezZ0+4aJk6cqPHjxys7O1uRkZH6448/1L17d61evVo7d+7U2LFjNXz4cJtZLfHx8Zo5c6amTJmiXbt2afny5dZsYfTo0Vq+fLmKi4ut/d966y21aNFC/fv3v6DXy641TUpKSpSRkaH4+Hhrm4uLiyIiIrRly5Zy9yssLFSrVq1kNpvVrVs3Pfvss7rqqqvK7V9cXGxzscePH7enTAAAAAAAYOD222+3eb5kyRJddtll2rVrlzZv3qwjR45o27Zt8vHxkSS1bdvW2veZZ57R0KFDNX36dGtbcHCw3TVMmDBBt912m03bo48+av3zgw8+qLVr1+qdd95Rz549deLECc2bN0/z589XdHS0JKlNmzbq06ePJOm2225TbGysPv74Y915552S/lwqZOTIkRd8W2i7RpocPXpUpaWlZUaK+Pn5KS8vz3Cf9u3ba8mSJfr444/11ltvyWw2q1evXvrhhx/KPU9iYqK8vb2tj4CAAHvKBAAAAAAABvbs2aNhw4apdevW8vLyUmBgoCQpNzdXWVlZ6tq1qzUw+busrCwNGDDggmsIDQ21eV5aWqoZM2YoKChIPj4+atCggdauXavc3FxJUnZ2toqLi8s9t4eHh4YPH26dAZOZmamdO3dq5MiRF1yr0++eEx4ervDwcOvzXr16qWPHjnr11Vc1Y8YMw33i4+MVFxdnfX78+HGCEwAAAAAALtDgwYPVqlUrLVq0SM2bN5fZbFbnzp1VUlKievXqnXPf8203mUyyWCw2bUYLvdavX9/m+XPPPad58+Zp7ty5CgoKUv369TVhwgSVlJRU6LzSn1N0QkJC9MMPP+iNN95Q//791apVq/Pudz52jTTx9fWVq6ur8vPzbdrz8/Pl7+9foWPUrVtXXbt21d69e8vt4+7uLi8vL5sHAAAAAACovJ9//lk5OTmaPHmyBgwYoI4dO+rXX3+1bu/SpYuysrL0yy+/GO7fpUuXcy6setlll+nw4cPW53v27NHJkyfPW9emTZt0yy236J577lFwcLBat26t3bt3W7e3a9dO9erVO+e5g4KCFBoaqkWLFmn58uW69957z3veirArNHFzc1P37t1tCjWbzUpNTbUZTXIupaWl2rFjh5o1a2ZfpQAAAAAAoNIaN26sJk2a6LXXXtPevXv16aef2szyGDZsmPz9/TVkyBBt2rRJ33//vd5//33rGqYJCQlasWKFEhISlJ2drR07dmjWrFnW/fv376/58+frq6++0vbt23Xfffepbt26562rXbt2Wr9+vTZv3qzs7Gz961//shms4eHhoSeeeEKPP/643nzzTe3bt09bt27V4sWLbY4zevRozZw5UxaLxeauPhfC7rvnxMXFadGiRVq2bJmys7N1//33q6ioSDExMZKkESNG2CwU+9RTT2ndunX6/vvvlZmZqXvuuUcHDx7U6NGjHXIBAAAAAADg/FxcXLRy5UplZGSoc+fOevjhh/Xcc89Zt7u5uWndunVq2rSpbrzxRgUFBWnmzJlydXWVJPXr10/vvvuuVq1apZCQEPXv39/mDjcvvPCCAgICdM011+iuu+7So48+Kk9Pz/PWNXnyZHXr1k2RkZHq16+fNbg525QpU/TII49o6tSp6tixo6KiolRQUGDTZ9iwYapTp46GDRsmDw+PC3il/mL3miZRUVE6cuSIpk6dqry8PIWEhCglJcW6OGxubq5cXP7KYn799VeNGTNGeXl5aty4sbp3767NmzerU6dODrkAAAAAAAAuBgdm3lTdJZxXRESEdu3aZdN29jokrVq10nvvvVfu/rfddluZO9+c0bx5c61du9am7bfffrP+OTAwsMyaJ5Lk4+Ojjz766Jx1u7i4aNKkSZo0aVK5fY4ePao//vhDo0aNOuex7FGphWBjY2MVGxtruC0tLc3m+YsvvqgXX3yxMqcBAAAAAAA4p1OnTunnn3/W5MmTdfXVV6tbt24OO7bd03MAAAAAAAAuFps2bVKzZs20bds2JSUlOfTYTr/lMAAAAAAAgLP069fPcNqPIzDSBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAAE6RlpYmk8mk3377zaF9q0qd6i4AAAAAAIBLwjTvKj7fsao9XyX06tVLhw8flrf3+V8be/pWFUaaAAAAAACAMkpKSi74GG5ubvL395fJZHJo36pCaAIAAAAAQC3Qr18/xcbGKjY2Vt7e3vL19dWUKVNksVgkSYGBgZoxY4ZGjBghLy8vjR07VpL0xRdf6JprrlG9evUUEBCghx56SEVFRdbjFhcX64knnlBAQIDc3d3Vtm1bLV68WFLZKTcHDx7U4MGD1bhxY9WvX19XXXWV1qxZY9hXkt5//31dddVVcnd3V2BgoF544QWbawoMDNSzzz6re++9Vw0bNlTLli312muvOew1IzQBAAAAAKCWWLZsmerUqaP09HTNmzdPc+bM0euvv27d/vzzzys4OFhfffWVpkyZon379umGG27Q7bffrm+++UbJycn64osvFBsba91nxIgRWrFihV566SVlZ2fr1VdfVYMGDQzPP27cOBUXF+uzzz7Tjh07NGvWrHL7ZmRk6M4779TQoUO1Y8cOTZs2TVOmTNHSpUtt+r3wwgsKDQ3VV199pQceeED333+/cnJyLvzFEmuaAAAAAABQawQEBOjFF1+UyWRS+/bttWPHDr344osaM2aMJKl///565JFHrP1Hjx6tu+++WxMmTJAktWvXTi+99JL69u2rhQsXKjc3V++8847Wr1+viIgISVLr1q3LPX9ubq5uv/12BQUFnbfvnDlzNGDAAE2ZMkWSdOWVV2rXrl167rnnNHLkSGu/G2+8UQ888IAk6YknntCLL76oDRs2qH379va/QH/DSBMAAAAAAGqJq6++2mbNkPDwcO3Zs0elpaWSpNDQUJv+X3/9tZYuXaoGDRpYH5GRkTKbzdq/f7+ysrLk6uqqvn37Vuj8Dz30kJ5++mn17t1bCQkJ+uabb8rtm52drd69e9u09e7d26ZeSerSpYv1zyaTSf7+/iooKKhQPedDaAIAAAAAACRJ9evXt3leWFiof/3rX8rKyrI+vv76a+3Zs0dt2rRRvXr17Dr+6NGj9f3332v48OHasWOHQkND9fLLL19QzXXr1rV5bjKZZDabL+iYZxCaAAAAAABQS3z55Zc2z7du3ap27drJ1dXVsH+3bt20a9cutW3btszDzc1NQUFBMpvN2rhxY4VrCAgI0H333acPPvhAjzzyiBYtWmTYr2PHjtq0aZNN26ZNm3TllVeWW6+jEZoAAAAAAFBL5ObmKi4uTjk5OVqxYoVefvlljR8/vtz+TzzxhDZv3qzY2FhlZWVpz549+vjjj60LwQYGBio6Olr33nuvPvroI+3fv19paWl65513DI83YcIErV27Vvv371dmZqY2bNigjh07GvZ95JFHlJqaqhkzZmj37t1atmyZ5s+fr0cfffTCX4gKYiFYAAAAAABqiREjRuj3339Xz5495erqqvHjx1tvLWykS5cu2rhxoyZNmqRrrrlGFotFbdq0UVRUlLXPwoUL9eSTT+qBBx7Qzz//rJYtW+rJJ580PF5paanGjRunH374QV5eXrrhhhv04osvGvbt1q2b3nnnHU2dOlUzZsxQs2bN9NRTT9ksAutshCYAAAAAADjCtGPVXcF51a1bV3PnztXChQvLbDtw4IDhPj169NC6devKPaaHh4fmzJmjOXPmlNnWr18/WSwW6/NzrV/y976SdPvtt+v2228vdx+jmrOyssrtby+m5wAAAAAAABggNAEAAAAAADDA9BwAAAAAAGqBtLS06i6hxmGkCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAJxi2rRpCgkJsT4fOXKkhgwZUm312KtOdRcAAAAAAMClIGhZUJWeb0f0jio9X23ESBMAAAAAAGqhkpKS6i7hokdoAgAAAABALdCvXz/FxsZqwoQJ8vX1VWRkpHbu3KlBgwapQYMG8vPz0/Dhw3X06FHrPmazWbNnz1bbtm3l7u6uli1b6plnnrFuf+KJJ3TllVfK09NTrVu31pQpU3Tq1KnquDynIDQBAAAAAKCWWLZsmdzc3LRp0ybNnDlT/fv3V9euXbV9+3alpKQoPz9fd955p7V/fHy8Zs6cqSlTpmjXrl1avny5/Pz8rNsbNmyopUuXateuXZo3b54WLVqkF198sTouzSkqFZosWLBAgYGB8vDwUFhYmNLT0yu038qVK2UymWrUoi8AAAAAAFwq2rVrp9mzZ6t9+/Zav369unbtqmeffVYdOnRQ165dtWTJEm3YsEG7d+/WiRMnNG/ePM2ePVvR0dFq06aN+vTpo9GjR1uPN3nyZPXq1UuBgYEaPHiwHn30Ub3zzjvVeIWOZfdCsMnJyYqLi1NSUpLCwsI0d+5cRUZGKicnR02bNi13vwMHDujRRx/VNddcc0EFAwAAAACAyunevbv1z19//bU2bNigBg0alOm3b98+/fbbbyouLtaAAQPKPV5ycrJeeukl7du3T4WFhTp9+rS8vLycUnt1sHukyZw5czRmzBjFxMSoU6dOSkpKkqenp5YsWVLuPqWlpbr77rs1ffp0tW7d+oIKBgAAAAAAlVO/fn3rnwsLCzV48GBlZWXZPPbs2aNrr71W9erVO+extmzZorvvvls33nij/vvf/+qrr77SpEmTLqkFZu0aaVJSUqKMjAzFx8db21xcXBQREaEtW7aUu99TTz2lpk2batSoUfr888/Pe57i4mIVFxdbnx8/ftyeMgEAAAAAwHl069ZN77//vgIDA1WnTtl4oF27dqpXr55SU1NtpuScsXnzZrVq1UqTJk2yth08eNCpNVc1u0aaHD16VKWlpTaLvkiSn5+f8vLyDPf54osvtHjxYi1atKjC50lMTJS3t7f1ERAQYE+ZAAAAAADgPMaNG6dffvlFw4YN07Zt27Rv3z6tXbtWMTExKi0tlYeHh5544gk9/vjjevPNN7Vv3z5t3bpVixcvlvRnqJKbm6uVK1dq3759eumll/Thhx9W81U5llPvnnPixAkNHz5cixYtkq+vb4X3i4+P17Fjx6yPQ4cOObFKAAAAAABqn+bNm2vTpk0qLS3VwIEDFRQUpAkTJqhRo0ZycfkzLpgyZYoeeeQRTZ06VR07dlRUVJQKCgokSTfffLMefvhhxcbGKiQkRJs3b9aUKVOq85Iczq7pOb6+vnJ1dVV+fr5Ne35+vvz9/cv037dvnw4cOKDBgwdb28xm858nrlNHOTk5atOmTZn93N3d5e7ubk9pAAAAAABUqx3RO6q7hHNKS0sr09auXTt98MEH5e7j4uKiSZMm2UzBOdvs2bM1e/Zsm7YJEyZY/zxt2jRNmzbN+nzp0qX2lFzt7Bpp4ubmpu7duys1NdXaZjablZqaqvDw8DL9O3TooB07dtgsKHPzzTfruuuuU1ZWFtNuAAAAAADARcvuWw7HxcUpOjpaoaGh6tmzp+bOnauioiLFxMRIkkaMGKEWLVooMTFRHh4e6ty5s83+jRo1kqQy7QAAAAAAABcTu0OTqKgoHTlyRFOnTlVeXp5CQkKUkpJiXRw2NzfXOvcJAAAAAACgprI7NJGk2NhYxcbGGm4zmiN1tpo2fwkAAAAAANRODAkBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAADUAhaLRWPHjpWPj49MJpOysrKqu6SLXqVuOQwAAAAAAGxld+hYpefr+F22Xf1TUlK0dOlSpaWlqXXr1tq9e7cGDx6sjIwMHT58WB9++KGGDBninGJrKEaaAAAAAABQC+zbt0/NmjVTr1695O/vr6KiIgUHB2vBggXVXdpFi5EmAAAAAABc4kaOHKlly5ZJkkwmk1q1aqUDBw5o0KBB1VzZxY3QBAAAAACAS9y8efPUpk0bvfbaa9q2bZtcXV2ru6QagdAEAAAAAIBLnLe3txo2bChXV1f5+/tXdzk1BmuaAAAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIA1TQAAAAAAqIUKCwu1d+9e6/P9+/crKytLPj4+atmyZTVWdvEgNAEAAAAAoBbavn27rrvuOuvzuLg4SVJ0dLSWLl1aTVVdXAhNAAAAAABwgI7fZVd3Cec0YcIETZgwwfq8X79+slgs1VdQDcCaJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAQCWwiGrNVdH3jtAEAAAAAAA7uLq6SpJKSkqquRJU1smTJyVJdevWPWc/bjkMAAAAAIAd6tSpI09PTx05ckR169aViwvjEWoKi8WikydPqqCgQI0aNbIGYOUhNAEAAAAAwA4mk0nNmjXT/v37dfDgweouB5XQqFEj+fv7n7cfoQkAAAAAAHZyc3NTu3btmKJTA9WtW/e8I0zOIDQBAAAAAKASXFxc5OHhUd1lwImYeAUAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYqFRosmDBAgUGBsrDw0NhYWFKT08vt+8HH3yg0NBQNWrUSPXr11dISIj+/e9/V7pgAAAAAACAqmB3aJKcnKy4uDglJCQoMzNTwcHBioyMVEFBgWF/Hx8fTZo0SVu2bNE333yjmJgYxcTEaO3atRdcPAAAAAAAgLPYHZrMmTNHY8aMUUxMjDp16qSkpCR5enpqyZIlhv379eunW2+9VR07dlSbNm00fvx4denSRV988cUFFw8AAAAAAOAsdoUmJSUlysjIUERExF8HcHFRRESEtmzZct79LRaLUlNTlZOTo2uvvbbcfsXFxTp+/LjNAwAAAAAAoCrZFZocPXpUpaWl8vPzs2n38/NTXl5eufsdO3ZMDRo0kJubm2666Sa9/PLLuv7668vtn5iYKG9vb+sjICDAnjIBAAAAAAAuWJXcPadhw4bKysrStm3b9MwzzyguLk5paWnl9o+Pj9exY8esj0OHDlVFmQAAAAAAAFZ17Ons6+srV1dX5efn27Tn5+fL39+/3P1cXFzUtm1bSVJISIiys7OVmJiofv36GfZ3d3eXu7u7PaUBAAAAAAA4lF0jTdzc3NS9e3elpqZa28xms1JTUxUeHl7h45jNZhUXF9tzagAAAAAAgCpl10gTSYqLi1N0dLRCQ0PVs2dPzZ07V0VFRYqJiZEkjRgxQi1atFBiYqKkP9cnCQ0NVZs2bVRcXKw1a9bo3//+txYuXOjYKwEAAAAAAHAgu0OTqKgoHTlyRFOnTlVeXp5CQkKUkpJiXRw2NzdXLi5/DWApKirSAw88oB9++EH16tVThw4d9NZbbykqKspxVwEAAAAAAOBgdocmkhQbG6vY2FjDbX9f4PXpp5/W008/XZnTAAAAAAAAVJsquXsOAAAAAABATUNoAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCgUqHJggULFBgYKA8PD4WFhSk9Pb3cvosWLdI111yjxo0bq3HjxoqIiDhnfwAAAAAAgIuB3aFJcnKy4uLilJCQoMzMTAUHBysyMlIFBQWG/dPS0jRs2DBt2LBBW7ZsUUBAgAYOHKgff/zxgosHAAAAAABwFrtDkzlz5mjMmDGKiYlRp06dlJSUJE9PTy1ZssSw/9tvv60HHnhAISEh6tChg15//XWZzWalpqZecPEAAAAAAADOYldoUlJSooyMDEVERPx1ABcXRUREaMuWLRU6xsmTJ3Xq1Cn5+PiU26e4uFjHjx+3eQAAAAAAAFQlu0KTo0ePqrS0VH5+fjbtfn5+ysvLq9AxnnjiCTVv3twmePm7xMREeXt7Wx8BAQH2lAkAAAAAAHDBqvTuOTNnztTKlSv14YcfysPDo9x+8fHxOnbsmPVx6NChKqwSAAAAAABAqmNPZ19fX7m6uio/P9+mPT8/X/7+/ufc9/nnn9fMmTP1ySefqEuXLufs6+7uLnd3d3tKAwAAAAAAcCi7Rpq4ubmpe/fuNou4nlnUNTw8vNz9Zs+erRkzZiglJUWhoaGVrxYAAAAAAKCK2DXSRJLi4uIUHR2t0NBQ9ezZU3PnzlVRUZFiYmIkSSNGjFCLFi2UmJgoSZo1a5amTp2q5cuXKzAw0Lr2SYMGDdSgQQMHXgoAAAAAAIDj2B2aREVF6ciRI5o6dary8vIUEhKilJQU6+Kwubm5cnH5awDLwoULVVJSon/+8582x0lISNC0adMurHoAAAAAAAAnsTs0kaTY2FjFxsYabktLS7N5fuDAgcqcAgAAAAAAoFpV6d1zAAAAAAAAagpCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADlQpNFixYoMDAQHl4eCgsLEzp6enl9v322291++23KzAwUCaTSXPnzq1srQAAAAAAAFXG7tAkOTlZcXFxSkhIUGZmpoKDgxUZGamCggLD/idPnlTr1q01c+ZM+fv7X3DBAAAAAAAAVcHu0GTOnDkaM2aMYmJi1KlTJyUlJcnT01NLliwx7N+jRw8999xzGjp0qNzd3S+4YAAAAAAAgKpgV2hSUlKijIwMRURE/HUAFxdFRERoy5YtDiuquLhYx48ft3kAAAAAAABUJbtCk6NHj6q0tFR+fn427X5+fsrLy3NYUYmJifL29rY+AgICHHZsAAAAAACAirgo754THx+vY8eOWR+HDh2q7pIAAAAAAEAtU8eezr6+vnJ1dVV+fr5Ne35+vkMXeXV3d2f9EwAAAAAAUK3sGmni5uam7t27KzU11dpmNpuVmpqq8PBwhxcHAAAAAABQXewaaSJJcXFxio6OVmhoqHr27Km5c+eqqKhIMTExkqQRI0aoRYsWSkxMlPTn4rG7du2y/vnHH39UVlaWGjRooLZt2zrwUgAAAAAAABzH7tAkKipKR44c0dSpU5WXl6eQkBClpKRYF4fNzc2Vi8tfA1h++uknde3a1fr8+eef1/PPP6++ffsqLS3twq8AAAAAAADACewOTSQpNjZWsbGxhtv+HoQEBgbKYrFU5jQAAAAAAADV5qK8ew4AAAAAAEB1IzQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGKhUaLJgwQIFBgbKw8NDYWFhSk9PP2f/d999Vx06dJCHh4eCgoK0Zs2aShULAAAAAABQVewOTZKTkxUXF6eEhARlZmYqODhYkZGRKigoMOy/efNmDRs2TKNGjdJXX32lIUOGaMiQIdq5c+cFFw8AAAAAAOAsdocmc+bM0ZgxYxQTE6NOnTopKSlJnp6eWrJkiWH/efPm6YYbbtBjjz2mjh07asaMGerWrZvmz59/wcUDAAAAAAA4i12hSUlJiTIyMhQREfHXAVxcFBERoS1bthjus2XLFpv+khQZGVlufwAAAAAAgItBHXs6Hz16VKWlpfLz87Np9/Pz03fffWe4T15enmH/vLy8cs9TXFys4uJi6/Njx45Jko4fP25PuRcFc/FJpx37uMnitGNLUunvpU47dmGp845dEz8nNR2fc2N8zi8tfM6N8Tm/tPA5N8bn/NLC59wYn/OyztRtsTj3fcXFza7QpKokJiZq+vTpZdoDAgKqoZqLl7fTz5DttCP3dNqRJXk7/5VB1eFzXg4+55cUPufl4HN+SeFzXg4+55cUPuflqOGf8xMnTsi7hl8DKs+u0MTX11eurq7Kz8+3ac/Pz5e/v7/hPv7+/nb1l6T4+HjFxcVZn5vNZv3yyy9q0qSJTCaTPSWjko4fP66AgAAdOnRIXl5e1V0O4BR8zlEb8DlHbcDnHLUBn/OqZ7FYdOLECTVv3ry6S0E1sis0cXNzU/fu3ZWamqohQ4ZI+jPQSE1NVWxsrOE+4eHhSk1N1YQJE6xt69evV3h4eLnncXd3l7u7u01bo0aN7CkVDuLl5cUPZVzy+JyjNuBzjtqAzzlqAz7nVYsRJrB7ek5cXJyio6MVGhqqnj17au7cuSoqKlJMTIwkacSIEWrRooUSExMlSePHj1ffvn31wgsv6KabbtLKlSu1fft2vfbaa469EgAAAAAAAAeyOzSJiorSkSNHNHXqVOXl5SkkJEQpKSnWxV5zc3Pl4vLXTXl69eql5cuXa/LkyXryySfVrl07ffTRR+rcubPjrgIAAAAAAMDBKrUQbGxsbLnTcdLS0sq03XHHHbrjjjsqcypUE3d3dyUkJJSZJgVcSvicozbgc47agM85agM+50D1MFm4fxIAAAAAAEAZLufvAgAAAAAAUPsQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0ARlLFiwQIGBgfLw8FBYWJjS09OruyTAoT777DMNHjxYzZs3l8lk0kcffVTdJQEOlZiYqB49eqhhw4Zq2rSphgwZopycnOouC3CohQsXqkuXLvLy8pKXl5fCw8P1v//9r7rLApxq5syZMplMmjBhQnWXAtQahCawkZycrLi4OCUkJCgzM1PBwcGKjIxUQUFBdZcGOExRUZGCg4O1YMGC6i4FcIqNGzdq3Lhx2rp1q9avX69Tp05p4MCBKioqqu7SAIe5/PLLNXPmTGVkZGj79u3q37+/brnlFn377bfVXRrgFNu2bdOrr76qLl26VHcpQK3CLYdhIywsTD169ND8+fMlSWazWQEBAXrwwQc1ceLEaq4OcDyTyaQPP/xQQ4YMqe5SAKc5cuSImjZtqo0bN+raa6+t7nIAp/Hx8dFzzz2nUaNGVXcpgEMVFhaqW7dueuWVV/T0008rJCREc+fOre6ygFqBkSawKikpUUZGhiIiIqxtLi4uioiI0JYtW6qxMgDAhTh27JikP79QApei0tJSrVy5UkVFRQoPD6/ucgCHGzdunG666Sab/6cDqBp1qrsAXDyOHj2q0tJS+fn52bT7+fnpu+++q6aqAAAXwmw2a8KECerdu7c6d+5c3eUADrVjxw6Fh4frjz/+UIMGDfThhx+qU6dO1V0W4FArV65UZmamtm3bVt2lALUSoQkAAJewcePGaefOnfriiy+quxTA4dq3b6+srCwdO3ZM7733nqKjo7Vx40aCE1wyDh06pPHjx2v9+vXy8PCo7nKAWonQBFa+vr5ydXVVfn6+TXt+fr78/f2rqSoAQGXFxsbqv//9rz777DNdfvnl1V0O4HBubm5q27atJKl79+7atm2b5s2bp1dffbWaKwMcIyMjQwUFBerWrZu1rbS0VJ999pnmz5+v4uJiubq6VmOFwKWPNU1g5ebmpu7duys1NdXaZjablZqayvxgAKhBLBaLYmNj9eGHH+rTTz/VFVdcUd0lAVXCbDaruLi4ussAHGbAgAHasWOHsrKyrI/Q0FDdfffdysrKIjABqgAjTWAjLi5O0dHRCg0NVc+ePTV37lwVFRUpJiamuksDHKawsFB79+61Pt+/f7+ysrLk4+Ojli1bVmNlgGOMGzdOy5cv18cff6yGDRsqLy9PkuTt7a169epVc3WAY8THx2vQoEFq2bKlTpw4oeXLlystLU1r166t7tIAh2nYsGGZ9ajq16+vJk2asE4VUEUITWAjKipKR44c0dSpU5WXl6eQkBClpKSUWRwWqMm2b9+u6667zvo8Li5OkhQdHa2lS5dWU1WA4yxcuFCS1K9fP5v2N954QyNHjqz6ggAnKCgo0IgRI3T48GF5e3urS5cuWrt2ra6//vrqLg0AcAkxWSwWS3UXAQAAAAAAcLFhTRMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJANQSJpNJH330kd375eTkyN/fXydOnHBoPSNHjtSQIUMcesya5MCBAzKZTMrKyqrwPv369dOECROcVpMzTJs2TX5+ftbPX2193yvzfjtTYGCg5s6dW+H+06ZNU0hISIX6JiUlafDgwZUrDACAiwyhCQA42ciRI2Uymco8brjhhuourULi4+P14IMPqmHDhta2b775Rtdcc408PDwUEBCg2bNnV2OFOJdnnnlGvXr1kqenpxo1amT3/nv37lXDhg0rtW92dramT5+uV199VYcPH9agQYM0b948LV261O5j2au2hjMXg3vvvVeZmZn6/PPPq7sUAAAuGKEJAFSBG264QYcPH7Z5rFixorrLOq/c3Fz997//1ciRI61tx48f18CBA9WqVStlZGToueee07Rp0/Taa69VX6EoV0lJie644w7df//9du976tQpDRs2TNdcc02lzr1v3z5J0i233CJ/f3+5u7vL29u7UgEMag43Nzfdddddeumll6q7FAAALhihCQBUAXd3d/n7+9s8GjdubN1uMpm0cOFCDRo0SPXq1VPr1q313nvv2Rxjx44d6t+/v+rVq6cmTZpo7NixKiwstOmzZMkSXXXVVXJ3d1ezZs0UGxtrs/3o0aO69dZb5enpqXbt2mnVqlXnrPudd95RcHCwWrRoYW17++23VVJSYj3X0KFD9dBDD2nOnDmVem2mT5+uyy67TF5eXrrvvvtUUlJi3ZaSkqI+ffqoUaNGatKkif7xj39Yv4hLfwYCsbGxatasmTw8PNSqVSslJiZat//2228aPXq09fj9+/fX119/XW4tZ6ZQvPPOO7rmmmtUr1499ejRQ7t379a2bdsUGhqqBg0aaNCgQTpy5Ih1P7PZrKeeekqXX3653N3dFRISopSUFJtjp6enq2vXrvLw8FBoaKi++uqrMuffuXOnBg0apAYNGsjPz0/Dhw/X0aNHK/W6njF9+nQ9/PDDCgoKsnvfyZMnq0OHDrrzzjvt3nfatGnWKRouLi4ymUySyo4A6devnx566CE9/vjj8vHxkb+/v6ZNm2ZzLHvfx2nTpmnZsmX6+OOPrSO70tLSlJaWJpPJpN9++83aNysrSyaTSQcOHJAkLV26VI0aNdLatWvVsWNHNWjQwBp6nu31119Xx44d5eHhoQ4dOuiVV16x2V6R9/vvAgMD9fTTT2vEiBFq0KCBWrVqpVWrVunIkSO65ZZb1KBBA3Xp0kXbt2+32e/999+3/r0PDAzUCy+8YLO9oKBAgwcPVr169XTFFVfo7bffLnNue1/jtLQ09ezZU/Xr11ejRo3Uu3dvHTx40Lp98ODBWrVqlX7//ffzXjcAABczQhMAuEhMmTJFt99+u77++mvdfffdGjp0qLKzsyVJRUVFioyMVOPGjbVt2za9++67+uSTT2xCkYULF2rcuHEaO3asduzYoVWrVqlt27Y255g+fbruvPNOffPNN7rxxht1991365dffim3ps8//1yhoaE2bVu2bNG1114rNzc3a1tkZKRycnL066+/SpL1y+mZL6LlSU1NVXZ2ttLS0rRixQp98MEHmj59unV7UVGR4uLitH37dqWmpsrFxUW33nqrzGazJOmll17SqlWr9M477ygnJ0dvv/22AgMDrfvfcccdKigo0P/+9z9lZGSoW7duGjBgwDmvWZISEhI0efJkZWZmqk6dOrrrrrv0+OOPa968efr888+1d+9eTZ061dp/3rx5euGFF/T888/rm2++UWRkpG6++Wbt2bNHklRYWKh//OMf6tSpkzIyMjRt2jQ9+uijNuf87bff1L9/f3Xt2lXbt29XSkqK8vPzKxVYOMKnn36qd999VwsWLDDcfr73+NFHH9Ubb7whSdbRVeVZtmyZ6tevry+//FKzZ8/WU089pfXr11u32/s+Pvroo7rzzjttRnj16tWrglcunTx5Us8//7z+/e9/67PPPlNubq7N+/X2229r6tSpeuaZZ5Sdna1nn31WU6ZM0bJlyyRV7P0uz4svvqjevXvrq6++0k033aThw4drxIgRuueee5SZmak2bdpoxIgRslgskqSMjAzdeeedGjp0qHbs2KFp06ZpypQpNlOgRo4cqUOHDmnDhg1677339Morr6igoMDmvPa8xqdPn9aQIUPUt29fffPNN9qyZYvGjh1rDcYkKTQ0VKdPn9aXX35Z4dcdAICLkgUA4FTR0dEWV1dXS/369W0ezzzzjLWPJMt9991ns19YWJjl/vvvt1gsFstrr71mady4saWwsNC6ffXq1RYXFxdLXl6exWKxWJo3b26ZNGlSuXVIskyePNn6vLCw0CLJ8r///a/cfYKDgy1PPfWUTdv1119vGTt2rE3bt99+a5Fk2bVrl8VisVi+/PJLS/v27S0//PBDuceOjo62+Pj4WIqKiqxtCxcutDRo0MBSWlpquM+RI0cskiw7duywWCwWy4MPPmjp37+/xWw2l+n7+eefW7y8vCx//PGHTXubNm0sr776quHx9+/fb5Fkef31161tK1assEiypKamWtsSExMt7du3tz5v3ry5zftpsVgsPXr0sDzwwAMWi8ViefXVVy1NmjSx/P777zbXKsny1VdfWSwWi2XGjBmWgQMH2hzj0KFDFkmWnJwci8VisfTt29cyfvx4w9rP54033rB4e3tXqO/Ro0ctAQEBlo0bN5a7b0Xe4w8//NDy9/9qREdHW2655Rbr8759+1r69Olj06dHjx6WJ554wmKxVO59NDqPxWKxbNiwwSLJ8uuvv1rbvvrqK4sky/79+63XKsmyd+9ea58FCxZY/Pz8bM69fPlym2PPmDHDEh4ebrFYKvZ+G2nVqpXlnnvusT4/fPiwRZJlypQp1rYtW7ZYJFkOHz5ssVgslrvuusty/fXX2xznscces3Tq1MlisVgsOTk5FkmW9PR06/bs7GyLJMuLL75osVgq9honJCRYgoODLRaLxfLzzz9bJFnS0tLKvRaLxWJp3LixZenSpefsAwDAxY6RJgBQBa677jplZWXZPO677z6bPuHh4WWenxlpkp2dreDgYNWvX9+6vXfv3jKbzcrJyVFBQYF++uknDRgw4Jx1dOnSxfrn+vXry8vLq8xvnM/2+++/y8PDo8LXeUbPnj313Xff2UzrMRIcHCxPT0/r8/DwcBUWFurQoUOSpD179mjYsGFq3bq1vLy8rKNIcnNzJf35G/SsrCy1b99eDz30kNatW2c91tdff63CwkI1adJEDRo0sD72799vM8XHyNmvk5+fnyTZTG/x8/Ozvm7Hjx/XTz/9pN69e9sco3fv3jbvX5cuXWxey7+/319//bU2bNhgU2uHDh0k6bz1XoirrrrKer5BgwZJksaMGaO77rpL1157bbn7VfQ9roizX29JatasmfX1Pd/7mJuba9P+7LPPXnA9np6eatOmjWE9RUVF2rdvn0aNGmVz3qefftr6PlXk/S5PRT57kqz1ZGdnG3729uzZo9LSUmVnZ6tOnTrq3r27dXuHDh1s1pWx9++Kj4+PRo4cqcjISA0ePFjz5s0zHElUr149nTx5skLXDQDAxapOdRcAALVB/fr1y0yVcaR69epVqF/dunVtnptMJutUFyO+vr7WKTdn+Pv7Kz8/36btzHN/f/8K1VFRgwcPVqtWrbRo0SI1b95cZrNZnTt3tq570q1bN+3fv1//+9//9Mknn+jOO+9URESE3nvvPRUWFqpZs2ZKS0src9zzLUR69ut0ZsrB39vO9bpVRmFhoQYPHqxZs2aV2dasWTOHnutsa9as0alTpyT99Tn69NNPtWrVKj3//POSJIvFIrPZrDp16ui1117Tvffe69AazvW5PN/72KhRI5vb+Pr4+JR7HheXP39XZPn/qS2SrNd+vnrO7HNmHaFFixYpLCzMpp+rq2u5566oinz2JDn081eZvytvvPGGHnroIaWkpCg5OVmTJ0/W+vXrdfXVV1v7/PLLL7rsssscVicAANWB0AQALhJbt27ViBEjbJ537dpVktSxY0ctXbpURUVF1tEmmzZtkouLi9q3b6+GDRsqMDBQqampuu666xxWU9euXbVr1y6btvDwcE2aNEmnTp2yfplbv3692rdvb7O4bUV8/fXX+v33361f1rdu3aoGDRooICBAP//8s3JycrRo0SLr3Vu++OKLMsfw8vJSVFSUoqKi9M9//lM33HCDfvnlF3Xr1k15eXmqU6eOzTonjubl5aXmzZtr06ZN6tu3r7V906ZN6tmzp6Q/379///vf+uOPP6yjD7Zu3WpznG7duun9999XYGCg6tSpun+eW7VqVaZty5YtKi0ttT7/+OOPNWvWLG3evNkhI0vsUZH30SiQdHNzs7kGSdYv8IcPH7Z+Vs8OXCrCz89PzZs31/fff6+7777bsE9F3m9H6dixozZt2mTTtmnTJl155ZVydXVVhw4ddPr0aWVkZKhHjx6SpJycHJvFcCv7d6Vr167q2rWr4uPjFR4eruXLl1tDk3379umPP/6w/gwDAKCmYnoOAFSB4uJi5eXl2Tz+fleUd999V0uWLNHu3buVkJCg9PR060Kvd999tzw8PBQdHa2dO3dqw4YNevDBBzV8+HDrcP1p06bphRde0EsvvaQ9e/YoMzNTL7/88gXVHRkZWeYL9F133SU3NzeNGjVK3377rZKTkzVv3jzFxcVZ+6Snp6tDhw768ccfz3n8kpISjRo1Srt27dKaNWuUkJCg2NhYubi4qHHjxmrSpIlee+017d27V59++qnNOSRpzpw5WrFihb777jvt3r1b7777rvz9/dWoUSNFREQoPDxcQ4YM0bp163TgwAFt3rxZkyZNKnP3kQv12GOPadasWUpOTlZOTo4mTpyorKwsjR8/3vqamUwmjRkzxnqtZ0ZxnDFu3Dj98ssvGjZsmLZt26Z9+/Zp7dq1iomJKfPl3x65ubnKyspSbm6uSktLrdPD/n7npbN17NhRnTt3tj5atGghFxcXde7c2Ro2VPQ9vlCVfR8DAwP1zTffKCcnR0ePHtWpU6fUtm1bBQQEaNq0adqzZ49Wr15d5k4zFTF9+nQlJibqpZde0u7du7Vjxw698cYb1jtIVeT9dpRHHnlEqampmjFjhnbv3q1ly5Zp/vz51oVn27dvrxtuuEH/+te/9OWXXyojI0OjR4+2GZ1m72u8f/9+xcfHa8uWLTp48KDWrVunPXv2qGPHjtY+n3/+uVq3bm0zzQkAgJqI0AQAqkBKSoqaNWtm8+jTp49Nn+nTp2vlypXq0qWL3nzzTa1YsUKdOnWS9OcaC2vXrtUvv/yiHj166J///KcGDBig+fPnW/ePjo7W3Llz9corr+iqq67SP/7xD+vdWypr0KBBqlOnjj755BNrm7e3t9atW6f9+/ere/fueuSRRzR16lSNHTvW2ufkyZPKyckxnPpwtgEDBqhdu3a69tprFRUVpZtvvtl6u1kXFxetXLlSGRkZ6ty5sx5++GE999xzNvs3bNhQs2fPVmhoqHr06KEDBw5ozZo11lvcrlmzRtdee61iYmJ05ZVXaujQoTp48KA1aHKUhx56SHFxcXrkkUcUFBSklJQUrVq1Su3atZMkNWjQQP/5z3+0Y8cOde3aVZMmTSozDefMaJXS0lINHDhQQUFBmjBhgho1amSdVvJ306ZNO+/IgKlTp6pr165KSEhQYWGhdXTAhQZHFX2PL1Rl38cxY8aoffv2Cg0N1WWXXaZNmzapbt261pCtS5cumjVrlp5++mm7axo9erRef/11vfHGGwoKClLfvn21dOlSXXHFFZIq9n47Srdu3fTOO+9o5cqV6ty5s6ZOnaqnnnpKI0eOtPZ544031Lx5c/Xt21e33Xabxo4dq6ZNm1q32/sae3p66rvvvtPtt9+uK6+8UmPHjtW4ceP0r3/9y9pnxYoVGjNmjFOuGQCAqmSynD2xFwBQLUwmkz788EMNGTKkukspY8GCBVq1apXWrl1b3aXgb6Kjo2UymWxuLwtUt2+//Vb9+/fX7t275e3tXd3lAABwQVjTBABwTv/617/022+/6cSJE2rYsGF1l4P/Z7FYlJaWZrjOC1CdDh8+rDfffJPABABwSWCkCQBcBC7mkSYAAABAbcVIEwC4CJBfAwAAABcfFoIFAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGCA0AQAAAAAAMPB/QKHqhNTi9FEAAAAASUVORK5CYII=","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["# plot metrics for each model\n","import matplotlib.pyplot as plt\n","\n","fig, ax = plt.subplots(1, 1, figsize=(12, 5))\n","\n","perf_df.plot(x=\"epoch\", y=[\"accuracy\", \"precision\", \"recall\", \"f1\"], kind=\"bar\", ax=ax)\n","\n","# add values on top of bars\n","for p in ax.patches:\n"," ax.annotate(\n"," f\"{p.get_height():.2f}\",\n"," (p.get_x() + p.get_width() / 2, p.get_height()),\n"," ha=\"center\",\n"," va=\"bottom\",\n"," fontsize=10,\n"," )\n","\n","# add title and labels\n","# ax.set_title(\"Metrics for different settings\")\n","# ax.set_ylabel(\"Value\")\n","ax.set_xlabel(\"Epoch (0: base model, 1-4: fine-tuned models)\")\n","# rotate x labels\n","plt.xticks(rotation=0)\n","\n","# set legend at the right to avoid overlapping with bars\n","plt.legend(loc=\"center left\", bbox_to_anchor=(1.0, 0.5))\n","# plt.tight_layout()\n","\n","plt.show()"]}],"metadata":{"accelerator":"GPU","application/vnd.databricks.v1+notebook":{"dashboards":[],"environmentMetadata":null,"language":"python","notebookMetadata":{"pythonIndentUnit":4},"notebookName":"07_MAC_+_Qwen2-7B-Instructi_Unsloth_train","widgets":{}},"colab":{"gpuType":"T4","provenance":[]},"kernelspec":{"display_name":"Python 3","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.11.9"}},"nbformat":4,"nbformat_minor":0}
+{"cells":[{"cell_type":"code","execution_count":1,"metadata":{"application/vnd.databricks.v1+cell":{"cellMetadata":{},"inputWidgets":{},"nuid":"0ea8b46b-839b-445b-8043-ccdf4e920ace","showTitle":false,"title":""},"id":"YLH80COBzi_F"},"outputs":[],"source":["%load_ext autoreload\n","%autoreload 2"]},{"cell_type":"code","execution_count":2,"metadata":{"id":"63B5exAuzq4M"},"outputs":[],"source":["from pathlib import Path\n","\n","try:\n"," from google.colab import drive\n"," drive.mount('/content/drive')\n"," workding_dir = \"/content/drive/MyDrive/logical-reasoning/\"\n","except ModuleNotFoundError:\n"," workding_dir = str(Path.cwd().parent)"]},{"cell_type":"code","execution_count":3,"metadata":{"executionInfo":{"elapsed":368,"status":"ok","timestamp":1719461634865,"user":{"displayName":"Donghao Huang","userId":"00463591218503521679"},"user_tz":-480},"id":"zFulf0bg0H-9","outputId":"debdd535-c828-40b9-efc0-8a180e5830dd"},"outputs":[{"name":"stdout","output_type":"stream","text":["workding dir: /Users/inflaton/code/engd/projects/logical-reasoning\n"]}],"source":["import os\n","import sys\n","\n","os.chdir(workding_dir)\n","sys.path.append(workding_dir)\n","print(\"workding dir:\", workding_dir)"]},{"cell_type":"code","execution_count":4,"metadata":{"application/vnd.databricks.v1+cell":{"cellMetadata":{},"inputWidgets":{},"nuid":"9f67ec60-2f24-411c-84eb-0dd664b44775","showTitle":false,"title":""},"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":589,"status":"ok","timestamp":1719462011879,"user":{"displayName":"Donghao Huang","userId":"00463591218503521679"},"user_tz":-480},"id":"DIUiweYYzi_I","outputId":"e16e9247-9077-4b0c-f8ea-17059f05a1c4"},"outputs":[{"name":"stdout","output_type":"stream","text":["loading env vars from: /Users/inflaton/code/engd/projects/logical-reasoning/.env.example\n"]},{"data":{"text/plain":["True"]},"execution_count":4,"metadata":{},"output_type":"execute_result"}],"source":["from dotenv import find_dotenv, load_dotenv\n","\n","found_dotenv = find_dotenv(\".env\")\n","\n","if len(found_dotenv) == 0:\n"," found_dotenv = find_dotenv(\".env.example\")\n","print(f\"loading env vars from: {found_dotenv}\")\n","load_dotenv(found_dotenv, override=True)"]},{"cell_type":"code","execution_count":5,"metadata":{"id":"W2QyVreqhOGM","outputId":"68b9590e-1ac6-4c6f-e0c4-e273ec816419"},"outputs":[{"data":{"text/html":["
"]},"metadata":{},"output_type":"display_data"}],"source":["for col in df.columns[5:]:\n"," df = clean_up(df, col)\n"," print(\"*\" * 10, col, \"*\" * 10)\n"," print(df[col].value_counts())\n"," plot_value_counts(df, col)"]},{"cell_type":"code","execution_count":15,"metadata":{},"outputs":[],"source":["import pandas as pd\n","import numpy as np\n","from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score\n","\n","\n","def calc_metrics_for_col(df, col):\n"," y_true = df[\"label\"]\n"," y_pred = df[col]\n","\n"," accuracy = accuracy_score(y_true, y_pred)\n"," precision = precision_score(y_true, y_pred, average=\"weighted\", labels=np.unique(y_pred))\n"," recall = recall_score(y_true, y_pred, average=\"weighted\", labels=np.unique(y_pred))\n"," f1 = f1_score(y_true, y_pred, average=\"weighted\", labels=np.unique(y_pred))\n","\n"," return accuracy, float(precision), float(recall), float(f1)"]},{"cell_type":"code","execution_count":16,"metadata":{},"outputs":[{"name":"stderr","output_type":"stream","text":["/var/folders/7x/56svhln929zdh2xhr3mwqg4r0000gn/T/ipykernel_89453/961288552.py:9: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n"," perf_df = pd.concat([perf_df, pd.DataFrame([new_model_metrics])], ignore_index=True)\n"]},{"data":{"text/html":["
\n","\n","
\n"," \n","
\n","
\n","
epoch
\n","
model
\n","
accuracy
\n","
precision
\n","
recall
\n","
f1
\n","
\n"," \n"," \n","
\n","
0
\n","
0
\n","
internlm/internlm2_5-7b-chat-1m
\n","
0.759667
\n","
0.741854
\n","
0.781014
\n","
0.758887
\n","
\n","
\n","
1
\n","
1
\n","
internlm/internlm2_5-7b-chat-1m_checkpoint-44
\n","
0.761667
\n","
0.810873
\n","
0.761667
\n","
0.780018
\n","
\n","
\n","
2
\n","
2
\n","
internlm/internlm2_5-7b-chat-1m_checkpoint-88
\n","
0.741333
\n","
0.816182
\n","
0.741333
\n","
0.769524
\n","
\n","
\n","
3
\n","
3
\n","
internlm/internlm2_5-7b-chat-1m_checkpoint-132
\n","
0.755000
\n","
0.809829
\n","
0.755000
\n","
0.775657
\n","
\n","
\n","
4
\n","
4
\n","
internlm/internlm2_5-7b-chat-1m_checkpoint-176
\n","
0.719000
\n","
0.803307
\n","
0.719000
\n","
0.750319
\n","
\n"," \n","
\n","
"],"text/plain":[" epoch model accuracy precision \\\n","0 0 internlm/internlm2_5-7b-chat-1m 0.759667 0.741854 \n","1 1 internlm/internlm2_5-7b-chat-1m_checkpoint-44 0.761667 0.810873 \n","2 2 internlm/internlm2_5-7b-chat-1m_checkpoint-88 0.741333 0.816182 \n","3 3 internlm/internlm2_5-7b-chat-1m_checkpoint-132 0.755000 0.809829 \n","4 4 internlm/internlm2_5-7b-chat-1m_checkpoint-176 0.719000 0.803307 \n","\n"," recall f1 \n","0 0.781014 0.758887 \n","1 0.761667 0.780018 \n","2 0.741333 0.769524 \n","3 0.755000 0.775657 \n","4 0.719000 0.750319 "]},"execution_count":16,"metadata":{},"output_type":"execute_result"}],"source":["import pandas as pd\n","\n","perf_df = pd.DataFrame(columns=[\"epoch\", \"model\", \"accuracy\", \"precision\", \"recall\", \"f1\"])\n","for i, col in enumerate(df.columns[5:]):\n"," accuracy, precision, recall, f1 = calc_metrics_for_col(df, col)\n"," new_model_metrics = {\"epoch\": i, \"model\": col, \"accuracy\": accuracy, \"precision\": precision, \"recall\": recall, \"f1\": f1}\n","\n"," # Convert the dictionary to a DataFrame and concatenate it with the existing DataFrame\n"," perf_df = pd.concat([perf_df, pd.DataFrame([new_model_metrics])], ignore_index=True)\n","\n","perf_df"]},{"cell_type":"code","execution_count":17,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABE0AAAHACAYAAABXiZaAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAABduUlEQVR4nO3de1hU1f7H8c+AAqKCIglqKHnJSyKoKKGWpiRZx7I6hVaK5OVUUhrdJC9oVqiVaWlSpmmnVLrnOXpQI7HyEgpRmoSXVKwEtIsKFigzvz/6OTmxUQZnQOT9ep55Hmfttff+7pkRnQ9rrW2yWCwWAQAAAAAAwIZLdRcAAAAAAABwMSI0AQAAAAAAMEBoAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAzUqe4CKsJsNuunn35Sw4YNZTKZqrscAAAAAMAlzmKx6MSJE2revLlcXBhvUFvViNDkp59+UkBAQHWXAQAAAACoZQ4dOqTLL7+8ustANakRoUnDhg0l/flh9fLyquZqAAAAAACXuuPHjysgIMD6fRS1U40ITc5MyfHy8iI0AQAAAABUGZaIqN2YmAUAAAAAAGCA0AQAAAAAAMAAoQkAANVswYIFCgwMlIeHh8LCwpSenn7O/nPnzlX79u1Vr149BQQE6OGHH9Yff/xh3Z6YmKgePXqoYcOGatq0qYYMGaKcnBxnXwYAAMAlh9AEAIBqlJycrLi4OCUkJCgzM1PBwcGKjIxUQUGBYf/ly5dr4sSJSkhIUHZ2thYvXqzk5GQ9+eST1j4bN27UuHHjtHXrVq1fv16nTp3SwIEDVVRUVFWXBQAAcEkwWSwWS3UXcT7Hjx+Xt7e3jh07xkKwAIBLSlhYmHr06KH58+dLksxmswICAvTggw9q4sSJZfrHxsYqOztbqamp1rZHHnlEX375pb744gvDcxw5ckRNmzbVxo0bde211zrnQgAAuMTwPRQSI00AXOQcPW3hs88+0+DBg9W8eXOZTCZ99NFHTr4CoHwlJSXKyMhQRESEtc3FxUURERHasmWL4T69evVSRkaG9e/C999/rzVr1ujGG28s9zzHjh2TJPn4+DiwesA+/DwHANREhCYALlrOmLZQVFSk4OBgLViwoKouAyjX0aNHVVpaKj8/P5t2Pz8/5eXlGe5z11136amnnlKfPn1Ut25dtWnTRv369bP5nJ/NbDZrwoQJ6t27tzp37uzwawAqgp/nAICaqk51FwAA5ZkzZ47GjBmjmJgYSVJSUpJWr16tJUuWGE5b2Lx5s3r37q277rpLkhQYGKhhw4bpyy+/tPYZNGiQBg0aVDUXADhBWlqann32Wb3yyisKCwvT3r17NX78eM2YMUNTpkwp03/cuHHauXNnuVN3gKrAz3MAQE3FSBMAF6WqmrYAVCdfX1+5uroqPz/fpj0/P1/+/v6G+0yZMkXDhw/X6NGjFRQUpFtvvVXPPvusEhMTZTabbfrGxsbqv//9rzZs2KDLL7/cadcBnAs/z1GbOHoaWmWOCcCxCE0AXJSqYtoCUN3c3NzUvXt3m0VdzWazUlNTFR4ebrjPyZMn5eJi+8+3q6urJOnM2u4Wi0WxsbH68MMP9emnn+qKK65w0hUA58fPc9QWzpiGZu8xATgeoQmAS8bZ0xYyMzP1wQcfaPXq1ZoxY0Z1lwaUKy4uTosWLdKyZcuUnZ2t+++/X0VFRdZpDCNGjFB8fLy1/+DBg7Vw4UKtXLlS+/fv1/r16zVlyhQNHjzYGp6MGzdOb731lpYvX66GDRsqLy9PeXl5+v3336vlGgF78fMcNdHZ09A6deqkpKQkeXp6asmSJYb9z56GFhgYqIEDB2rYsGE2I0nsPSYAx2NNEwAXpQudtiBJQUFBKioq0tixYzVp0qQyv50HLgZRUVE6cuSIpk6dqry8PIWEhCglJcX6W/nc3Fybz+7kyZNlMpk0efJk/fjjj7rssss0ePBgPfPMM9Y+CxculCT169fP5lxvvPGGRo4c6fRrAs7Gz3PUBmemoZ0dcldkGtpbb72l9PR09ezZ0zoNbfjw4ZU+JgDHIzQBcFE6e9rCkCFDJP01bSE2NtZwn4pMWwAuRrGxseV+rtPS0mye16lTRwkJCUpISCj3eHzecTHh5zlqg3NNQ/vuu+8M97nrrrt09OhR9enTRxaLRadPn9Z9991nnZ5TmWMCcDxCEwAXrbi4OEVHRys0NFQ9e/bU3Llzy0xbaNGihRITEyX9OW1hzpw56tq1q/WuIn+ftlBYWKi9e/daz7F//35lZWXJx8dHLVu2rPqLBIBagJ/nQFn23g0NQPUgNAFw0XLGtIXt27fruuuusz6Pi4uTJEVHR2vp0qVVc2EAUMvw8xyXOmdMQ6vMMQE4nslSA8Y4Hj9+XN7e3jp27Ji8vLyquxwAABxrmreTj3/MuccHACgsLEw9e/bUyy+/LOnPaWgtW7ZUbGysJk6cWKZ/9+7dFRERoVmzZlnbVqxYoVGjRunEiRNydXW1+5hwLL6HQmKkCQAAAABcMGdMQzvfMQE4H6EJgIsbv4EHAAA1gDOmoZ3vmACcr1LTcxYsWKDnnntOeXl5Cg4O1ssvv6yePXuW23/u3LlauHChcnNz5evrq3/+859KTEyUh4dHhc7HsKiqZ8973K9fP23cuLFM+4033qjVq1dL+nOxtokTJ+qjjz7Szz//rCuuuEIPPfSQ7rvvPqdeBy4BhCaoDficozbgcw6ghuF7KCTJ7pvcJycnKy4uTgkJCcrMzFRwcLAiIyNVUFBg2H/58uWaOHGiEhISlJ2drcWLFys5Odl6Ky1cfOx9jz/44AMdPnzY+ti5c6dcXV11xx13WPvExcUpJSVFb731lrKzszVhwgTFxsZq1apVVXVZQJVasGCBAgMD5eHhobCwMKWnp5fbt1+/fjKZTGUeN910k7VPYWGhYmNjdfnll6tevXrq1KmTkpKSquJSAAAAgFrL7tBkzpw5GjNmjGJiYqz/aff09NSSJUsM+2/evFm9e/fWXXfdpcDAQA0cOFDDhg075xcIVC9732MfHx/5+/tbH+vXr5enp6dNaLJ582ZFR0erX79+CgwM1NixYxUcHMznAJckgkcAAADg0mDXmiYlJSXKyMhQfHy8tc3FxUURERHasmWL4T69evXSW2+9pfT0dPXs2VPff/+91qxZo+HDh5d7nuLiYhUXF1ufHz9+3J4ycQEq8x7/3eLFizV06FDVr1/f2tarVy+tWrVK9957r5o3b660tDTt3r1bL774osOvAahuZwePkpSUlKTVq1dryZIlhivd+/j42DxfuXLlOYNHSRo7dqxeffVVpaen6+abb3bexQBALceUZdiFaWjAJceukSZHjx5VaWlpmYWH/Pz8lJeXZ7jPXXfdpaeeekp9+vRR3bp11aZNG/Xr1++c03MSExPl7e1tfQQEBNhTJi5AZd7js6Wnp2vnzp3W+82f8fLLL6tTp066/PLL5ebmphtuuEELFizQtdde69D6gep2JniMiIiwtjkyePzxxx9lsVi0YcMG7d69WwMHDnT4NQAA/sTIQQCA3dNz7JWWlqZnn31Wr7zyijIzM/XBBx9o9erVmjFjRrn7xMfH69ixY9bHoUOHnF0mHGTx4sUKCgoq8xuYl19+WVu3btWqVauUkZGhF154QePGjdMnn3xSTZUCzkHwiNrE0Wv3GG03mUx67rnnquJygDKYsgwAsGt6jq+vr1xdXZWfn2/Tnp+fL39/f8N9pkyZouHDh1u/AAQFBamoqEhjx47VpEmTbG67dYa7u7vc3d3tKQ0OUpn3+IyioiKtXLlSTz31lE3777//rieffFIffvih9T/HXbp0UVZWlp5//nmb38gDtV1FgsdWrVrps88+07hx49S8eXP+DqFanPkNfFJSksLCwjR37lxFRkYqJydHTZs2LdP/gw8+UElJifX5zz//rODgYJsvk4cPH7bZ53//+59GjRql22+/3XkXApSDKcsAAMnOkSZubm7q3r27UlNTrW1ms1mpqakKDw833OfkyZNlghFXV1dJUiXudgwnq8x7fMa7776r4uJi3XPPPTbtp06d0qlTpww/B2az2XHFAxcBRwSPo0aNsmk/EzzOmTNHgwcPVpcuXRQbG6uoqCg9//zzDr8GoCKc8Rv4s7f7+/vr448/1nXXXafWrVtX1WUBVowcBABIlZieExcXp0WLFmnZsmXKzs7W/fffr6KiIuuChyNGjLBJ5AcPHqyFCxdq5cqV2r9/v9avX68pU6Zo8ODB1vAEFxd73+MzFi9erCFDhqhJkyY27V5eXurbt68ee+wxpaWlaf/+/Vq6dKnefPNN3XrrrVVyTUBVIXhEbeCstXvOlp+fr9WrV5cJEYGaginLAHBpsDs0OfObzalTpyokJERZWVlKSUmxpvC5ubk2w2snT56sRx55RJMnT1anTp00atQoRUZG6tVXX3XcVcCh7H2PJSknJ0dffPFFuf+5XblypXr06KG7775bnTp10syZM/XMM8+wUvwlwNFrGkhSdna2br75Znl7e6v+s8fVY1Ghco85PhxYkF7ilNpPnz6t+fPny93dXZ07d9bw4cMJHnFJcdZv4M+2bNkyNWzYULfddtsF1wtUBiMHAQBSJReCjY2N1cGDB1VcXKwvv/xSYWFh1m1paWlaunSp9XmdOnWUkJCgvXv36vfff1dubq4WLFigRo0aXWjtFz2nf5msX189evRQbm6uw2u35z2WpPbt28tisej66683PJ6/v7/eeOMN/fjjj3r++ef1xx9/6Mknn9TVV19do14X2HLGXQX27dunPn36qEOHDkpLS9M39zXQlGvd5WHXCkwVqH3nKcWt+8MptQ8YMECPP/64fH19lZOTo+zsbIJH4Czl/Qb+bEuWLNHdd98tDw+PKqwM+AsjBwEAkp0LwaLinLFA3pkvZKNGjdL06dPl5eWlb7/9tkb9h5LX5dJy9poGkpSUlKTVq1dryZIlmjhxYpn+Pj4+Ns9XrlxZZk2DSZMm6cYbb9Ts2bP/bPjYRW18HH+jrzlbizWmW12n1j5r1izDc6elpZVpOxM8ludM8AhcDJyxaPjZPv/8c+Xk5Cg5Odkh9QKVFRcXp+joaIWGhqpnz56aO3dumZGDLVq0UGJios1+FRk5WK9ePbVq1UobN27Um2++qTlz5lTZdQEAKs7ptxyurZyxQN7ZX8i6du2qNm3a6OabbzYMGy5WvC6XDmesaWA2m7V69WpdeeWVioyMVNOmTRX2eqE++u6UY2svtSjjJ7MiWv+VGzul9rAwffTRRw6tHbgYOOM38GdbvHixunfvruDgYIfVjPNjumXZ2t9++22ZTCbFxMToqquuUnp6OiMHAaCWYaSJEzjjFnVnvpA9/vjjioyM1FdffaUrrrhC8fHxGjJkiDMuQ0HLghx6PPNps3Zt36W8sDzN13xJNfN1wZ/OtabBd999d979z6xpsHjxYmtbQUGBCgsLNXPmTD399NOaNWuWUh69Wrcl/64N0Sb1DXTMj6yjJy0qtUh+9U1Orf3N6wfqtltv1dKAlurh6emQ2s/o+F22Q48H2MvRv4E/4/jx43r33Xf1wgsvOP0a8JcqGQn6xrX69kip06ZbJi1KcPoo1quvvtrmmIwcBIBLHyNNnMAZC+Sd/YXshhtu0Lp163Trrbfqtttu08aNGx1+Dc5QeqJUMkt1vG3/t1TbX5faymhNgzPzuW+55RY9/PDDCgkJ0cQ+7vrHlXWUlFFS3qGqXEVrH9OkifrVb6Dk336trlIBp3HGouHSn7+Ft1gsGjZsmFPrh60qGQnq46Kb29dV0/qO/e/n2dMtGcUKVI6jR5qNHDmyzPYbbrihKi4FcDhGmlyEKvKFTJJCQkK0efNmJSUlqW/fvtVSa1Xidbm4OGNNA19fX9WpU0edOnWyae/o66IvDpU6pnBJvp4muZqk/CLb3wQ6o/bW7m7KPPm7YwoHLjKxsbGKjY013FaZ38BL0tixYzV27FhHlIcKqrIRsm6Fiu/jriEd6jqu9v+fbhnfx92ptfufOKExPk0U0bChw2o/g5GDqG7OGGkmSTfccIPNqCp3d3cBNREjTZzAGbeoK/fLZMeONeYuMa4NXSUX6fSx0zbttf11qamcsaaBm5ubevTooZycHJv23b+Y1crbdirNBdXualL35i5K/f6vz6Kzaj9QUqLmdR33BQEAHK3KRsh2qKvbkn/XxgOnz3E0O2s/x3RLR9Ye0aChxv/0o7adPOmw2oGLhTNGmkl/hiRn92vcuHFVXA7gcIQmTlClXyZ371arVq0cV7wTudRxUb3AeircVWht43Wp2eLi4rRo0SItW7ZM2dnZuv/++8usaXD2by7PONeaBo899piSk5O1aNEi7d27V/PTS/SfnNN6oIebY2u/2l2LMk85tfa3f/1VaYWFGloLbrEOoPZiuiVQczljYf8z0tLS1LRpU7Vv317333+/fv75Z4fWDlQVQhMnqYovk3feeac++ugjvf/++w5bKf6M++67TztH7tTRtUcr+QoY84301a8bf3Xul+z58/Wf//xHDzzwgENrR1nOWNPg1ltvVVJSkmbPnq2goCC9nlmi9++spz4tHTubMKpzXT0/0MOptb937DfNbd5C3R28CCyqnjPuKnLGfffdJ9P045q7tdg5tTvhriI2tZtMim/qp+wOHR3+QNWo0hGyvi7KPXbuKVr2cMR0y4rW3trdTYdPOW6UDHAxcMZIM+nPqTlvvvmmUlNTNWvWLG3cuFGDBg1SaanjplsDVYU1TZwkKipKR44c0dSpU5WXl6eQkJAyX8hcXGwzqzNfyNatW2d4zDNfyBITEzVu3DidPn1aDz74oO677z6HzT2UpA8//FBbt25VnUaO/3h4h3nr9InTTntdHnroIbVv317vv/+++vTp4/D6UZYz1jS49957de+99/75ZJr3hZZYrtiebopdc9BwmyNq50vfpcFZc72lv37eNm/ouOlnNrU74a4if6+9aR3+K1HTnT1C9syd586MBC3v5/sZF9N0yyH/3+as2pluCZRlNFpLkoYOHWr9c1BQkLp06aI2bdooLS1NAwYMqOoygQvC/3ScyJlfJsPCwtSjRw+99NJLkqSkpCStXr1aS5Ys0cSJE8vs5+PjY/N85cqVhnMPf/zxRz344INau3atuvbtes5aKqtJRBPt+PcOw20O+ZINAA509lxvyTk/b2/q7dhbvFtrP+uuIs6qfWBIiFNqR9Vyxi2kH3vsMUVFRenaa6/Vddddp5T/n26ZNtKxo+/irnZX9Ee/K3TZMqfVfma65dKAlg6tHahuzljY30jr1q3l6+urvXv3EpqgxmF6Tg3krLmHZrNZw4cP12OPPaarrrrK4XUDQE1Tk3/enrmrSETrv34/UlNqR9VjuuW5a2e6JS5VzliL0cgPP/ygn3/+Wc2aNbvgmoGqxkgTJwucuNrhxzx94udy5x5+9913593/zNzDxYsX27TPmjVLderU0UMPPeTQenHpc8bn/IwDHk47tCQpaJlzfsMvSe847cioKuea632x/7w9111FLvbaUT2YbmmL6ZaoLRw90qywsFDTp0/X7bffLn9/f+3bt0+PP/642rZtq8jIyCq7LsBRCE1qIaO5hxkZGZo3b54yMzNlMjlnbv3ZnPmfj47fZTvt2ABgj4vh521l1eTaAQAV5+i1GF1dXfXNN99o2bJl+u2339S8eXMNHDhQM2bMkLu7e5VcE+BIhCY1kKunl2Rycejcw88//1wFBQVq2fKvubqlpaXKW5mnn9f9rPYvtHfcBQBADeGMud7GP28temRdseZuLdGBCQ0dU7sD7ipS0X8rZh8p0Ju//qJP2rR1SO0AgKrlyJFm9erV09q1ax1ZHlCtCE1qIJNrXbn5t3XoKvfDhw+3mbMvSV2v6apGvRqp8TWNHVo/ANQUzririNHP28heXTS8S13FhDjuzhzOuKuIUe0DunbVzV5eutXbeVMvUHWYbmmM6ZYAUHsRmtRQXj2GaNGieQ6be9ikSZMybSZXk+p415F7M4bRAai9HD3X2+jnbV0Xyb+BSe19XR1bu4PvKmJUex1Jvq51dIUb/1YAAIBLD6FJDVW/47VKuD7AYXMPAQDGHD3XuypFda6rIyctNbJ2AEDVYs1BwBihSQ3mjFXubfqzjgkASHL+z1tHrWNixBl3FTkb65gAqEkWLFig5557Tnl5eQoODtbLL79ss+D12fr166eNGzeWab/xxhu1evVqnTp1SpMnT9aaNWv0/fffy9vbWxGX/a6ZEe5q3tDF4IgXWHt6iZ4LDHRa7T2KihR32WVqWsdxU0WBS4Hj/zYDAAAAwEUmOTlZcXFxSkhIUGZmpoKDgxUZGamCggLD/h988IEOHz5sfezcuVOurq664447JEknT55UZmampkyZoszMTH3wwQfK+blUN6846fjad55S3Lo/nFr7/pISjfvhR4fXDtR0jDSpyaY5edG9K1qevw8AAABQA8yZM0djxoyxruuUlJSk1atXa8mSJZo4cWKZ/j4+PjbPV65cKU9PT2vw4O3trfXr19v0mT+onnq+XqTcY2a19Hbc76fnbC3WmG51nVr75KZ+iso9qJ9OnVLzuow2Ac4gNAEAoAK4q4gx7ioCoCYoKSlRRkaG4uPjrW0uLi6KiIjQli1bKnSMxYsXa+jQoapfv365fY4VW2SS1MjDdKElW5WUWpTxk1nxff5acNsZtZ8wm2WS5OXCZATgbPyNAAAAAHBJO3r0qEpLS60LYZ/h5+envLy88+6fnp6unTt3avTo0eX2+eOPP/TEJ39oWFAdebk7LjQ5etKiUovkV9/2mI6ufc6RAt3Y0EsNXB17JzegpiM0AQAAAIBzWLx4sYKCgspdePXUqVO68847ZbFIC2+qV8XVnVuFa5eU8LdQCQChCQAAAIBLnK+vr1xdXZWfn2/Tnp+fL39//3PuW1RUpJUrV2rUqFGG28+EDgcPHtT64Z4OHWUiSb6eJrmapPwi2zubObr2xQEtGWUCGCA0AQAAAHBJc3NzU/fu3ZWammptM5vNSk1NVXh4+Dn3fffdd1VcXKx77rmnzLYzocOePXv0ySefqImn479eubma1L25i1K/P+3U2hsRmACGCE0AAAAAXPLi4uK0aNEiLVu2TNnZ2br//vtVVFRkvSPNiBEjbBaKPWPx4sUaMmSImjRpYtN+6tQp/fOf/9T27dv19ttvq7S0VHmFZuUVmlVSailznAuq/Wp3Lco85dTaj5w+rSOnT6vE4tjagZqOu+cAAAAAuORFRUXpyJEjmjp1qvLy8hQSEqKUlBTr4rC5ubly+dudY3JycvTFF19o3bp1ZY73448/atWqVZKkkJAQm20boj3VL9BxX7WiOtfVkZOWKql9aUCAenqWf5cdoLYhNAEAAABQK8TGxio2NtZwW1paWpm29u3by1LOyIvAwMCy26Z5X2iJ5Yrt6abYNQcNtzmi9uwOHS+4RuBSxPQcAAAAAAAAA4QmAAAAAAAABpieAwAAAKDWCJy42mnHPuDhtENLkoKWBTnt2O847chAzcZIEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAxUKjRZsGCBAgMD5eHhobCwMKWnp5fbt1+/fjKZTGUeN910U6WLBgAAAAAAcDa7Q5Pk5GTFxcUpISFBmZmZCg4OVmRkpAoKCgz7f/DBBzp8+LD1sXPnTrm6uuqOO+644OIBAAAAAACcxe7QZM6cORozZoxiYmLUqVMnJSUlydPTU0uWLDHs7+PjI39/f+tj/fr18vT0JDQBAAAAAAAXNbtCk5KSEmVkZCgiIuKvA7i4KCIiQlu2bKnQMRYvXqyhQ4eqfv365fYpLi7W8ePHbR4AAAAAAABVya7Q5OjRoyotLZWfn59Nu5+fn/Ly8s67f3p6unbu3KnRo0efs19iYqK8vb2tj4CAAHvKBAAAAAAAuGBVevecxYsXKygoSD179jxnv/j4eB07dsz6OHToUBVVCAAAAAAA8Kc69nT29fWVq6ur8vPzbdrz8/Pl7+9/zn2Lioq0cuVKPfXUU+c9j7u7u9zd3e0pDQAAAAAAwKHsGmni5uam7t27KzU11dpmNpuVmpqq8PDwc+777rvvqri4WPfcc0/lKgUAAAAAAKhCdo00kaS4uDhFR0crNDRUPXv21Ny5c1VUVKSYmBhJ0ogRI9SiRQslJiba7Ld48WINGTJETZo0cUzlAAAAAAAATmR3aBIVFaUjR45o6tSpysvLU0hIiFJSUqyLw+bm5srFxXYAS05Ojr744gutW7fOMVUDAAAAAAA4md2hiSTFxsYqNjbWcFtaWlqZtvbt28tisVTmVAAAAAAAANWiSu+eAwAAAAAAUFMQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYqFRosmDBAgUGBsrDw0NhYWFKT08/Z//ffvtN48aNU7NmzeTu7q4rr7xSa9asqVTBAAAAAAAAVaGOvTskJycrLi5OSUlJCgsL09y5cxUZGamcnBw1bdq0TP+SkhJdf/31atq0qd577z21aNFCBw8eVKNGjRxRPwAAAAAAgFPYHZrMmTNHY8aMUUxMjCQpKSlJq1ev1pIlSzRx4sQy/ZcsWaJffvlFmzdvVt26dSVJgYGBF1Y1AAAAAACAk9k1PaekpEQZGRmKiIj46wAuLoqIiNCWLVsM91m1apXCw8M1btw4+fn5qXPnznr22WdVWlpa7nmKi4t1/PhxmwcAAAAAAEBVsis0OXr0qEpLS+Xn52fT7ufnp7y8PMN9vv/+e7333nsqLS3VmjVrNGXKFL3wwgt6+umnyz1PYmKivL29rY+AgAB7ygQAAAAAALhgTr97jtlsVtOmTfXaa6+pe/fuioqK0qRJk5SUlFTuPvHx8Tp27Jj1cejQIWeXCQAAAAAAYMOuNU18fX3l6uqq/Px8m/b8/Hz5+/sb7tOsWTPVrVtXrq6u1raOHTsqLy9PJSUlcnNzK7OPu7u73N3d7SkNAAAAAADAoewaaeLm5qbu3bsrNTXV2mY2m5Wamqrw8HDDfXr37q29e/fKbDZb23bv3q1mzZoZBiYAAAAAAAAXA7un58TFxWnRokVatmyZsrOzdf/996uoqMh6N50RI0YoPj7e2v/+++/XL7/8ovHjx2v37t1avXq1nn32WY0bN85xVwEAAAAAAOBgdt9yOCoqSkeOHNHUqVOVl5enkJAQpaSkWBeHzc3NlYvLX1lMQECA1q5dq4cfflhdunRRixYtNH78eD3xxBOOuwoAAAAAAAAHszs0kaTY2FjFxsYabktLSyvTFh4erq1bt1bmVAAAAAAAANXC6XfPAQAAAAAAqIkITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAbqVHcBAAAAAADURGazWSUlJdVdBuxUt25dubq6VqgvoQkAAAAAAHYqKSnR/v37ZTabq7sUVEKjRo3k7+8vk8l0zn6EJgAAAAAA2MFisejw4cNydXVVQECAXFxY+aKmsFgsOnnypAoKCiRJzZo1O2d/QhMAAAAAAOxw+vRpnTx5Us2bN5enp2d1lwM71atXT5JUUFCgpk2bnnOqDnEYAAAAAAB2KC0tlSS5ublVcyWorDNh16lTp87Zj9AEAAAAAIBKON96GLh4VfS9IzQBAAAAAAAwQGgCAAAAAABggIVgAQAAAABwgMCJq6v0fAdm3lSl56uNKjXSZMGCBQoMDJSHh4fCwsKUnp5ebt+lS5fKZDLZPDw8PCpdMAAAAAAAuDScbyHW6mZ3aJKcnKy4uDglJCQoMzNTwcHBioyMtN7j2IiXl5cOHz5sfRw8ePCCigYAAAAAAPZLSUlRnz591KhRIzVp0kT/+Mc/tG/fPuv2H374QcOGDZOPj4/q16+v0NBQffnll9bt//nPf9SjRw95eHjI19dXt956q3WbyWTSRx99ZHO+Ro0aaenSpZKkAwcOyGQyKTk5WX379pWHh4fefvtt/fzzzxo2bJhatGghT09PBQUFacWKFTbHMZvNmj17ttq2bSt3d3e1bNlSzzzzjCSpf//+io2Ntel/5MgRubm5KTU19YJeL7tDkzlz5mjMmDGKiYlRp06dlJSUJE9PTy1ZsqTcfUwmk/z9/a0PPz+/CyoaAAAAAADYr6ioSHFxcdq+fbtSU1Pl4uKiW2+9VWazWYWFherbt69+/PFHrVq1Sl9//bUef/xxmc1mSdLq1at166236sYbb9RXX32l1NRU9ezZ0+4aJk6cqPHjxys7O1uRkZH6448/1L17d61evVo7d+7U2LFjNXz4cJtZLfHx8Zo5c6amTJmiXbt2afny5dZsYfTo0Vq+fLmKi4ut/d966y21aNFC/fv3v6DXy641TUpKSpSRkaH4+Hhrm4uLiyIiIrRly5Zy9yssLFSrVq1kNpvVrVs3Pfvss7rqqqvK7V9cXGxzscePH7enTAAAAAAAYOD222+3eb5kyRJddtll2rVrlzZv3qwjR45o27Zt8vHxkSS1bdvW2veZZ57R0KFDNX36dGtbcHCw3TVMmDBBt912m03bo48+av3zgw8+qLVr1+qdd95Rz549deLECc2bN0/z589XdHS0JKlNmzbq06ePJOm2225TbGysPv74Y915552S/lwqZOTIkRd8W2i7RpocPXpUpaWlZUaK+Pn5KS8vz3Cf9u3ba8mSJfr444/11ltvyWw2q1evXvrhhx/KPU9iYqK8vb2tj4CAAHvKBAAAAAAABvbs2aNhw4apdevW8vLyUmBgoCQpNzdXWVlZ6tq1qzUw+busrCwNGDDggmsIDQ21eV5aWqoZM2YoKChIPj4+atCggdauXavc3FxJUnZ2toqLi8s9t4eHh4YPH26dAZOZmamdO3dq5MiRF1yr0++eEx4ervDwcOvzXr16qWPHjnr11Vc1Y8YMw33i4+MVFxdnfX78+HGCEwAAAAAALtDgwYPVqlUrLVq0SM2bN5fZbFbnzp1VUlKievXqnXPf8203mUyyWCw2bUYLvdavX9/m+XPPPad58+Zp7ty5CgoKUv369TVhwgSVlJRU6LzSn1N0QkJC9MMPP+iNN95Q//791apVq/Pudz52jTTx9fWVq6ur8vPzbdrz8/Pl7+9foWPUrVtXXbt21d69e8vt4+7uLi8vL5sHAAAAAACovJ9//lk5OTmaPHmyBgwYoI4dO+rXX3+1bu/SpYuysrL0yy+/GO7fpUuXcy6setlll+nw4cPW53v27NHJkyfPW9emTZt0yy236J577lFwcLBat26t3bt3W7e3a9dO9erVO+e5g4KCFBoaqkWLFmn58uW69957z3veirArNHFzc1P37t1tCjWbzUpNTbUZTXIupaWl2rFjh5o1a2ZfpQAAAAAAoNIaN26sJk2a6LXXXtPevXv16aef2szyGDZsmPz9/TVkyBBt2rRJ33//vd5//33rGqYJCQlasWKFEhISlJ2drR07dmjWrFnW/fv376/58+frq6++0vbt23Xfffepbt26562rXbt2Wr9+vTZv3qzs7Gz961//shms4eHhoSeeeEKPP/643nzzTe3bt09bt27V4sWLbY4zevRozZw5UxaLxeauPhfC7rvnxMXFadGiRVq2bJmys7N1//33q6ioSDExMZKkESNG2CwU+9RTT2ndunX6/vvvlZmZqXvuuUcHDx7U6NGjHXIBAAAAAADg/FxcXLRy5UplZGSoc+fOevjhh/Xcc89Zt7u5uWndunVq2rSpbrzxRgUFBWnmzJlydXWVJPXr10/vvvuuVq1apZCQEPXv39/mDjcvvPCCAgICdM011+iuu+7So48+Kk9Pz/PWNXnyZHXr1k2RkZHq16+fNbg525QpU/TII49o6tSp6tixo6KiolRQUGDTZ9iwYapTp46GDRsmDw+PC3il/mL3miZRUVE6cuSIpk6dqry8PIWEhCglJcW6OGxubq5cXP7KYn799VeNGTNGeXl5aty4sbp3767NmzerU6dODrkAAAAAAAAuBgdm3lTdJZxXRESEdu3aZdN29jokrVq10nvvvVfu/rfddluZO9+c0bx5c61du9am7bfffrP+OTAwsMyaJ5Lk4+Ojjz766Jx1u7i4aNKkSZo0aVK5fY4ePao//vhDo0aNOuex7FGphWBjY2MVGxtruC0tLc3m+YsvvqgXX3yxMqcBAAAAAAA4p1OnTunnn3/W5MmTdfXVV6tbt24OO7bd03MAAAAAAAAuFps2bVKzZs20bds2JSUlOfTYTr/lMAAAAAAAgLP069fPcNqPIzDSBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAAE6RlpYmk8mk3377zaF9q0qd6i4AAAAAAIBLwjTvKj7fsao9XyX06tVLhw8flrf3+V8be/pWFUaaAAAAAACAMkpKSi74GG5ubvL395fJZHJo36pCaAIAAAAAQC3Qr18/xcbGKjY2Vt7e3vL19dWUKVNksVgkSYGBgZoxY4ZGjBghLy8vjR07VpL0xRdf6JprrlG9evUUEBCghx56SEVFRdbjFhcX64knnlBAQIDc3d3Vtm1bLV68WFLZKTcHDx7U4MGD1bhxY9WvX19XXXWV1qxZY9hXkt5//31dddVVcnd3V2BgoF544QWbawoMDNSzzz6re++9Vw0bNlTLli312muvOew1IzQBAAAAAKCWWLZsmerUqaP09HTNmzdPc+bM0euvv27d/vzzzys4OFhfffWVpkyZon379umGG27Q7bffrm+++UbJycn64osvFBsba91nxIgRWrFihV566SVlZ2fr1VdfVYMGDQzPP27cOBUXF+uzzz7Tjh07NGvWrHL7ZmRk6M4779TQoUO1Y8cOTZs2TVOmTNHSpUtt+r3wwgsKDQ3VV199pQceeED333+/cnJyLvzFEmuaAAAAAABQawQEBOjFF1+UyWRS+/bttWPHDr344osaM2aMJKl///565JFHrP1Hjx6tu+++WxMmTJAktWvXTi+99JL69u2rhQsXKjc3V++8847Wr1+viIgISVLr1q3LPX9ubq5uv/12BQUFnbfvnDlzNGDAAE2ZMkWSdOWVV2rXrl167rnnNHLkSGu/G2+8UQ888IAk6YknntCLL76oDRs2qH379va/QH/DSBMAAAAAAGqJq6++2mbNkPDwcO3Zs0elpaWSpNDQUJv+X3/9tZYuXaoGDRpYH5GRkTKbzdq/f7+ysrLk6uqqvn37Vuj8Dz30kJ5++mn17t1bCQkJ+uabb8rtm52drd69e9u09e7d26ZeSerSpYv1zyaTSf7+/iooKKhQPedDaAIAAAAAACRJ9evXt3leWFiof/3rX8rKyrI+vv76a+3Zs0dt2rRRvXr17Dr+6NGj9f3332v48OHasWOHQkND9fLLL19QzXXr1rV5bjKZZDabL+iYZxCaAAAAAABQS3z55Zc2z7du3ap27drJ1dXVsH+3bt20a9cutW3btszDzc1NQUFBMpvN2rhxY4VrCAgI0H333acPPvhAjzzyiBYtWmTYr2PHjtq0aZNN26ZNm3TllVeWW6+jEZoAAAAAAFBL5ObmKi4uTjk5OVqxYoVefvlljR8/vtz+TzzxhDZv3qzY2FhlZWVpz549+vjjj60LwQYGBio6Olr33nuvPvroI+3fv19paWl65513DI83YcIErV27Vvv371dmZqY2bNigjh07GvZ95JFHlJqaqhkzZmj37t1atmyZ5s+fr0cfffTCX4gKYiFYAAAAAABqiREjRuj3339Xz5495erqqvHjx1tvLWykS5cu2rhxoyZNmqRrrrlGFotFbdq0UVRUlLXPwoUL9eSTT+qBBx7Qzz//rJYtW+rJJ580PF5paanGjRunH374QV5eXrrhhhv04osvGvbt1q2b3nnnHU2dOlUzZsxQs2bN9NRTT9ksAutshCYAAAAAADjCtGPVXcF51a1bV3PnztXChQvLbDtw4IDhPj169NC6devKPaaHh4fmzJmjOXPmlNnWr18/WSwW6/NzrV/y976SdPvtt+v2228vdx+jmrOyssrtby+m5wAAAAAAABggNAEAAAAAADDA9BwAAAAAAGqBtLS06i6hxmGkCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAJxi2rRpCgkJsT4fOXKkhgwZUm312KtOdRcAAAAAAMClIGhZUJWeb0f0jio9X23ESBMAAAAAAGqhkpKS6i7hokdoAgAAAABALdCvXz/FxsZqwoQJ8vX1VWRkpHbu3KlBgwapQYMG8vPz0/Dhw3X06FHrPmazWbNnz1bbtm3l7u6uli1b6plnnrFuf+KJJ3TllVfK09NTrVu31pQpU3Tq1KnquDynIDQBAAAAAKCWWLZsmdzc3LRp0ybNnDlT/fv3V9euXbV9+3alpKQoPz9fd955p7V/fHy8Zs6cqSlTpmjXrl1avny5/Pz8rNsbNmyopUuXateuXZo3b54WLVqkF198sTouzSkqFZosWLBAgYGB8vDwUFhYmNLT0yu038qVK2UymWrUoi8AAAAAAFwq2rVrp9mzZ6t9+/Zav369unbtqmeffVYdOnRQ165dtWTJEm3YsEG7d+/WiRMnNG/ePM2ePVvR0dFq06aN+vTpo9GjR1uPN3nyZPXq1UuBgYEaPHiwHn30Ub3zzjvVeIWOZfdCsMnJyYqLi1NSUpLCwsI0d+5cRUZGKicnR02bNi13vwMHDujRRx/VNddcc0EFAwAAAACAyunevbv1z19//bU2bNigBg0alOm3b98+/fbbbyouLtaAAQPKPV5ycrJeeukl7du3T4WFhTp9+rS8vLycUnt1sHukyZw5czRmzBjFxMSoU6dOSkpKkqenp5YsWVLuPqWlpbr77rs1ffp0tW7d+oIKBgAAAAAAlVO/fn3rnwsLCzV48GBlZWXZPPbs2aNrr71W9erVO+extmzZorvvvls33nij/vvf/+qrr77SpEmTLqkFZu0aaVJSUqKMjAzFx8db21xcXBQREaEtW7aUu99TTz2lpk2batSoUfr888/Pe57i4mIVFxdbnx8/ftyeMgEAAAAAwHl069ZN77//vgIDA1WnTtl4oF27dqpXr55SU1NtpuScsXnzZrVq1UqTJk2yth08eNCpNVc1u0aaHD16VKWlpTaLvkiSn5+f8vLyDPf54osvtHjxYi1atKjC50lMTJS3t7f1ERAQYE+ZAAAAAADgPMaNG6dffvlFw4YN07Zt27Rv3z6tXbtWMTExKi0tlYeHh5544gk9/vjjevPNN7Vv3z5t3bpVixcvlvRnqJKbm6uVK1dq3759eumll/Thhx9W81U5llPvnnPixAkNHz5cixYtkq+vb4X3i4+P17Fjx6yPQ4cOObFKAAAAAABqn+bNm2vTpk0qLS3VwIEDFRQUpAkTJqhRo0ZycfkzLpgyZYoeeeQRTZ06VR07dlRUVJQKCgokSTfffLMefvhhxcbGKiQkRJs3b9aUKVOq85Iczq7pOb6+vnJ1dVV+fr5Ne35+vvz9/cv037dvnw4cOKDBgwdb28xm858nrlNHOTk5atOmTZn93N3d5e7ubk9pAAAAAABUqx3RO6q7hHNKS0sr09auXTt98MEH5e7j4uKiSZMm2UzBOdvs2bM1e/Zsm7YJEyZY/zxt2jRNmzbN+nzp0qX2lFzt7Bpp4ubmpu7duys1NdXaZjablZqaqvDw8DL9O3TooB07dtgsKHPzzTfruuuuU1ZWFtNuAAAAAADARcvuWw7HxcUpOjpaoaGh6tmzp+bOnauioiLFxMRIkkaMGKEWLVooMTFRHh4e6ty5s83+jRo1kqQy7QAAAAAAABcTu0OTqKgoHTlyRFOnTlVeXp5CQkKUkpJiXRw2NzfXOvcJAAAAAACgprI7NJGk2NhYxcbGGm4zmiN1tpo2fwkAAAAAANRODAkBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAADUAhaLRWPHjpWPj49MJpOysrKqu6SLXqVuOQwAAAAAAGxld+hYpefr+F22Xf1TUlK0dOlSpaWlqXXr1tq9e7cGDx6sjIwMHT58WB9++KGGDBninGJrKEaaAAAAAABQC+zbt0/NmjVTr1695O/vr6KiIgUHB2vBggXVXdpFi5EmAAAAAABc4kaOHKlly5ZJkkwmk1q1aqUDBw5o0KBB1VzZxY3QBAAAAACAS9y8efPUpk0bvfbaa9q2bZtcXV2ru6QagdAEAAAAAIBLnLe3txo2bChXV1f5+/tXdzk1BmuaAAAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIA1TQAAAAAAqIUKCwu1d+9e6/P9+/crKytLPj4+atmyZTVWdvEgNAEAAAAAoBbavn27rrvuOuvzuLg4SVJ0dLSWLl1aTVVdXAhNAAAAAABwgI7fZVd3Cec0YcIETZgwwfq8X79+slgs1VdQDcCaJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAQCWwiGrNVdH3jtAEAAAAAAA7uLq6SpJKSkqquRJU1smTJyVJdevWPWc/bjkMAAAAAIAd6tSpI09PTx05ckR169aViwvjEWoKi8WikydPqqCgQI0aNbIGYOUhNAEAAAAAwA4mk0nNmjXT/v37dfDgweouB5XQqFEj+fv7n7cfoQkAAAAAAHZyc3NTu3btmKJTA9WtW/e8I0zOIDQBAAAAAKASXFxc5OHhUd1lwImYeAUAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYqFRosmDBAgUGBsrDw0NhYWFKT08vt+8HH3yg0NBQNWrUSPXr11dISIj+/e9/V7pgAAAAAACAqmB3aJKcnKy4uDglJCQoMzNTwcHBioyMVEFBgWF/Hx8fTZo0SVu2bNE333yjmJgYxcTEaO3atRdcPAAAAAAAgLPYHZrMmTNHY8aMUUxMjDp16qSkpCR5enpqyZIlhv379eunW2+9VR07dlSbNm00fvx4denSRV988cUFFw8AAAAAAOAsdoUmJSUlysjIUERExF8HcHFRRESEtmzZct79LRaLUlNTlZOTo2uvvbbcfsXFxTp+/LjNAwAAAAAAoCrZFZocPXpUpaWl8vPzs2n38/NTXl5eufsdO3ZMDRo0kJubm2666Sa9/PLLuv7668vtn5iYKG9vb+sjICDAnjIBAAAAAAAuWJXcPadhw4bKysrStm3b9MwzzyguLk5paWnl9o+Pj9exY8esj0OHDlVFmQAAAAAAAFZ17Ons6+srV1dX5efn27Tn5+fL39+/3P1cXFzUtm1bSVJISIiys7OVmJiofv36GfZ3d3eXu7u7PaUBAAAAAAA4lF0jTdzc3NS9e3elpqZa28xms1JTUxUeHl7h45jNZhUXF9tzagAAAAAAgCpl10gTSYqLi1N0dLRCQ0PVs2dPzZ07V0VFRYqJiZEkjRgxQi1atFBiYqKkP9cnCQ0NVZs2bVRcXKw1a9bo3//+txYuXOjYKwEAAAAAAHAgu0OTqKgoHTlyRFOnTlVeXp5CQkKUkpJiXRw2NzdXLi5/DWApKirSAw88oB9++EH16tVThw4d9NZbbykqKspxVwEAAAAAAOBgdocmkhQbG6vY2FjDbX9f4PXpp5/W008/XZnTAAAAAAAAVJsquXsOAAAAAABATUNoAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCgUqHJggULFBgYKA8PD4WFhSk9Pb3cvosWLdI111yjxo0bq3HjxoqIiDhnfwAAAAAAgIuB3aFJcnKy4uLilJCQoMzMTAUHBysyMlIFBQWG/dPS0jRs2DBt2LBBW7ZsUUBAgAYOHKgff/zxgosHAAAAAABwFrtDkzlz5mjMmDGKiYlRp06dlJSUJE9PTy1ZssSw/9tvv60HHnhAISEh6tChg15//XWZzWalpqZecPEAAAAAAADOYldoUlJSooyMDEVERPx1ABcXRUREaMuWLRU6xsmTJ3Xq1Cn5+PiU26e4uFjHjx+3eQAAAAAAAFQlu0KTo0ePqrS0VH5+fjbtfn5+ysvLq9AxnnjiCTVv3twmePm7xMREeXt7Wx8BAQH2lAkAAAAAAHDBqvTuOTNnztTKlSv14YcfysPDo9x+8fHxOnbsmPVx6NChKqwSAAAAAABAqmNPZ19fX7m6uio/P9+mPT8/X/7+/ufc9/nnn9fMmTP1ySefqEuXLufs6+7uLnd3d3tKAwAAAAAAcCi7Rpq4ubmpe/fuNou4nlnUNTw8vNz9Zs+erRkzZiglJUWhoaGVrxYAAAAAAKCK2DXSRJLi4uIUHR2t0NBQ9ezZU3PnzlVRUZFiYmIkSSNGjFCLFi2UmJgoSZo1a5amTp2q5cuXKzAw0Lr2SYMGDdSgQQMHXgoAAAAAAIDj2B2aREVF6ciRI5o6dary8vIUEhKilJQU6+Kwubm5cnH5awDLwoULVVJSon/+8582x0lISNC0adMurHoAAAAAAAAnsTs0kaTY2FjFxsYabktLS7N5fuDAgcqcAgAAAAAAoFpV6d1zAAAAAAAAagpCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADlQpNFixYoMDAQHl4eCgsLEzp6enl9v322291++23KzAwUCaTSXPnzq1srQAAAAAAAFXG7tAkOTlZcXFxSkhIUGZmpoKDgxUZGamCggLD/idPnlTr1q01c+ZM+fv7X3DBAAAAAAAAVcHu0GTOnDkaM2aMYmJi1KlTJyUlJcnT01NLliwx7N+jRw8999xzGjp0qNzd3S+4YAAAAAAAgKpgV2hSUlKijIwMRURE/HUAFxdFRERoy5YtDiuquLhYx48ft3kAAAAAAABUJbtCk6NHj6q0tFR+fn427X5+fsrLy3NYUYmJifL29rY+AgICHHZsAAAAAACAirgo754THx+vY8eOWR+HDh2q7pIAAAAAAEAtU8eezr6+vnJ1dVV+fr5Ne35+vkMXeXV3d2f9EwAAAAAAUK3sGmni5uam7t27KzU11dpmNpuVmpqq8PBwhxcHAAAAAABQXewaaSJJcXFxio6OVmhoqHr27Km5c+eqqKhIMTExkqQRI0aoRYsWSkxMlPTn4rG7du2y/vnHH39UVlaWGjRooLZt2zrwUgAAAAAAABzH7tAkKipKR44c0dSpU5WXl6eQkBClpKRYF4fNzc2Vi8tfA1h++uknde3a1fr8+eef1/PPP6++ffsqLS3twq8AAAAAAADACewOTSQpNjZWsbGxhtv+HoQEBgbKYrFU5jQAAAAAAADV5qK8ew4AAAAAAEB1IzQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGKhUaLJgwQIFBgbKw8NDYWFhSk9PP2f/d999Vx06dJCHh4eCgoK0Zs2aShULAAAAAABQVewOTZKTkxUXF6eEhARlZmYqODhYkZGRKigoMOy/efNmDRs2TKNGjdJXX32lIUOGaMiQIdq5c+cFFw8AAAAAAOAsdocmc+bM0ZgxYxQTE6NOnTopKSlJnp6eWrJkiWH/efPm6YYbbtBjjz2mjh07asaMGerWrZvmz59/wcUDAAAAAAA4i12hSUlJiTIyMhQREfHXAVxcFBERoS1bthjus2XLFpv+khQZGVlufwAAAAAAgItBHXs6Hz16VKWlpfLz87Np9/Pz03fffWe4T15enmH/vLy8cs9TXFys4uJi6/Njx45Jko4fP25PuRcFc/FJpx37uMnitGNLUunvpU47dmGp845dEz8nNR2fc2N8zi8tfM6N8Tm/tPA5N8bn/NLC59wYn/OyztRtsTj3fcXFza7QpKokJiZq+vTpZdoDAgKqoZqLl7fTz5DttCP3dNqRJXk7/5VB1eFzXg4+55cUPufl4HN+SeFzXg4+55cUPuflqOGf8xMnTsi7hl8DKs+u0MTX11eurq7Kz8+3ac/Pz5e/v7/hPv7+/nb1l6T4+HjFxcVZn5vNZv3yyy9q0qSJTCaTPSWjko4fP66AgAAdOnRIXl5e1V0O4BR8zlEb8DlHbcDnHLUBn/OqZ7FYdOLECTVv3ry6S0E1sis0cXNzU/fu3ZWamqohQ4ZI+jPQSE1NVWxsrOE+4eHhSk1N1YQJE6xt69evV3h4eLnncXd3l7u7u01bo0aN7CkVDuLl5cUPZVzy+JyjNuBzjtqAzzlqAz7nVYsRJrB7ek5cXJyio6MVGhqqnj17au7cuSoqKlJMTIwkacSIEWrRooUSExMlSePHj1ffvn31wgsv6KabbtLKlSu1fft2vfbaa469EgAAAAAAAAeyOzSJiorSkSNHNHXqVOXl5SkkJEQpKSnWxV5zc3Pl4vLXTXl69eql5cuXa/LkyXryySfVrl07ffTRR+rcubPjrgIAAAAAAMDBKrUQbGxsbLnTcdLS0sq03XHHHbrjjjsqcypUE3d3dyUkJJSZJgVcSvicozbgc47agM85agM+50D1MFm4fxIAAAAAAEAZLufvAgAAAAAAUPsQmgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCA0ARlLFiwQIGBgfLw8FBYWJjS09OruyTAoT777DMNHjxYzZs3l8lk0kcffVTdJQEOlZiYqB49eqhhw4Zq2rSphgwZopycnOouC3CohQsXqkuXLvLy8pKXl5fCw8P1v//9r7rLApxq5syZMplMmjBhQnWXAtQahCawkZycrLi4OCUkJCgzM1PBwcGKjIxUQUFBdZcGOExRUZGCg4O1YMGC6i4FcIqNGzdq3Lhx2rp1q9avX69Tp05p4MCBKioqqu7SAIe5/PLLNXPmTGVkZGj79u3q37+/brnlFn377bfVXRrgFNu2bdOrr76qLl26VHcpQK3CLYdhIywsTD169ND8+fMlSWazWQEBAXrwwQc1ceLEaq4OcDyTyaQPP/xQQ4YMqe5SAKc5cuSImjZtqo0bN+raa6+t7nIAp/Hx8dFzzz2nUaNGVXcpgEMVFhaqW7dueuWVV/T0008rJCREc+fOre6ygFqBkSawKikpUUZGhiIiIqxtLi4uioiI0JYtW6qxMgDAhTh27JikP79QApei0tJSrVy5UkVFRQoPD6/ucgCHGzdunG666Sab/6cDqBp1qrsAXDyOHj2q0tJS+fn52bT7+fnpu+++q6aqAAAXwmw2a8KECerdu7c6d+5c3eUADrVjxw6Fh4frjz/+UIMGDfThhx+qU6dO1V0W4FArV65UZmamtm3bVt2lALUSoQkAAJewcePGaefOnfriiy+quxTA4dq3b6+srCwdO3ZM7733nqKjo7Vx40aCE1wyDh06pPHjx2v9+vXy8PCo7nKAWonQBFa+vr5ydXVVfn6+TXt+fr78/f2rqSoAQGXFxsbqv//9rz777DNdfvnl1V0O4HBubm5q27atJKl79+7atm2b5s2bp1dffbWaKwMcIyMjQwUFBerWrZu1rbS0VJ999pnmz5+v4uJiubq6VmOFwKWPNU1g5ebmpu7duys1NdXaZjablZqayvxgAKhBLBaLYmNj9eGHH+rTTz/VFVdcUd0lAVXCbDaruLi4ussAHGbAgAHasWOHsrKyrI/Q0FDdfffdysrKIjABqgAjTWAjLi5O0dHRCg0NVc+ePTV37lwVFRUpJiamuksDHKawsFB79+61Pt+/f7+ysrLk4+Ojli1bVmNlgGOMGzdOy5cv18cff6yGDRsqLy9PkuTt7a169epVc3WAY8THx2vQoEFq2bKlTpw4oeXLlystLU1r166t7tIAh2nYsGGZ9ajq16+vJk2asE4VUEUITWAjKipKR44c0dSpU5WXl6eQkBClpKSUWRwWqMm2b9+u6667zvo8Li5OkhQdHa2lS5dWU1WA4yxcuFCS1K9fP5v2N954QyNHjqz6ggAnKCgo0IgRI3T48GF5e3urS5cuWrt2ra6//vrqLg0AcAkxWSwWS3UXAQAAAAAAcLFhTRMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJANQSJpNJH330kd375eTkyN/fXydOnHBoPSNHjtSQIUMcesya5MCBAzKZTMrKyqrwPv369dOECROcVpMzTJs2TX5+ftbPX2193yvzfjtTYGCg5s6dW+H+06ZNU0hISIX6JiUlafDgwZUrDACAiwyhCQA42ciRI2Uymco8brjhhuourULi4+P14IMPqmHDhta2b775Rtdcc408PDwUEBCg2bNnV2OFOJdnnnlGvXr1kqenpxo1amT3/nv37lXDhg0rtW92dramT5+uV199VYcPH9agQYM0b948LV261O5j2au2hjMXg3vvvVeZmZn6/PPPq7sUAAAuGKEJAFSBG264QYcPH7Z5rFixorrLOq/c3Fz997//1ciRI61tx48f18CBA9WqVStlZGToueee07Rp0/Taa69VX6EoV0lJie644w7df//9du976tQpDRs2TNdcc02lzr1v3z5J0i233CJ/f3+5u7vL29u7UgEMag43Nzfdddddeumll6q7FAAALhihCQBUAXd3d/n7+9s8GjdubN1uMpm0cOFCDRo0SPXq1VPr1q313nvv2Rxjx44d6t+/v+rVq6cmTZpo7NixKiwstOmzZMkSXXXVVXJ3d1ezZs0UGxtrs/3o0aO69dZb5enpqXbt2mnVqlXnrPudd95RcHCwWrRoYW17++23VVJSYj3X0KFD9dBDD2nOnDmVem2mT5+uyy67TF5eXrrvvvtUUlJi3ZaSkqI+ffqoUaNGatKkif7xj39Yv4hLfwYCsbGxatasmTw8PNSqVSslJiZat//2228aPXq09fj9+/fX119/XW4tZ6ZQvPPOO7rmmmtUr1499ejRQ7t379a2bdsUGhqqBg0aaNCgQTpy5Ih1P7PZrKeeekqXX3653N3dFRISopSUFJtjp6enq2vXrvLw8FBoaKi++uqrMuffuXOnBg0apAYNGsjPz0/Dhw/X0aNHK/W6njF9+nQ9/PDDCgoKsnvfyZMnq0OHDrrzzjvt3nfatGnWKRouLi4ymUySyo4A6devnx566CE9/vjj8vHxkb+/v6ZNm2ZzLHvfx2nTpmnZsmX6+OOPrSO70tLSlJaWJpPJpN9++83aNysrSyaTSQcOHJAkLV26VI0aNdLatWvVsWNHNWjQwBp6nu31119Xx44d5eHhoQ4dOuiVV16x2V6R9/vvAgMD9fTTT2vEiBFq0KCBWrVqpVWrVunIkSO65ZZb1KBBA3Xp0kXbt2+32e/999+3/r0PDAzUCy+8YLO9oKBAgwcPVr169XTFFVfo7bffLnNue1/jtLQ09ezZU/Xr11ejRo3Uu3dvHTx40Lp98ODBWrVqlX7//ffzXjcAABczQhMAuEhMmTJFt99+u77++mvdfffdGjp0qLKzsyVJRUVFioyMVOPGjbVt2za9++67+uSTT2xCkYULF2rcuHEaO3asduzYoVWrVqlt27Y255g+fbruvPNOffPNN7rxxht1991365dffim3ps8//1yhoaE2bVu2bNG1114rNzc3a1tkZKRycnL066+/SpL1y+mZL6LlSU1NVXZ2ttLS0rRixQp98MEHmj59unV7UVGR4uLitH37dqWmpsrFxUW33nqrzGazJOmll17SqlWr9M477ygnJ0dvv/22AgMDrfvfcccdKigo0P/+9z9lZGSoW7duGjBgwDmvWZISEhI0efJkZWZmqk6dOrrrrrv0+OOPa968efr888+1d+9eTZ061dp/3rx5euGFF/T888/rm2++UWRkpG6++Wbt2bNHklRYWKh//OMf6tSpkzIyMjRt2jQ9+uijNuf87bff1L9/f3Xt2lXbt29XSkqK8vPzKxVYOMKnn36qd999VwsWLDDcfr73+NFHH9Ubb7whSdbRVeVZtmyZ6tevry+//FKzZ8/WU089pfXr11u32/s+Pvroo7rzzjttRnj16tWrglcunTx5Us8//7z+/e9/67PPPlNubq7N+/X2229r6tSpeuaZZ5Sdna1nn31WU6ZM0bJlyyRV7P0uz4svvqjevXvrq6++0k033aThw4drxIgRuueee5SZmak2bdpoxIgRslgskqSMjAzdeeedGjp0qHbs2KFp06ZpypQpNlOgRo4cqUOHDmnDhg1677339Morr6igoMDmvPa8xqdPn9aQIUPUt29fffPNN9qyZYvGjh1rDcYkKTQ0VKdPn9aXX35Z4dcdAICLkgUA4FTR0dEWV1dXS/369W0ezzzzjLWPJMt9991ns19YWJjl/vvvt1gsFstrr71mady4saWwsNC6ffXq1RYXFxdLXl6exWKxWJo3b26ZNGlSuXVIskyePNn6vLCw0CLJ8r///a/cfYKDgy1PPfWUTdv1119vGTt2rE3bt99+a5Fk2bVrl8VisVi+/PJLS/v27S0//PBDuceOjo62+Pj4WIqKiqxtCxcutDRo0MBSWlpquM+RI0cskiw7duywWCwWy4MPPmjp37+/xWw2l+n7+eefW7y8vCx//PGHTXubNm0sr776quHx9+/fb5Fkef31161tK1assEiypKamWtsSExMt7du3tz5v3ry5zftpsVgsPXr0sDzwwAMWi8ViefXVVy1NmjSx/P777zbXKsny1VdfWSwWi2XGjBmWgQMH2hzj0KFDFkmWnJwci8VisfTt29cyfvx4w9rP54033rB4e3tXqO/Ro0ctAQEBlo0bN5a7b0Xe4w8//NDy9/9qREdHW2655Rbr8759+1r69Olj06dHjx6WJ554wmKxVO59NDqPxWKxbNiwwSLJ8uuvv1rbvvrqK4sky/79+63XKsmyd+9ea58FCxZY/Pz8bM69fPlym2PPmDHDEh4ebrFYKvZ+G2nVqpXlnnvusT4/fPiwRZJlypQp1rYtW7ZYJFkOHz5ssVgslrvuusty/fXX2xznscces3Tq1MlisVgsOTk5FkmW9PR06/bs7GyLJMuLL75osVgq9honJCRYgoODLRaLxfLzzz9bJFnS0tLKvRaLxWJp3LixZenSpefsAwDAxY6RJgBQBa677jplZWXZPO677z6bPuHh4WWenxlpkp2dreDgYNWvX9+6vXfv3jKbzcrJyVFBQYF++uknDRgw4Jx1dOnSxfrn+vXry8vLq8xvnM/2+++/y8PDo8LXeUbPnj313Xff2UzrMRIcHCxPT0/r8/DwcBUWFurQoUOSpD179mjYsGFq3bq1vLy8rKNIcnNzJf35G/SsrCy1b99eDz30kNatW2c91tdff63CwkI1adJEDRo0sD72799vM8XHyNmvk5+fnyTZTG/x8/Ozvm7Hjx/XTz/9pN69e9sco3fv3jbvX5cuXWxey7+/319//bU2bNhgU2uHDh0k6bz1XoirrrrKer5BgwZJksaMGaO77rpL1157bbn7VfQ9roizX29JatasmfX1Pd/7mJuba9P+7LPPXnA9np6eatOmjWE9RUVF2rdvn0aNGmVz3qefftr6PlXk/S5PRT57kqz1ZGdnG3729uzZo9LSUmVnZ6tOnTrq3r27dXuHDh1s1pWx9++Kj4+PRo4cqcjISA0ePFjz5s0zHElUr149nTx5skLXDQDAxapOdRcAALVB/fr1y0yVcaR69epVqF/dunVtnptMJutUFyO+vr7WKTdn+Pv7Kz8/36btzHN/f/8K1VFRgwcPVqtWrbRo0SI1b95cZrNZnTt3tq570q1bN+3fv1//+9//9Mknn+jOO+9URESE3nvvPRUWFqpZs2ZKS0src9zzLUR69ut0ZsrB39vO9bpVRmFhoQYPHqxZs2aV2dasWTOHnutsa9as0alTpyT99Tn69NNPtWrVKj3//POSJIvFIrPZrDp16ui1117Tvffe69AazvW5PN/72KhRI5vb+Pr4+JR7HheXP39XZPn/qS2SrNd+vnrO7HNmHaFFixYpLCzMpp+rq2u5566oinz2JDn081eZvytvvPGGHnroIaWkpCg5OVmTJ0/W+vXrdfXVV1v7/PLLL7rsssscVicAANWB0AQALhJbt27ViBEjbJ537dpVktSxY0ctXbpURUVF1tEmmzZtkouLi9q3b6+GDRsqMDBQqampuu666xxWU9euXbVr1y6btvDwcE2aNEmnTp2yfplbv3692rdvb7O4bUV8/fXX+v33361f1rdu3aoGDRooICBAP//8s3JycrRo0SLr3Vu++OKLMsfw8vJSVFSUoqKi9M9//lM33HCDfvnlF3Xr1k15eXmqU6eOzTonjubl5aXmzZtr06ZN6tu3r7V906ZN6tmzp6Q/379///vf+uOPP6yjD7Zu3WpznG7duun9999XYGCg6tSpun+eW7VqVaZty5YtKi0ttT7/+OOPNWvWLG3evNkhI0vsUZH30SiQdHNzs7kGSdYv8IcPH7Z+Vs8OXCrCz89PzZs31/fff6+7777bsE9F3m9H6dixozZt2mTTtmnTJl155ZVydXVVhw4ddPr0aWVkZKhHjx6SpJycHJvFcCv7d6Vr167q2rWr4uPjFR4eruXLl1tDk3379umPP/6w/gwDAKCmYnoOAFSB4uJi5eXl2Tz+fleUd999V0uWLNHu3buVkJCg9PR060Kvd999tzw8PBQdHa2dO3dqw4YNevDBBzV8+HDrcP1p06bphRde0EsvvaQ9e/YoMzNTL7/88gXVHRkZWeYL9F133SU3NzeNGjVK3377rZKTkzVv3jzFxcVZ+6Snp6tDhw768ccfz3n8kpISjRo1Srt27dKaNWuUkJCg2NhYubi4qHHjxmrSpIlee+017d27V59++qnNOSRpzpw5WrFihb777jvt3r1b7777rvz9/dWoUSNFREQoPDxcQ4YM0bp163TgwAFt3rxZkyZNKnP3kQv12GOPadasWUpOTlZOTo4mTpyorKwsjR8/3vqamUwmjRkzxnqtZ0ZxnDFu3Dj98ssvGjZsmLZt26Z9+/Zp7dq1iomJKfPl3x65ubnKyspSbm6uSktLrdPD/n7npbN17NhRnTt3tj5atGghFxcXde7c2Ro2VPQ9vlCVfR8DAwP1zTffKCcnR0ePHtWpU6fUtm1bBQQEaNq0adqzZ49Wr15d5k4zFTF9+nQlJibqpZde0u7du7Vjxw698cYb1jtIVeT9dpRHHnlEqampmjFjhnbv3q1ly5Zp/vz51oVn27dvrxtuuEH/+te/9OWXXyojI0OjR4+2GZ1m72u8f/9+xcfHa8uWLTp48KDWrVunPXv2qGPHjtY+n3/+uVq3bm0zzQkAgJqI0AQAqkBKSoqaNWtm8+jTp49Nn+nTp2vlypXq0qWL3nzzTa1YsUKdOnWS9OcaC2vXrtUvv/yiHj166J///KcGDBig+fPnW/ePjo7W3Llz9corr+iqq67SP/7xD+vdWypr0KBBqlOnjj755BNrm7e3t9atW6f9+/ere/fueuSRRzR16lSNHTvW2ufkyZPKyckxnPpwtgEDBqhdu3a69tprFRUVpZtvvtl6u1kXFxetXLlSGRkZ6ty5sx5++GE999xzNvs3bNhQs2fPVmhoqHr06KEDBw5ozZo11lvcrlmzRtdee61iYmJ05ZVXaujQoTp48KA1aHKUhx56SHFxcXrkkUcUFBSklJQUrVq1Su3atZMkNWjQQP/5z3+0Y8cOde3aVZMmTSozDefMaJXS0lINHDhQQUFBmjBhgho1amSdVvJ306ZNO+/IgKlTp6pr165KSEhQYWGhdXTAhQZHFX2PL1Rl38cxY8aoffv2Cg0N1WWXXaZNmzapbt261pCtS5cumjVrlp5++mm7axo9erRef/11vfHGGwoKClLfvn21dOlSXXHFFZIq9n47Srdu3fTOO+9o5cqV6ty5s6ZOnaqnnnpKI0eOtPZ544031Lx5c/Xt21e33Xabxo4dq6ZNm1q32/sae3p66rvvvtPtt9+uK6+8UmPHjtW4ceP0r3/9y9pnxYoVGjNmjFOuGQCAqmSynD2xFwBQLUwmkz788EMNGTKkukspY8GCBVq1apXWrl1b3aXgb6Kjo2UymWxuLwtUt2+//Vb9+/fX7t275e3tXd3lAABwQVjTBABwTv/617/022+/6cSJE2rYsGF1l4P/Z7FYlJaWZrjOC1CdDh8+rDfffJPABABwSWCkCQBcBC7mkSYAAABAbcVIEwC4CJBfAwAAABcfFoIFAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGCA0AQAAAAAAMPB/QKHqhNTi9FEAAAAASUVORK5CYII=","text/plain":["