"],"text/plain":[" text label \\\n","0 Was Zhen Zhesuo suicide? No \n","1 Was Zhen Zhesuo sickly? Yes \n","2 The painting was by Zhen. Yes \n","3 Was Zhen with a heart condition? Yes \n","4 The wheel was the murderer's weapon. No \n","... ... ... \n","2995 Did the weeping person have to make a sacrific... Yes \n","2996 Was the body in the lake? No \n","2997 Do mourners have a special relationship with t... Yes \n","2998 Was the owner of the hat dead? No \n","2999 Was the dead person wounded? No \n","\n"," title \\\n","0 The Mystery of the Coast \n","1 The Mystery of the Coast \n","2 The Mystery of the Coast \n","3 The Mystery of the Coast \n","4 The Mystery of the Coast \n","... ... \n","2995 Zhen Zhuo's wails \n","2996 Zhen Zhuo's wails \n","2997 Zhen Zhuo's wails \n","2998 Zhen Zhuo's wails \n","2999 Zhen Zhuo's wails \n","\n"," puzzle \\\n","0 In the quiet seaside cottage of a neighbor, a ... \n","1 In the quiet seaside cottage of a neighbor, a ... \n","2 In the quiet seaside cottage of a neighbor, a ... \n","3 In the quiet seaside cottage of a neighbor, a ... \n","4 In the quiet seaside cottage of a neighbor, a ... \n","... ... \n","2995 One night, in a quiet village, a weeping sound... \n","2996 One night, in a quiet village, a weeping sound... \n","2997 One night, in a quiet village, a weeping sound... \n","2998 One night, in a quiet village, a weeping sound... \n","2999 One night, in a quiet village, a weeping sound... \n","\n"," truth \\\n","0 Zhen Zhesao was a nature-loving painter who ca... \n","1 Zhen Zhesao was a nature-loving painter who ca... \n","2 Zhen Zhesao was a nature-loving painter who ca... \n","3 Zhen Zhesao was a nature-loving painter who ca... \n","4 Zhen Zhesao was a nature-loving painter who ca... \n","... ... \n","2995 It turned out that the old hat belonged to a l... \n","2996 It turned out that the old hat belonged to a l... \n","2997 It turned out that the old hat belonged to a l... \n","2998 It turned out that the old hat belonged to a l... \n","2999 It turned out that the old hat belonged to a l... \n","\n"," meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-117_torch.bfloat16_lf \\\n","0 No \n","1 Yes \n","2 No \n","3 Yes \n","4 No \n","... ... \n","2995 No \n","2996 No \n","2997 Yes \n","2998 No \n","2999 No \n","\n"," meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-234_torch.bfloat16_lf \\\n","0 No \n","1 Yes \n","2 Yes \n","3 Yes \n","4 No \n","... ... \n","2995 No \n","2996 No \n","2997 Yes \n","2998 No \n","2999 No \n","\n"," meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-351_torch.bfloat16_lf \n","0 No \n","1 Yes \n","2 Yes \n","3 Yes \n","4 No \n","... ... \n","2995 Unimportant \n","2996 No \n","2997 Yes \n","2998 No \n","2999 Unimportant \n","\n","[3000 rows x 8 columns]"]},"execution_count":5,"metadata":{},"output_type":"execute_result"}],"source":["import pandas as pd\n","\n","df = pd.read_csv(\"results/llama3-8b_lora_sft_bf16-p1_en.csv\")\n","df"]},{"cell_type":"code","execution_count":6,"metadata":{},"outputs":[],"source":["import matplotlib.pyplot as plt\n","from matplotlib import rcParams\n","\n","def plot_value_counts(df, column):\n"," font_family = rcParams[\"font.family\"]\n"," # Set the font to SimHei to support Chinese characters\n"," rcParams[\"font.family\"] = \"STHeiti\"\n"," rcParams[\"axes.unicode_minus\"] = False # This is to support the minus sign in Chinese.\n","\n"," plt.figure(figsize=(12, 6))\n"," df[column].value_counts().plot(kind=\"bar\")\n"," # add values on top of bars\n"," for i, v in enumerate(df[column].value_counts()):\n"," plt.text(i, v + 0.1, str(v), ha=\"center\")\n"," plt.show()\n"," \n"," rcParams[\"font.family\"] = font_family\n"]},{"cell_type":"code","execution_count":7,"metadata":{},"outputs":[{"data":{"text/plain":["['text',\n"," 'label',\n"," 'title',\n"," 'puzzle',\n"," 'truth',\n"," 'meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-117_torch.bfloat16_lf',\n"," 'meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-234_torch.bfloat16_lf',\n"," 'meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-351_torch.bfloat16_lf']"]},"execution_count":7,"metadata":{},"output_type":"execute_result"}],"source":["df.columns.to_list()"]},{"cell_type":"code","execution_count":8,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["********** meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-117_torch.bfloat16_lf **********\n","meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-117_torch.bfloat16_lf\n","No 2033\n","Yes 840\n","Unimportant 83\n","Incorrect questioning 32\n","Correct answer 12\n","Name: count, dtype: int64\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAA94AAAKOCAYAAABQlMFoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0VUlEQVR4nO3de3zO9eP/8edmtl0b25g5zRzmMOdDkXMoIofPbKQUCYlEoXJIIedEJ4dQISQ5lEqicj4lJedDsmHODBt23t6/P/q5vi6b8/Xem+1xv92u2629Xu/r2vO9vV3teb1PLoZhGAIAAAAAAKZwtToAAAAAAABZGcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwkZvVAZwlLS1NJ06cUO7cueXi4mJ1HAAAAABAFmcYhi5duqTChQvL1fXG+7WzTPE+ceKEgoKCrI4BAAAAAMhmoqKiVKRIkRvOZ5ninTt3bkn/rbCPj4/FaQAAAAAAWV1sbKyCgoLsffRGskzxvnp4uY+PD8UbAAAAAJBpbnW6MxdXAwAAAADARBRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATETxBgAAAADARBRvAAAAAABMRPGGJOnChQvq1KmTAgICVLx4cY0dO1ZpaWmSpI0bN6pq1aqy2WyqUaOG/vjjD/vz0tLSNHjwYBUsWFD58uXTyy+/rLi4OPt8ZGSkmjVrpty5cyskJETz58/P9HUDAAAAACtRvCFJatu2rQIDA3Xo0CH9+uuvWrJkiSZNmqTTp08rLCxMQ4YMUWxsrAYPHqzQ0FCdOnVKkjRhwgStX79e27Zt07///qu4uDi9+eabkiTDMPS///1Pjz32mM6dO6cFCxZo0KBB+v33361cVQAAAADIVC6GYRhWh3CG2NhY+fr6KiYmRj4+PlbHeaD8/fffev7557Vz5065uLhIkvbt26enn35a7du314kTJzRx4kT78gMHDpS7u7uGDx+ur7/+WnXr1lXRokUlSdu3b1eHDh20e/duXbhwQQsWLFD37t3tz+3Tp4+KFCmiN954I3NXEgAAAACc7HZ7KHu8odTUVPXr189euiUpKChIp0+f1vr16xUaGuqwfNu2bbVy5UpJUvv27VW0aFEZhqGIiAgNGzZMTZs2lSTlyZPHXrqTkpL066+/avHixXrssccyac0AAAAAwHpuVgeA9apXr67q1as7jC1dulTVq1fXkSNHVKpUKYe5kJAQRUREOIx98skn6tOnj/Lnz6/Jkyen+x41a9a07w2vVq2a81cCAAAAAO5T7PFGOqdOndLrr7+uIUOGKD4+Xl5eXg7zNptN8fHxDmOvvvqqjh49qo4dO+qJJ55QUlKSw/zmzZu1efNmHThwQKNHjzZ9HQAAAADgfkHxhoPExES1adNGPXv2VM2aNWWz2ZSQkOCwTHR0dLoy7uLioqCgII0fP16BgYH6+eefHeY9PT1Vq1Ytfffdd/rggw9MXw8AAAAAuF9QvOGga9euCgoK0ltvvSVJKlq0qCIjIx2WiYyMVHBwsOLi4rR9+/Z0r1GlShWdPHlShw8f1smTJx3mAgMDlSNHjnR7zAEAAAAgq6J4w27YsGGKiIjQrFmz7Bdaq1evnpYvX+6w3KJFi9S4cWPlyJFDTzzxhGJjYx3mt27dqvLly2vjxo3prl5++PBh5c6dWzabzdyVAQAAAID7BMUbkqSvvvpKc+bM0ZIlS+Tp6Wkf79q1q7788kv9/PPPSklJ0dKlSzV//nz17NlTHh4eeuGFF9SlSxedOnVKMTExGjp0qCTp0UcfVevWrfXHH3/oyy+/VHx8vPbv369nnnlG77zzjlWrCQAAAACZjuINrV+/Xl26dFFkZKQKFy4sNzc3+yMhIUELFy7UoEGDlCtXLg0bNkxLlixR/vz5JUkjR45UiRIlVK1aNRUpUkT//POPFi1aJEny9vbW0qVLNXfuXAUEBOiJJ57Qs88+qxdeeMHCtQUAAACAzOViGIZhdQhnuN0bl9+Pig/8yeoI2c7hsS2sjgAAAADgAXe7PZQ93gAAAAAAmOiOiveFCxfUqVMnBQQEqHjx4ho7dqzS0tIkSRs3blTVqlVls9lUo0YN/fHHHw7PnT59uooWLSpvb2+FhYXp9OnT9rnk5GS9+uqrypMnj/z9/fXmm28qJSXFCasHAAAAAIC17qh4t23bVoGBgTp06JB+/fVXLVmyRJMmTdLp06cVFhamIUOGKDY2VoMHD1ZoaKhOnTolSVq+fLlGjx6tpUuX6ty5c6pYsaLCwsLsr/vOO+/on3/+0f79+7V//37t3buXC3ABAAAAALKE2z7H+++//9bzzz+vnTt32m81tW/fPj399NNq3769Tpw4oYkTJ9qXHzhwoNzd3TV8+HA1bdpUL730ktq0aWOfr1WrlkaPHq169eqpUKFC2rNnjwoWLChJio6OVtmyZXX48GF5e3vf1opwjjfuBOd4AwAAALhXTj/HOzU1Vf369bOXbkkKCgrS6dOntX79eoWGhjos37ZtW61cuVKGYWjLli1q0aJFhvPbt29XuXLl7KVbkvz9/VWzZk1t2rTpduMBAAAAAHBfuu3iXb16dXXu3NlhbOnSpapevbqOHj2qUqVKOcyFhIQoIiJC0dHR8vPzc7g39LXzGT332nkAAAAAAB5kd31V81OnTun111/XkCFDFB8fLy8vL4d5m82m+Pj4DOfuZP5GEhMTFRsb6/AAAAAAAOB+c1fFOzExUW3atFHPnj1Vs2ZN2Ww2JSQkOCwTHR0tLy+vDOfuZP5GxowZI19fX/sjKCjoblYFAAAAAABT3VXx7tq1q4KCgvTWW29JkooWLarIyEiHZSIjIxUcHCx/f39dvHhRycnJGc5n9Nxr529k0KBBiomJsT+ioqLuZlUAAAAAADDVHRfvYcOGKSIiQrNmzbJfaK1evXpavny5w3KLFi1S48aN5eLiourVq2vVqlUZzletWlV79+7VhQsX7HPnz5/Xli1bVKdOnRvm8PDwkI+Pj8MDAAAAAID7zR0V76+++kpz5szRkiVLHC6W1rVrV3355Zf6+eeflZKSoqVLl2r+/Pnq2bOnJKlfv37q06eP9u/fr4SEBI0YMUI2m00NGzaUu7u7OnfurG7duik6Olrnzp1Tly5d1KtXr5seag4AAAAAwIPgtov3+vXr1aVLF0VGRqpw4cJyc3OzPxISErRw4UINGjRIuXLl0rBhw7RkyRLlz59fktSsWTP16dNHTZo0Ud68ebVt2zYtXrzY/trDhw9XoUKFVLJkSZUpU0alS5fWsGHDnL6yAAAAAABkNhfDMAyrQzjD7d64/H5UfOBPVkfIdg6PbXHrhQAAAADgJm63h9717cQAAAAAAMCtUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAw0V0V70aNGsnV1VXjx4+3j82ePVtubm4OD1dXV4WGhtqXOXjwoFxdXR2W2bJliyQpOTlZr776qvLkySN/f3+9+eabSklJucfVAwAAAADAWndVvFevXq0hQ4Y4jD3//PNKSUmxP5KSklSuXDm9/fbb9mX27NmjTp06OSxXs2ZNSdI777yjf/75R/v379f+/fu1d+9evfPOO/ewagAAAAAAWM/NrBdevHixihYtqho1atjH9uzZo7Jly6ZbNikpSZ999pn27NmjAgUKSPpvD3rZsmX19ttvy9vb26yYAAAAAACYypRzvA3D0KhRo9Ltsd67d69CQkLSLb99+3aVK1dOBQsWtI/5+/urZs2a2rRpkxkRAQAAAADIFKYU7x9//FH+/v6qU6eOw/iePXv02muvKU+ePHriiSf077//SpKOHj2qUqVKpXudkJAQRUREmBERAAAAAIBMYcqh5iNHjtS4cePSjb/99ttq0KCBvLy8NGfOHDVr1kx79uxRfHy8vLy80i1vs9kUHx+f4fdITExUYmKi/evY2FjnrQAAAAAAAE7i9D3eK1askIeHhxo2bJhurm3btgoICJC3t7d69OihypUr65dffpHNZlNCQkK65aOjozMs5JI0ZswY+fr62h9BQUHOXhUAAAAAAO6Z04t3Rud230hwcLCOHTumokWLKjIyMt18ZGSkgoODM3zuoEGDFBMTY39ERUXdU24AAAAAAMzg1OK9du1aJSYm6oknnkg3Fx4enq4cb9y4UWXKlFHVqlW1d+9eXbhwwT53/vx5bdmyJd154ld5eHjIx8fH4QEAAAAAwP3GqcV7xIgRDvftvlbJkiXVvXt3nThxQtHR0erbt69SU1PVqFEjubu7q3PnzurWrZuio6N17tw5denSRb169brhoeYAAAAAADwInFa8L126JH9/f7Vq1SrD+VGjRtn3bhcvXlxHjx7VkiVL5Or6X4Thw4erUKFCKlmypMqUKaPSpUtr2LBhzooHAAAAAIAlXAzDMKwO4QyxsbHy9fVVTEzMA3fYefGBP1kdIds5PLaF1REAAAAAPOBut4each9vAAAAAADwH4o3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJrqr4t2oUSO5urpq/Pjx6eYCAwPl5uZmf4wbN84+N336dBUtWlTe3t4KCwvT6dOn7XPJycl69dVXlSdPHvn7++vNN99USkrK3cQDAAAAAOC+cVfFe/Xq1RoyZEi68YsXL8rDw0MpKSn2R//+/SVJy5cv1+jRo7V06VKdO3dOFStWVFhYmP2577zzjv755x/t379f+/fv1969e/XOO+/c5WoBAAAAAHB/cOqh5nv27FFISEiGcx9++KEmTJigypUry2azacSIEUpLS9OqVauUlJSkzz77TLNmzVKBAgUUEBCg2bNn6/PPP9eVK1ecGREAAAAAgEzl1OK9d+/eDIu3YRjasmWLWrRo4TDetm1brVy5Utu3b1e5cuVUsGBB+5y/v79q1qypTZs2OTMiAAAAAACZyul7vOfPn6+8efOqatWqWrFihSQpOjpafn5+8vT0dFg+JCREEREROnr0qEqVKpXu9a7OAwAAAADwoHJz5ou1aNFCr776qooUKaL169fr+eef16+//qrcuXPLy8sr3fI2m03x8fGKj4+/6XxGEhMTlZiYaP86NjbWeSsCAAAAAICTOHWPd5MmTRQcHCx3d3c9/vjjGjBggL744gvZbDYlJCSkWz46OlpeXl63nM/ImDFj5Ovra38EBQU5c1UAAAAAAHAKU+/jHRwcrGPHjsnf318XL15UcnKyw3xkZKSCg4NVtGhRRUZGpnv+1fmMDBo0SDExMfZHVFSUKesAAAAAAMC9cFrxHjFihH744QeHsQ0bNqhMmTJycXFR9erVtWrVKof5RYsWqXHjxqpatar27t2rCxcu2OfOnz+vLVu2qE6dOhl+Pw8PD/n4+Dg8AAAAAAC43ziteD/00EPq06ePtm/frri4OM2aNUtffPGFXn75ZUlSv3791KdPH+3fv18JCQkaMWKEbDabGjZsKHd3d3Xu3FndunVTdHS0zp07py5duqhXr143PNQcAAAAAIAHgdMurtaiRQudOHFCbdq00fHjx1WtWjV9//33Kly4sCSpWbNmOnLkiJo0aaLo6Gg1bdpUixcvtj9/+PDhev3111WyZEm5urqqa9euGjZsmLPiAQAAAABgCRfDMAyrQzhDbGysfH19FRMT88Addl584E9WR8h2Do9tceuFAAAAAOAmbreHmnpxNQAAAAAAsjuKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACa6q+LdqFEjubq6avz48Q7jGzZsUM2aNeXj46NatWrp999/d5j/9ddf5erqKjc3N/vj9OnTkqTY2Fg999xzypUrlwoXLqz33nvvLlcJAAAAAID7x10V79WrV2vIkCEOYwcPHlS7du00atQonT59Wv3791fr1q117Ngx+zJ79uzR0KFDlZKSYn8UKFBAkvTSSy8pZ86cOn78uDZv3qxFixZp2rRp97BqAAAAAABYz2mHmk+aNEn9+vVT48aNZbPZFB4erk6dOmnBggX2Zfbs2aOyZcume+7x48e1evVqTZ06Vb6+vipWrJhmz56tMWPGOCseAAAAAACWcFrxLlGihEJDQx3GgoKC7IeSS9LevXsVEhKS7rkbN25UkyZN5OnpaR8rV66ccuXKpYMHDzorIgAAAAAAmc5pxbtPnz4qXbq0w9jSpUtVvXp1+9d79uxReHi4/P391bZtW505c0aSdPToUZUqVSrda4aEhCgiIsJZEQEAAAAAyHSmXdV81qxZOnXqlMLCwiRJCQkJmjlzprZt26aIiAiVL19e4eHhkqT4+Hh5eXmlew2bzab4+PgMXz8xMVGxsbEODwAAAAAA7jemFO+tW7dqwIAB+vrrr+Xm5iZJ8vT0VFhYmPz8/OTr66vhw4crLi5Ou3btks1mU0JCQrrXiY6OzrCQS9KYMWPk6+trfwQFBZmxKgAAAAAA3BOnF++jR48qLCxMX3zxhcqVK3fTZYODg3Xs2DEVLVpUkZGR6eYjIyMVHByc4XMHDRqkmJgY+yMqKsop+QEAAAAAcCanFu9Lly6pZcuWevPNN9WyZUv7eFJSkpo0aeJw2HhiYqK2bt2qMmXKqG7dulq5cqVSUlLs87t371ZiYmKG535LkoeHh3x8fBweAAAAAADcb5xWvFNTU9WuXTs9+uijeu211xzm3N3d5efnp1deeUUXLlzQiRMn1KlTJ9WoUUMlS5ZUYGCg6tSpo759++ry5cuKiopSt27d9PbbbzsrHgAAAAAAlnBa8e7du7eWL1+uqVOnys3Nzf54/PHHJUmfffaZUlNTVbJkSVWoUEFeXl6aMWOG/fnTpk3T+fPnVbBgQT3yyCMKDw9X165dnRUPAAAAAABLuBiGYVgdwhliY2Pl6+urmJiYB+6w8+IDf7I6QrZzeGwLqyMAAAAAeMDdbg817XZiAAAAAACA4g0AAAAAgKko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJjorop3o0aN5OrqqvHjxzuMb9y4UVWrVpXNZlONGjX0xx9/OMxPnz5dRYsWlbe3t8LCwnT69Gn7XHJysl599VXlyZNH/v7+evPNN5WSknI38QAAAAAAuG/cVfFevXq1hgwZ4jB2+vRphYWFaciQIYqNjdXgwYMVGhqqU6dOSZKWL1+u0aNHa+nSpTp37pwqVqyosLAw+/Pfeecd/fPPP9q/f7/279+vvXv36p133rmHVQMAAAAAwHpOO9R8xowZevrppxUeHq6cOXOqdevW6tSpk6ZMmSJJ+vDDDzVhwgRVrlxZNptNI0aMUFpamlatWqWkpCR99tlnmjVrlgoUKKCAgADNnj1bn3/+ua5cueKsiAAAAAAAZDqnFe/169crNDTUYaxt27ZauXKlDMPQli1b1KJFiwznt2/frnLlyqlgwYL2OX9/f9WsWVObNm1yVkQAAAAAADKd04r30aNHVapUKYexkJAQRUREKDo6Wn5+fvL09MxwPqPnXjufkcTERMXGxjo8AAAAAAC43ziteMfHx8vLy8thzGazKT4+PsO5O5nPyJgxY+Tr62t/BAUFOWdFAAAAAABwIqcVb5vNpoSEBIex6OhoeXl5ZTh3J/MZGTRokGJiYuyPqKgo56wIAAAAAABO5LTiXbRoUUVGRjqMRUZGKjg4WP7+/rp48aKSk5MznM/oudfOZ8TDw0M+Pj4ODwAAAAAA7jdOK9716tXT8uXLHcYWLVqkxo0by8XFRdWrV9eqVasynK9atar27t2rCxcu2OfOnz+vLVu2qE6dOs6KCAAAAABApnNa8e7atau+/PJL/fzzz0pJSdHSpUs1f/589ezZU5LUr18/9enTR/v371dCQoJGjBghm82mhg0byt3dXZ07d1a3bt0UHR2tc+fOqUuXLurVq9cNDzUHAAAAAOBB4LTiXaBAAS1cuFCDBg1Srly5NGzYMC1ZskT58+eXJDVr1kx9+vRRkyZNlDdvXm3btk2LFy+2P3/48OEqVKiQSpYsqTJlyqh06dIaNmyYs+IBAAAAAGAJF8MwDKtDOENsbKx8fX0VExPzwJ3vXXzgT1ZHyHYOj21x64UAAAAA4CZut4c6bY83AAAAAABIj+INAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gCypejoaHXo0EF58+ZV0aJFNWHChBsuO3DgQIevlyxZojJlyshms+mxxx7TwYMHzY4LAACABxjFG0C21KlTJ5UqVUpRUVHaunWr1q9fry+//DLdctOmTdPSpUvtX+/atUvdu3fXZ599ppiYGLVr107NmjVTQkJCZsYHAADAA4TiDSBbWrdund566y15e3urQIEC6t27t7777juHZf7991/179/fYWzSpEnq37+/GjRoIHd3d/Xo0UM1atTQvHnzMjM+AAAAHiAUbwDZUosWLdS/f3/FxsYqKipKo0ePVoECBezzqamp6tixo3r37u3wvPXr1ys0NNRhrG3btlq5cmWm5AYAAMCDh+INIFuaPHmyFi9eLF9fXxUtWlQnT57U0KFD7fOjR49W/vz59eKLLzo87/jx4woODnYYCwkJUURERKbkBgAAwIOH4g0g20lJSVGrVq307LPPKjo6WkeOHFGzZs105swZSdJff/2l6dOn6/PPP0/33LS0NLm6Or512mw2xcfHZ0p2AAAAPHjcrA4AAJlt6dKlstlseu+99yRJefPm1YgRI1SvXj2tWbNGHTt21KeffqqAgABduXLF4bmurq4yDEMuLi72sejoaHl5eWXqOgAAAODBQfEGkO0cOHBA9evXdxjz9vaWn5+fWrdurYMHD6pt27aSJMMwlJycLE9PT50+fVqBgYE6evSoihUrZn9uZGRkusPPAQAAgKs41BxAthMcHKz9+/c7jCUkJGjfvn2aO3eukpOTlZCQoISEBB04cEDly5dXQkKCfH19Va9ePS1fvtzhuYsWLVLjxo0zcxUAAADwAKF4A8h2WrVqpW3btmny5Mm6dOmSjh8/rk6dOql27doKDAy86XN79+6tkSNHasuWLUpOTtaMGTO0c+dOtW/fPpPSAwAA4EFD8QaQ7Xh6emrp0qX64YcfVKBAAdWsWVP58+fX7Nmzb/ncSpUqaeLEierYsaN8fHw0d+5cLVu2TB4eHpmQHAAAAA8iF8MwDKtDOENsbKx8fX0VExMjHx8fq+PckeIDf7I6QrZzeGwLqyMAAAAAeMDdbg/l4moAMgUfMGU+PmACAAC4P3CoOQAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJnJq8XZzc0v3sNlsOnnypH2ZunXrOsy/8sor9rklS5aoTJkystlseuyxx3Tw4EFnxgMAAAAAINO5OfPFUlJSHL4eO3asjh07pkKFCtnHDh48qISEBLm5OX7rXbt2qXv37lqwYIFq166tGTNmqFmzZtqzZ488PT2dGRMAAAAAgExj2qHmcXFxmjRpkgYMGGAfO378uPz9/dOVbkmaNGmS+vfvrwYNGsjd3V09evRQjRo1NG/ePLMiAgAAAABgOtOK97Rp09S8eXMFBQXZx/bu3auQkJAMl1+/fr1CQ0Mdxtq2bauVK1eaFREAAAAAANOZUrwTExP10UcfadCgQQ7je/bs0YYNG5QvXz6VLVtWc+bMsc8dP35cwcHBDsuHhIQoIiLiht8jNjbW4QEAAAAAwP3GlOL9xRdfqFGjRipRooTDePXq1bVu3TqdOHFCc+fO1fDhw/Xrr79KktLS0uTq6hjHZrMpPj4+w+8xZswY+fr62h/X7lkHAAAAAOB+4fTinZycrPHjx+utt95KN1evXj2VL19e7u7uql69uiZMmKCpU6f+F8TVVYZhOCwfHR0tLy+vDL/PoEGDFBMTY39ERUU5e1UAAAAAALhnTr2quSTNnj1btWrVUpkyZW65bHBwsI4dOyZJCgwM1NGjR1WsWDH7fGRkZLrDz6/y8PCQh4eHc0IDAAAAAGASp+7xTk1N1XvvvafBgwenm/v88881bdo0h7ENGzbYC3q9evW0fPlyh/lFixapcePGzowIAAAAAECmcuoe76+//lqVKlVShQoV0s1Vr15dTZs2VdmyZVWzZk398ssveuedd+znePfu3VvNmzdX1apV9dBDD2nOnDnauXOnvvrqK2dGBAAAAAAgUzm1eO/du1dvv/12hnNVq1bV9OnT1bNnTx06dEhlypTRjBkzVLVqVUlSpUqVNHHiRHXs2FFRUVGqXbu2li1bxuHkAAAAAIAHmotx/RXNHlCxsbHy9fVVTEyMfHx8rI5zR4oP/MnqCNnO4bEtrI6Q7bCdZz62cwAAAHPdbg815XZiAAAAAADgPxRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATETxBgAAAADARBRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATETxBgAAAADARBRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATETxBgAAAADARBRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATETxBgAAAADARBRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATETxBgAAAADARBRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATETxBgAAAADARBRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATOT04j148GDlyJFDbm5ucnNzU8WKFSVJ+/btU7169WSz2VShQgUtW7bM4XlLlixRmTJlZLPZ9Nhjj+ngwYPOjgYAAAAAQKZzevHes2ePVq1apZSUFKWkpGj37t1KTExU8+bN1b59e8XExGjq1Kl68cUXtWvXLknSrl271L17d3322WeKiYlRu3bt1KxZMyUkJDg7HgAAAAAAmcqU4l22bFmHsW+//VYVK1bUK6+8Ind3d9WvX19DhgzR+++/L0maNGmS+vfvrwYNGsjd3V09evRQjRo1NG/ePGfHAwAAAAAgUzm1eCckJOjChQsqUKCAw/j69esVGhrqMNa2bVutXLnytuYBAAAAAHhQObV479+/X1euXFFQUJCKFCmiAQMGKDk5WUePHlWpUqUcls2XL58SEhKUmJio48ePKzg42GE+JCREERERN/xeiYmJio2NdXgAAAAAAHC/cWrx9vb21m+//aZ//vlHmzdv1p49ezRs2DDFx8fLy8sr3fI2m03x8fFKS0uTq6trhnM3MmbMGPn6+tofQUFBzlwVAAAAAACcwqnFu3Tp0qpbt65sNpuCgoI0Z84cffbZZ7LZbBleKO38+fPy8vKSq6urDMNwmIuOjs6wrF81aNAgxcTE2B9RUVHOXBUAAAAAAJzC1Pt458mTR4ZhKCAgQJGRkQ5zp06dUt68eeXu7q7AwEAdPXrUYT4yMjLd4efX8vDwkI+Pj8MDAAAAAID7jdOK919//aUePXo4jO3fv1+enp5q0qSJli9f7jC3aNEiNW7cWJJUr169m84DAAAAAPCgclrxLl++vJYvX64pU6YoISFBO3bs0NNPP60BAwYoPDxcf/zxh2bPnq3k5GRt3rxZ48aN05tvvilJ6t27t0aOHKktW7YoOTlZM2bM0M6dO9W+fXtnxQMAAAAAwBJOK942m00//fSTFi5cKH9/f7Vs2VLt27fXK6+8Ik9PT/3444+aPn26cufOra5du2r69OmqUKGCJKlSpUqaOHGiOnbsKB8fH82dO1fLli2Th4eHs+IBAAAAAGAJN2e+WIUKFbR69eoM58qXL68NGzbc8LmtW7dW69atnRkHAAAAAADLmXpxNQAAAAAAsjuKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACZyavG+cOGCOnXqpICAABUvXlxjx45VWlqafT4wMFBubm72x7hx4+xz06dPV9GiReXt7a2wsDCdPn3amdEAAAAAALCEU4t327ZtFRgYqEOHDunXX3/VkiVLNGnSJEnSxYsX5eHhoZSUFPujf//+kqTly5dr9OjRWrp0qc6dO6eKFSsqLCzMmdEAAAAAALCE04r333//rTNnzmjUqFHy8fFR6dKlNXPmTH3++eeSpD179igkJCTD53744YeaMGGCKleuLJvNphEjRigtLU2rVq1yVjwAAAAAACzhtOKdmpqqfv36ycXFxT4WFBRkP2R87969GRZvwzC0ZcsWtWjRwmG8bdu2WrlypbPiAQAAAABgCacV7+rVq6tz584OY0uXLlX16tUl/bfHe/78+cqbN6+qVq2qFStWSJKio6Pl5+cnT09Ph+eGhIQoIiLiht8vMTFRsbGxDg8AAAAAAO43pl3V/NSpU3r99dc1ZMgQSVKLFi20adMmnTp1ShMmTFCXLl20d+9excfHy8vLK93zbTab4uPjb/j6Y8aMka+vr/0RFBRk1qoAAAAAAHDXTCneiYmJatOmjXr27KmaNWtKkpo0aaLg4GC5u7vr8ccf14ABA/TFF1/IZrMpISEh3WtER0dnWMivGjRokGJiYuyPqKgoM1YFAAAAAIB74mbGi3bt2lVBQUF66623brhMcHCwNm7cKH9/f128eFHJycnKmTOnfT4yMlLBwcE3fL6Hh4c8PDycmhsAAAAAAGdz+h7vYcOGKSIiQrNmzbJfaG3EiBH64YcfHJbbsGGDypQpIxcXF1WvXj3dFcwXLVqkxo0bOzseAAAAAACZyql7vL/66ivNmTNHmzdvdrhY2kMPPaTevXuraNGiKlOmjBYsWKAvvvhCO3bskCT169dPffr00XfffafixYvr/fffl81mU8OGDZ0ZDwAAAACATOe04r1+/Xp16dJFycnJKly4sMPcoUOHNGjQILVp00bHjx9XtWrV9P3339uXa9asmY4cOaImTZooOjpaTZs21eLFi50VDQAAAAAAy7gYhmFYHcIZYmNj5evrq5iYGPn4+Fgd544UH/iT1RGyncNjW9x6ITgV23nmYzsHAAAw1+32UNNuJwYAAAAAACjeAAAAAACYiuINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQBANhEdHa0OHToob968Klq0qCZMmGCfW7lypapWrapcuXKpXr16+vvvvy1MCgBA1uJmdQAAAJA5OnXqpOrVqysqKkqXL19W9+7dlS9fPjVs2FDt27fXV199pQYNGujHH39Uq1atdODAAXl7e1sdGwCABx57vAEAyCbWrVunt956S97e3ipQoIB69+6t7777TjExMZo1a5aaNGkid3d3tWnTRvny5dO+ffusjgwAQJZA8QYAIJto0aKF+vfvr9jYWEVFRWn06NEqUKCAKleurObNm0uSLl26pClTpigmJkbly5e3ODEAAFkDh5oDAJBNTJ48WVWqVNHHH38sSSpXrpzmzJljn4+JiZGfn58kafr06fLy8rIiJgAAWQ57vAEAyAZSUlLUqlUrPfvss4qOjtaRI0fUrFkznTlzxr6Mr6+vLl68qEWLFmnYsGFat26dhYkBAMg62OMNAEA2sHTpUtlsNr333nuSpLx582rEiBGqV6+efv/9d3l4eEj6r3y3adNGiYmJ+vDDD/Xoo49aGRsAgCyBPd4AAGQDBw4cUP369R3GvL295efnp99//11xcXEOc1WqVNHJkyczMyIAAFkWxRsAgGwgODhY+/fvdxhLSEjQvn37NHfuXH311VcOc1u3buXiagAAOAnFGwCAbKBVq1batm2bJk+erEuXLun48ePq1KmTateurV69emnkyJHatGmTEhMTtXLlSg0ZMkQDBgywOjYAAFkCxRsAgGzA09NTS5cu1Q8//KACBQqoZs2ayp8/v2bPnq0qVaro008/VY8ePeTn56c33nhDM2fOVEhIiNWxAQDIEri4GgAATlJ84E9WR7i1aq8qf7VXJUk/Svpx1DVXLm8+RgUkXZDU9dcE6df7f30Oj21hdQTcZyIjI/Xyyy9r48aNKly4sN59910988wzkqQNGzbo9ddf1759+1S+fHl99NFHqlWrlsWJAWQHFG8AAABkCYZh6H//+586duyo77//Xvv371fr1q1VvHhx+fv7q127dpo9e7bq1q2rn3/+Wa1bt9aff/6pIkWKWB0dQBZH8QYAAECWcPHiRfXq1Uvdu3eX9N/V+UNDQ7VhwwZFRUWpX79+aty4sSQpPDxcW7Zs0YIFC9SvXz8rYwPIBjjHGwAAAFlCnjx57KU7KSlJv/76qxYvXqzHHntMJUqUUGhoqMPyQUFBOn36tBVRAWQzFG8AAABkOTVr1tQTTzyhhg0bqlq1aurTp49Kly7tsMzSpUtVvXp1ixIC965Ro0ZydXXV+PHjHcY3bNigmjVrysfHR7Vq1dLvv/9uUUJcRfEGAABAlrN582Zt3rxZBw4c0OjRo9PNz5o1S6dOnVJYWJgF6QDnWL16tYYMGeIwdvDgQbVr106jRo3S6dOn1b9/f7Vu3VrHjh2zKCUkijcAAACyIE9PT9WqVUvfffedPvjgA4e5rVu3asCAAfr666/l5sYlj5C1TJo0yX49A5vNpvDwcHXq1EkLFiywOlq2RvEGAABAlnD48GGdPHnSYSwwMFA5cuRQfHy8JOno0aMKCwvTF198oXLlylkREzAV1zO4P1G8AQAAkCVs3LhRb7zxhsPY4cOHlTt3btlsNl26dEktW7bUm2++qZYtW1qUEjAX1zO4P1G8AQAAkCW0bt1af/zxh7788kvFx8dr//79euaZZ/TOO+8oNTVV7dq106OPPqrXXnvN6qhApuF6BvcHijcAAACyBG9vby1dulRz585VQECAnnjiCT377LN64YUX1Lt3by1fvlxTp06Vm5ub/fH4449bHRswDdczuH/w0wcAAMBtKz7wJ6sj3NrDfZTv4T6SpA9OSB8M/EnyaaFiA1qkW/SQ7v91Ojw2fW7gVriewf2FPd4AAAAAkIVwPYP7z31VvGNjY/Xcc88pV65cKly4sN577z2rIwEAAADAA4PrGdyf7qvi/dJLLylnzpw6fvy4Nm/erEWLFmnatGlWxwIAAACABwLXM7g/3TfneB8/flyrV6/WkSNH5OnpKV9fX82ePVtPPvmkunfvbnU8AAAAALjvDBs2zOHrKVOmaMqUKdaEwQ3dN8V748aNatKkiTw9Pe1j5cqVU65cuXTw4MF096IDAAAAADPc7xfcy4qy+kUE75viffToUZUqVSrdeEhIiCIiItIV78TERCUmJtq/jomJkfTfeeIPmrTEOKsjZDsP4nbyoGM7z3xs55mP7TzzsZ1nPrbzzMd2nvnYzjPfg7qdX81tGMZNl7tvind8fLy8vLzSjdtsNsXHx6cbHzNmjN59991040FBQabkQ9bi+5HVCQDzsZ0jO2A7R3bAdo7s4EHfzi9duiRfX98bzt83xdtmsykuLv0nS9HR0RkW8kGDBqlfv372r9PS0nT+/Hn5+/vLxcXF1Kz4T2xsrIKCghQVFSUfHx+r4wCmYDtHdsB2juyA7RzZAdt55jMMQ5cuXVLhwoVvutx9U7yLFi2qn3/+Od14ZGSkgoOD0417eHjIw8PDYczPz8+seLgJHx8f/mEjy2M7R3bAdo7sgO0c2QHbeea62Z7uq+6b24nVrVtXK1euVEpKin1s9+7dSkxMzPDcbwAAAAAAHgT3TfEODAxUnTp11LdvX12+fFlRUVHq1q2b3n77baujAQAAAABw1+6b4i1J06ZN0/nz51WwYEE98sgjCg8PV9euXa2OhRvw8PDQ0KFD0x3yD2QlbOfIDtjOkR2wnSM7YDu/f7kYt7ruOQAAAAAAuGv31R5vAAAAAACyGoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAADAAyg+Pt7qCLhNXNUcAAAAWU6rVq3k4uKSbtzNzU2+vr6qUqWKnn/+eeXNm9eCdIBzFC5cWEeOHFHOnDmtjoJbYI83AFxj8eLF+uSTT+xfjxo1Snnz5lWVKlW0bds2C5MBznXhwgWrIwCm6tGjhw4ePCgvLy916tRJXbt2Vb58+bRz50498cQTOnPmjGrUqKGTJ09aHRW4a48//rgmTJig1NRUq6PgFtjjjTuWkpKiWbNmac2aNUpLS1ODBg3UuXNnubu7Wx0NuGfFihXT0qVLValSJf30008aN26cfv75Zy1btkzDhw/Xzp07rY4IOIW7u7uSkpIynAsPD9e3336byYkA53r33Xd15coVjRs3zmF86NChSk1N1ciRI/Xll19qxYoVmjdvnkUpgXvTsmVLrV69Wp6enipfvrx8fHyUI0cO+/wPP/xgYTpci+KNOxIbG6snnnhC+fLlU4cOHZQjRw7Nnz9fhw8f1sqVK+Xn52d1ROCeFChQQLt27ZKXl5ceeeQRfffddwoJCdHly5dVsGBBXb582eqIwF3r3bu3XFxcZBiGpkyZoldeeSXdMklJSVq0aJHOnTtnQULAeQIDA7Vt2zYVKFDAYfz06dOqXr26oqKilJycrMDAQJ05c8ailMC9Wbt27U3nGzRokElJcCtuVgfAg2XAgAGqWLGiPv/8c/vYU089pV69eunNN9/UZ599ZmE64N6NGDFCNWrUkLu7u9544w2FhIRIkj766CO1a9fO4nTAvalevbr9v11cXPTwww+nW8bV1VW9e/fOzFiAKWJjY+Xh4ZFu3Nvb2/7BUs6cOTM8Dxx4UFwt1tHR0dqxY4cee+wxixPhRtjjjTuSP39+bdu2TUWKFHEYP3bsmKpVq6azZ89alAxwnitXrsjFxUVeXl72sX379qlEiRLy9PS0MBngPM8884zmz59vdQzANC1bttSTTz6Z7siOr7/+WpMnT9aGDRv0119/6ZVXXtHvv/9uUUrg3g0YMEBff/21zp49q/j4ePXs2VP58+fXsGHDrI6Ga7DHG3fkypUr8vX1TTfu5+enuLg4CxIBzuft7a0dO3Zo27Zt6ty5s+Li4lSuXDmrYwFORelGVvf+++/rscceU2pqql544QV5eHhoyZIleuONN7Ro0SIdOXJEL7zwgoYPH251VOCuffDBB9q1a5f+/fdf+9/o48aNU4sWLZQvXz716tXL4oS4ij3euCPNmjVTmzZt1K1bN4fxr776SrNmzdKvv/5qUTLAOZKTk9WhQwcdOnRIu3fvVkJCgl555RVdvnxZM2fOlKsrN4NA1jFt2jQtXbpUp06dUmJioiTJMAy5uLhwIUFkCf/8848GDhyoVatWSZJq166tkSNH6uGHH7ZfUO3ZZ5+1MiJwT0qXLq3vv/9e5cuXl5eXl31H2I4dO/TUU0/pn3/+sTghrqJ4447s3LlTTZs21dChQ+0XV1u8eLEGDhyopUuXqmrVqlZHBO7J4MGDdezYMX355Zey2WyKj49Xamqq2rVrp0qVKnHYFrKMgQMHavXq1Ro2bJhKlSqV7s4UxYoVsygZAOB2eXp66sqVK8qRI4dD8U5OTpaPj4/i4+MtToirKN64Y3v37tWgQYO0Zs0aubi4qF69eho9erQqV65sdTTgnhUrVkxr165V8eLFHf4HdvDgQTVu3FhHjhyxOCHgHP7+/tq2bRsFG1laamqqtm/f7nBUx1Xh4eEWpQKcp0KFClqwYIEqVKhg32EgSX/++ac6deqkPXv2WJwQV1G8cUvnz5/PcPzqpnPt1UDz5s2bKZkAs9hsNl26dElubm4OxTspKYlrGSBLCQwM1MGDBx0uIghkJX///bdCQ0NVuHBhlSxZ0uGoDhcXF82YMcPCdIBzzJ07V9OnT9eSJUtUpEgRxcXFKSoqSq1bt1afPn3UsWNHqyPi/+Piarilhx9+2H7f16uuLdtnz55VXFycBg4cqFGjRlkREXCaihUratu2bXrkkUcctvkNGzaofPnyFiYDnOuVV17RsGHDNG7cOKujAKbo3r27hg4dqq5du1odBTBNhw4dFBcXp6pVqyoxMVF16tTRkSNH9M4771C67zPs8cY9+eKLLzRgwABNnTpVbdu2tToOcM9WrFih/v37a/78+Xr44YcVFxenP//8U+3bt9fEiRPVrFkzqyMCTrFw4UKNHDlSRYoUUXh4uHx9fR0uHshhuHjQeXt76/z58xneyxvIapKSkrRr1y5J/+1EYLu//7DHG3clJSVFvXv31m+//aa1a9eqQoUKVkcCnKJp06ZKS0tTu3btlJCQoMKFC8vPz08fffQRpRtZyrJly/TQQw9J+u+Ijmu5uLhQvPHAe+SRR7Rr1y5Vr17d6iiAaWrXrq0ePXro6aef1sMPP2x1HNwEe7xxx06ePKnw8HD5+flp3rx5ypMnj9WRgHvy3nvvqW/fvumu6hwdHS3pv4tQAQAeLPv27dMLL7ygyZMnU76RZW3dulWfffaZVqxYof/973/q3r27KlasaHUsZIDijTuyYcMGPfXUU+rUqZNGjx7NPY2RJYSHh2vbtm0aNWqUnnvuOavjAJli3bp1N51/9NFHMykJYI5KlSopOjpap06dUmBgoP10Cu5Vj6woLi5O8+fP1xdffCHpv2sctGvXTp6enhYnw1UUb9y2iRMnaujQofr000/19NNPWx0HcKoNGzbozTffVFJSksaPH69GjRpZHQkw1VNPPaUdO3bo9OnTqlu3riRp48aNKlSokCpXrqwFCxZYnBC4N7e6/SO30kNWFBERob59+2rVqlV6+eWXuYDmfYTijVtKTExUt27d9O2332rixImqUqXKDZe9er4g8KBauHCh+vfvrzJlyigkJCTd/CeffGJBKsD5Vq1apYEDB+q7775TYGCgJOn48eNq06aNPv74Y9WsWdPihMCdO3XqlGw2m3x9fa2OAmSa1NRUff/995o6darOnj2rl156Sc8995x8fHysjoZrcHE13NKgQYMUFRWlGjVqaPbs2TdczsXFRatWrcrEZIBzxcXFaefOnbp06ZIeeughlS1b1upIgGkGDRqkiRMn2ku39N+9vT/88EP17dtXmzZtsjAdcHcqV66skJAQrV+/XiVKlHC4/elVVw81j4iIsCAh4FwjR47UlClTVK5cOY0aNUq1atWyOhJugD3eALI9wzD0+eefa9iwYWrcuLFGjx7tUEaArMjLy0sXLlxId8uZxMRE5cmTR3FxcRYlA+7etm3blDt3bpUuXdp+gcwb4cKZyAouXryoL7/8Up9//rmCgoL08ssvq2XLlhl+6ARrUbwBZHuVKlVSvnz5NH78eG7FgWyjdOnS+vrrr9Nd7fmPP/5Qhw4d9M8//1iUDHC+K1euKDEx0WEsb968FqUBzLFu3TpNmzZNf/zxh55//nm9+OKLKlSokNWx8P9xqDmAbG/kyJEKDQ21OgaQqV599VV1795dK1asUL58+SRJZ86cUY8ePdS3b1+L0wH37sKFC3r55Zf1yy+/yMvLSzlz5rTPcag5sqJHH31USUlJio6O1owZM5QzZ04NHDjQ6lj4/yjeALI9Sjeyo969e+vMmTOqUKGCGjZsKMMwtG7dOvXs2VMvv/yy1fGAe9a1a1cFBAToyJEjyp07t9VxANMcPXpUM2bM0Ndff60qVaqoX79+atKkCYeb32c41BwAgGzs5MmT2rRpk1xcXFS3bl0VKFDA6kiAU/j4+CgqKoornCNLa9y4sU6ePKkuXbro+eefV0BAgNWRcAMUbwAAsqGPPvpIffr0yXDuxIkTKly4cOYGApysQoUK+u233zjHFVna+vXrVb9+fatj4Da4Wh0AAABkvv79+2c4bhiGypUrl8lpAOcbPXq0OnfurISEBKujAKYxDMPhdr9z585VlSpVFBoaqsjISAuT4Xqc4w0AQDaRO3duubi4yDAMpaamysfHJ90yhmGodu3aFqQDnOu3337T8ePHVbRoUTVt2lS+vr5ydf2/fU6ffPKJhekA5+jevbumT58uSdq8ebMmTJigBQsW6KefflKHDh20ceNGixPiKg41BwAgG8qZM6eSk5OtjgGY5ssvv7zpfKdOnTIpCWCevHnz6siRI7LZbKpVq5YmT56smjVrKj4+Xvny5dOVK1esjoj/jz3eAABkQ99//73VEQBTUayRHbz66qt69NFH5e7urieffFI1a9aUJM2cOVONGze2OB2uxR5vAACyoSpVquivv/6SmxufwSPrOnz4sAYPHqy1a9cqLS1NDRo00MiRI1WyZEmrowFOc+DAAeXIkUOlSpWyj61du1aVK1dWnjx5LEyGa3FxNQAAsqECBQpo4cKFVscATHPgwAHVrVtX1apV059//qkdO3aodu3aevTRR7V3716r4wFOExISolKlSunKlSs6f/68zp8/r0qVKon9q/cX9ngDAJANdevWTfPmzVNwcLCqVq0qHx8f5ciRwz7PhafwoGvVqpUaN26s1157zWH8008/1Q8//KCff/7ZomSA85w/f149e/bUL7/8Ii8vL+XMmdM+5+LiooiICAvT4VoUbwAAsiEuPIWsLnfu3IqKipKfn5/D+MWLF1WkSBFdvnzZmmCAE4WHhysgIEDjx49X7ty5rY6Dm6B4AwCQzf37779KS0tTmTJlrI4COE2+fPm0e/duFSxY0GH8zJkzKlu2rM6fP29RMsB5fHx8FBUVJV9fX6uj4BY4xxsAgGxqyZIlKlasmFq1aqWwsDAVK1aM876RZbRu3VpjxoxJNz5p0iSFhoZakAhwvqCgIMXFxVkdA7eBPd4AAGRDy5Yt08svv6wFCxbYbz/z999/q02bNvr444/VqlUrixMC9+b8+fNq1KiRypYtq+eff15ubm5auHChfv/9d61du1b+/v5WRwTu2ffff69PP/1US5Yskaenp9VxcBMUbwAAsqHq1avr3XffVYsWLRzGly9frrfeekvbtm2zKBngPPHx8Zo6dapWr15tv51Yz5495e3tbXU0wCl69+6tNWvW6PTp02ratKl8fX3l6vp/BzVzocz7B8UbAIBsyMvLS9HR0bLZbA7j8fHxyps3r+Lj4y1KBgC4XVwo88HhZnUAAACQ+fLnz6/IyEiVL1/eYTwqKkoBAQEWpQLuzVNPPaUSJUpo3Lhxevfdd+Xi4nLDZYcMGZKJyQBzUKwfHBRvAACyoW7duqlXr15atmyZ/bzAlJQU9e/fX926dbM4HXB3ihcvrsDAQElSrly5LE4DmG/48OE3necDpvsHxRsAgGzorbfeUmRkpCpUqKDw8HC5ubnp+++/V/Xq1TV48GCr4wF35f3337f/92OPPaZq1apZmAYwn7+/v6ZMmSJvb2+1bdtWkrRo0SIlJyfzIep9hnO8AQDIxrZt26Y1a9bYLzxVo0YNqyMBTuHu7q6kpKQM5x566CEuIIgsYfLkyVq7dq3mz59vv6haamqq2rdvr+bNm+uFF16wNiDsKN4AAGRzV8uJu7u7xUmAe9OqVSu5uLjIMAwtW7Ys3VX7pf+29z179igqKsqChIBzlS5dWr/88otKlCjhMH7o0CE9+eST+ueffyxKhutRvAEAyKZ+//139e3bV3v27JEkVaxYURMmTFDt2rUtTgbcnbVr10qSDMNQ48aNtXLlynTLuLq6qmzZslxEEFmCzWZTdHS0vLy8HMbj4uKUL18+xcXFWZQM1+McbwAAsqHNmzerTZs2mjx5slq3bi1J+vbbbxUeHq7FixerTp061gYE7kKDBg3s//3GG284fA1kRZUrV9aKFSsUFhbmML5s2TJVqVLFolTICHu8AQDIhho0aKDu3bvr2WefdRifO3eupk6dqg0bNliUDHAOwzCUnJzscArF9u3bVbhwYeXPn9/CZIDzrFy5Uh06dNCcOXPUuHFjSdKKFSvUuXNnff3113z4dB+heAMAkA15e3vrzJkz8vb2dhi/fPmy8ufPz+GJeOANGTJEbm5uGjJkiFJTU9WiRQvFxMTo6NGjGjt2rDp27Gh1RMApVqxYoddff11nz56VJBUsWFAffPCBHn/8cYuT4VoUbwAAsqFixYpp48aNKlKkiMN4VFSUGjRooIiICIuSAc6RJ08e/fPPPwoICNCHH36oAwcOaOrUqdq3b58aN26s48ePWx0RcKro6Gi5uLgob968VkdBBlytDgAAADJfjx49NGbMmHTjY8eOVd++fS1IBDhXwYIFdeDAAW3fvl2TJ0/W2LFjJUl+fn5KTk62OB3gfP7+/pTu+xgXVwMAIBsqVaqU5s6dq9atW+uZZ56RYRj65ptvdOTIET322GP69ttv7cuGh4dbmBS4OzNnzlTfvn3l5uamr776Sn5+fpKk999/XwMHDrQ2HIBsh0PNAQDIhjp37nxby7m4uGjGjBkmpwEyT3x8vGw2m9UxAGQzFG8AAABkSZcvX9YXX3yh7du3a+bMmdq1a5dKlSpF8UaW8ffff6tatWpWx8BtoHgDAJBNxcfHa9u2bYqOjlZKSorDHIeX40F36tQpNWrUSM2bN9eUKVMUHx+v999/X7NmzdKaNWsUEBBgdUTgnrm7uyspKSnDuYceekjbtm3L5ES4EYo3AADZ0PLly9WpUyc98sgjyps3r1xd/+96qxxejqygY8eOqly5st58803ZbDbFx8dLkoYOHarIyEjNnj3b4oTA3WnVqpVcXFxkGIaWLVumFi1apFsmKSlJe/bsUVRUlAUJkRGKNwAA2VDp0qU1Y8YM1a9f3+oogCn8/f3177//Kk+ePPLy8rLfmz46OlohISE6d+6cxQmBu7N27VpJkmEYaty4sVauXJluGVdXV5UtW5YjO+4jXNUcAIBsKDo6WjVr1rQ6BmCapKQkeXl5pRt3d3dXYmKiBYkA52jQoIH9v9944w2Hr3H/4j7eAABkQx07dtQXX3xhdQzANI0aNdKPP/4o6b89g1ctXLhQDRs2tCgV4Fxjx47V119/7XCed2JiohYuXGhhKmSEPd4AAGRD48ePV/fu3bVhwwbVr19fefPmlZvb//1ZwMXV8KCbMGGCmjVrpujoaEnSwYMH9f3332vy5MlasWKFxekA5/j22281btw4tWjRQu7u7pKkhIQEDR8+XN7e3mrevLnFCXEV53gDAJANLVu2TM8//7yqV6+ugIAAh9LNxdWQVRw7dkxjx461nxNbv359vfXWWypSpIjFyQDnqF27tsaPH6+6des6jK9Zs0ZDhgzRunXrLEqG61G8AQDIhkqVKqXp06frscceszoKAOAu5cqVSzExMcqRI4fDeEpKivLmzavY2FiLkuF6HGoOAEA2dPbsWdWrV8/qGIBpvv3225vOczoFsgIvLy+dPn1ahQsXdhg/depUujIOa1G8AQDIhp577jl9/vnn6tmzp9VRAFNcvbCaJKWlpSk2NlarVq1SUFCQHnnkEYo3soSWLVtq2rRpevfddx3Gp0yZoqZNm1qUChmheAMAkA3VrVtXQ4YM0YYNG9SwYUPlyZPHYe8IpQQPupkzZ6Ybu3jxotq0aaOnn37agkSA840ePVr16tVTamqqOnTooJSUFM2YMUMLFizQpk2brI6Ha3CONwAA2VDnzp1vOMfF1ZCVHT16VC1bttTOnTutjgI4xblz5zR69GitXLlSqampatCggQYPHpzu8HNYi+INAACAbOPy5csqUKCArly5YnUUANkIh5oDAJBN9O/fX4GBgXrttdc0e/bsmy77/PPPZ1IqIPMkJyfr3XffVf369a2OAjiVYRiKjIxUcHCw1VFwAxRvAACyicjISPt/b9269abLUrzxoKtUqZJcXFzsXycnJ+vs2bOqVauWZs2aZV0wwMk+/fRTjRw5UtHR0UpISNCAAQMUEhKiLl26WB0N1+BQcwAAAGQ5R44ccfjaw8NDefPmlbu7u0WJAOebO3euJk6cqJ9++klBQUGKj4/X8ePH1axZM7399ttcSPA+QvEGACCb2rdvn5YtW6ZTp04pMTHRYe6TTz6xKBUA4HZVqlRJM2bMUI0aNeTl5aW4uDhJ0saNG9WzZ0/t2LHD4oS4iuINAEA2NG/ePPXp00ddunRRyZIl0+0F7NSpk0XJAOe4/lDzjBiGIRcXF65wjgeWp6enLl++LDc3N4finZycLF9fX/vXsB7neAMAkA0NHjxY3333nerWrWt1FMAU8+bNU4cOHRQaGqrnnntOkjR79mwtX75cX331lWw2m8UJgXsXGBioqKgolShRwmH833//VaFChSxKhYywxxsAgGzI19dX586dU86cOa2OApiiZ8+eCg4O1htvvOEwPmrUKJ07d04ffvihRckA5/nwww+1YcMGffPNN/Lx8VFcXJyuXLmi1q1b68knn1S/fv2sjoj/j+INAEA29MILL6hJkyb2PYFAVhMQEKADBw4ob968DuNnzpxRhQoVdPbsWYuSAc711ltv6ZtvvtGRI0fUrl07bdiwQc8995zGjBljdTRcg+INAEA2dOjQIXXo0EFt2rRRWFiYfH195erqap+/vqwADxofHx8dOnRIAQEBDuPnzp1TcHCwYmNjLUoGON/Jkye1adMmSVLt2rVVuHBhixPhehRvAACyoevPB7yWi4uLIiIiMjEN4Hxt2rTRQw89pMGDBzuMjxo1Stu2bdPixYstSgY4T+/evfXRRx8pR44cVkfBLVC8AQAAkOUcOXJE9evX17PPPqvnn39eLi4u+vLLL/X1119r3bp1KlasmNURgXtWsmRJLVu2TCEhIVZHwS1wVXMAALKJG91eKUeOHMqVK5dCQkLUtWtX1a5d24J0gHMVK1ZMf/zxh0aNGqWnn35arq6uatiwobZs2aKCBQtaHQ9wipdeekmNGjVSmzZtVLVqVfn4+Djs/Q4PD7cwHa7FHm8AALKJI0eOZDhuGIbi4+O1adMmDRs2TB9//DF/rAHAA6Bz5843nHNxcdGMGTMyMQ1uhuINAADs1qxZo549e2rv3r1WRwEA3MKiRYvUpk2bDI9mwv2F4g0AAOySk5Pl6+uruLg4q6MAAG4hT548ioyMlJ+fn9VRcAuut14EAABkFxs2bFCZMmWsjgEAuA3jx49XaGiovv32Wx06dEhnz57V+fPn7Q/cP9jjDQBANrFt27YbziUnJ+vPP//UyJEjNX/+fDVo0CATkwHO99FHH6lPnz4Zzp04cYL7HCNL4NaQDw6KNwAA2USjRo0yHHd1dZWHh4eKFi2qzp07q2bNmpmcDHA+d3d3JSUlpRs3DEN+fn6KiYmxIBWA7IrbiQEAkE2sXr3a6giAqXLnzi0XFxcZhqHU1FT5+PikW8YwDG6ZhywlJSVFs2bN0po1a5SWlqaGDRvqhRdekLu7u9XRcA32eAMAACDLyZkzp5KTk62OAZgqNjZWTzzxhPLly6cOHTooR44cmj9/vg4fPqyVK1dy0bX7CMUbAAAAWc7PP/+sJ5980uoYgKlefvllJScn6/PPP3cY79WrlxITE/XZZ59ZlAzXo3gDAAAgy0lNTVXPnj01atQo5cuXT5J09uxZDRs2TJMmTeK+x8gS8ufPr23btqlIkSIO48eOHVO1atV09uxZi5LhetxODAAAAFnOBx98oIsXL9pLtyTly5dPJ0+e1CeffGJhMsB5rly5Il9f33Tjfn5+iouLsyARboTiDQAAgCzniy++0KhRoxzGXFxcNHr0aA6/RZZRv359zZ8/P934999/rzp16liQCDfCVc0BAACQ5Rw9ejTDexyXLl2aexsjyxg3bpyaNm2q1NRU+8XVFi9erEGDBunHH3+0Oh6uwR5vAAAAZDmFChXSwYMH043v379fefPmtSAR4HyVK1fWypUr9fPPPyswMFCFChXS/Pnz9dNPP6lq1apWx8M1uLgaAAAAspyhQ4dq9+7dWrx4sX3MMAyFhoaqbNmyGjdunIXpAGQ3FG8AAABkOcnJyQoLC9OlS5fUvn17paSkaPbs2cqVK5eWLVsmT09PqyMCdy0uLk4nT55UyZIl080dP35cNpuNIzvuMxxqDgAAgCwnZ86cWrp0qV5//XXt27dP+/fv1xtvvKHffvuN0o0HWmpqqpo2barZs2dnOL9gwQI1aNBACQkJmZwMN8MebwAAAAB4QEyePFk//fSTli1bdsNlwsPD9fDDD2vw4MGZmAw3wx5vAAAAZFk7duzQzJkzJYn7GiNLmDNnjt55552bLjNo0CAtWLAgkxLhdrDHGwAAAFlOcnKyOnTooEOHDmn37t1KSEjQK6+8osuXL2vmzJlydWX/Ex5Mfn5+OnPmjNzd3W+4THJysvLmzatLly5lYjLcDO84AAAAyHKGDRsmT09P/fnnn3JxcZEkffLJJ7p8+bKGDx9ucTrg7rm5uSklJeWmyyQlJfHh0n2G3wYAAACynLlz5+rdd9+VJHvxzpEjh8aOHWs/9Bx4EFWrVk2//PLLTZdZvXo19/G+z1C8AQAAkOWcOXNGRYoUSTderFgxnT171oJEgHP06tVLAwYMUGxsbIbz8fHxevvtt9WzZ89MToaboXgDAAAgy6lYsaK2bdsmSbr2kkYbNmxQ+fLlrYoF3LPQ0FA1adJE9erV09atWx3m9uzZo8cee0wPP/ywnn76aYsSIiNuVgcAAAAAnG3kyJHq1q2b5s+fbz/U/M8//1T37t01ceJEi9MB92bSpEn67LPP9Mwzz8gwDAUGBur06dNKSEjQgAED9Morr1gdEdfhquYAAADIkn7++Wf1799fe/bsUcGCBeXn56f3339fLVq0sDoa4DQRERE6ffq08uXLp9KlS1sdBzdA8QYAAECWFh0dLUny9/e3OAmA7IpzvAEAAJDlVKlSxX7LJX9/f0o3AEtRvAEAAJDlFChQQAsXLrQ6BgBI4lBzAAAAZEHdunXTvHnzFBwcrKpVq8rHx0c5cuSwz3/yyScWpgOQ3XBVcwAAAGQ59erVU7169ayOAQCSKN4AAADIgv7880999NFHDnu5AcAqnOMNAACALGfZsmX6999/rY4BAJLY4w0AAIAs6KWXXlKjRo3Upk2bDM/xDg8PtzAdgOyGi6sBAAAgy+ncufMN51xcXDRjxoxMTAMgu6N4AwAAAABgIs7xBgAAQJZ0+PBhdejQQUWKFFHhwoXVvn17HTp0yOpYALIhijcAAACynAMHDqhOnTqqWrWq/vzzT+3YsUO1a9fWo48+qr1791odD0A2w6HmAAAAyHJatWqlxo0b67XXXnMY//TTT/XDDz/o559/tigZgOyI4g0AAIAsJ3fu3IqKipKfn5/D+MWLF1WkSBFdvnzZmmAAsiUONQcAAECW4+HhoYSEhHTjSUlJcnd3tyARgOyM4g0AAIAsp3Xr1hozZky68UmTJik0NNSCRACyMw41BwAAQJZz/vx5NWrUSGXLltXzzz8vNzc3LVy4UL///rvWrl0rf39/qyMCyEYo3gAAAMiS4uPjNXXqVK1evVppaWlq0KCBevbsKW9vb6ujAchmKN4AAADIkmJiYuTr6+swFhsbKx8fH4sSAciuOMcbAAAAWc6RI0dUpUoVnTlzxj526tQpVatWTSdOnLAwGYDsiD3eAAAAyHI6dOigOnXqqGfPng7jH3/8sbZv366ZM2dalAxAdkTxBgAAQJaTP39+HTx4MN2h5hcvXlTZsmV16tQpi5IByI441BwAAABZzpUrV5QzZ850425uboqNjbUgEYDsjOINAACALKdatWpatWpVuvHffvtN5cuXtyARgOyM4g0AAIAs55133tGrr76qffv22cf+/vtv9e7dW4MHD7YwGYDsiHO8AQAAkCV98803euONNxQYGKiUlBRFRUVp9OjR6tq1q9XRAGQzFG8AAABkWSkpKdq1a5dSU1NVqVIleXh4WB0JQDZE8QYAAAAAwERuVgcAAAAAzLBv3z4tW7ZMp06dUmJiosPcJ598YlEqANkRxRsAAABZzrx589SnTx916dJFZcqUkbu7u9WRAGRjHGoOAACALKdEiRKaO3eu6tata3UUAKB4AwAAIOvx9fXVuXPnlDNnTqujAAD38QYAAEDWExYWpgULFlgdAwAksccbAAAAWdChQ4fUoUMHtWnTRmFhYfL19ZWr6//tc8qbN6+F6QBkNxRvAAAAZDklSpS44ZyLi4siIiIyMQ2A7I7iDQAAAACAibidGAAAALKE8+fP3/ayHGoOIDOxxxsAAABZQokSJeTi4qJb/XnLoeYAMhvFGwAAAAAAE3E7MQAAAAAATETxBgAAAADARBRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAy2datW/Xzzz9bHQNAJqF4A3hgrFmzRi1btrzn15k1a5Z69eolSXrhhRe0aNGie35NZ5syZYo6depk//qTTz656fK3ms/I4cOHVbFixTt+XkaKFy+uc+fO3fb4/eKTTz5RsWLF5Ofnp2eeeUZnz5696fI7duxQw4YNlTt3blWuXFkrVqywz61Zs0aurq5yd3dXUFCQXnvtNcXHx9/09Ro2bKg///zzntcjV65c9/wat2PYsGEaP358hnN79+5V8eLFnfJazuSs941bqVGjhiZOnHjby9/u+jdq1Eiurq4ZLrt//355eXnJxcUl3b+zxx9/XG5ubg4PFxcXfffdd7f8ns58b7iVO32PuN337O+++05+fn564oknJJn3bySjPEOHDlWOHDluut2lpaWpR48eunTp0h1/n9TUVD366KPKkyePw3sQgPsbxRsA7kMLFy7UU089Zf960aJFWrNmTYbLxsbGatiwYUpJScmkdFnDwoULNXXqVP322286ceKESpQooRdeeOGGy1+5ckWhoaHq06ePoqOj9dVXX+nNN9/UgQMH7Ms0b95cSUlJ+vvvv3Xx4kUNGzbM/BW5TyxcuFBt27a1OoZlSpcurfz58zv9dVevXq0hQ4ZkOFe2bFnFxcWpWLFi6eZWrlyplJQU+2PDhg2qVKmSWrdu7fSM96OZM2fqyy+/1Lx58zL9e7/77rtauXLlTZeZOnWqAgIC1K5duzt+/R07dujKlSs6deqUatWqdbcxAWQyijcA3GdOnz6tnTt32vfUSFJkZKQmTJiQ4fKff/65Lly4oCNHjmRWxCzBy8tL33zzjUqXLi0vLy8NGDBAa9euveHy+/btU1BQkFq3bi13d3dVqlRJoaGhGR4qmi9fPg0ZMkS//vqrmatwX7n+w6LsZt68eXr66aetjnFDI0aM0ODBg+Xi4mJ1lEwRGxurwMBA5cuXz+oo6Zw7d06jRo3S5MmT7+r5sbGxKlSokDw8POTr6+vkdADMQvEG4HS5cuXSrl27VKtWLXl7e6tp06Y6e/as9uzZo/r16ytXrlxq3ry5zpw54/C8Dz/8UMHBwfLw8FCFChU0Z84c+9yAAQP0+OOPa9myZXJzc9Nff/0l6b+9kK+++qry58+vXLlyqVWrVoqMjLzrP7a2bdumxx9/XDabTYGBgRo2bJiWLFli3xN69bDVhQsXqmTJkvLx8VHv3r2Vlpam7777TmXLlpWfn59ee+01paam2l/3TnJ+++23atGihdzd3SVJSUlJSktL06FDhxz2rkr/HXI4efJk1ahRQ5GRkQ5zc+fOVfny5eXh4aGSJUtqwoQJMgxD0n+HspcqVUp79uyRm5ubvv32W0lSSkqKhg4dqqCgIHl5ealhw4bavn27qlevrsOHD9/Vz/Ra33zzjSpWrChPT09VqFBB33zzjd544w3NmjVL0n+H344bN05DhgxRvnz5VKhQIc2YMUOGYWjEiBEqUKCAChUqZF/+qoiICLVu3Vq5cuVSQECAXn31Vf3xxx9q2LDhDbO0aNFClSpVkiSdOHFC/fv3V9OmTW+4fIUKFXT69GnNnj1biYmJ2rp1q2bNmqUCBQpkuHxMTIxy5Mhx2z+bhg0bauPGjerbt6/8/f1VoEABffDBB/b5M2fOqFGjRvL29lbbtm114cIF+7+HK1euyM3NTR988IFmzZqlF198UU2aNFGlSpVkGEaGh/Nee8rFVX/88YeaNm2q3Llzy9fXV61atdKOHTskSbVq1dLw4cM1YMAA+fn5OTxv3759unTpkh555BGH8RUrVqhu3bry8vJSvnz59Oyzz6bbjqZPn67g4GD5+PioS5cuSkhIcJi/2fvCVSdPnlTnzp0VEBAgLy8v1axZU4sXL87w5zxp0iSVKVNGR44csR9SvWfPHjVu3Fje3t4qVKiQBgwYoMTERIfn7dy5U02bNrWvS/fu3RUTE2Ofb9mypf2olFv9Lm/2szTDtm3bFBERcVsfjNzovSEtLU2jRo1SsWLF5OnpqYceekg//fST/XkZbXfSf+9fQ4cOVXBwsDw9PVWmTBm99957DkfoXLx4UZ06dZKPj4+KFSumr7766qYZ09LSNG7cOBUvXlw2m021a9fW+vXr7fOhoaFau3atatWqpccffzzD15g2bZpCQkLk4eGhcuXKpXtPkW79flWwYEHNnj1bTz/9tKpWrXrLn+1VAwYM0Msvv6ySJUve9nOu+uuvvxz+X3izDwsB3GcMAHAyd3d3o06dOsaff/5pxMXFGT179jRCQ0ON+vXrG3/99ZcRHx9v9O3b13jhhRfszxk0aJDRunVr4+DBg0ZiYqLx+++/G9WrVzcmTZpkX2b16tVGixYt7F+npKQYDRo0MJ5++mnj33//NS5dumR88803RtWqVQ1vb+8b5ps5c6bxyiuvGIZhGJ06dTIWLlxoGIZh7NixwwgICDCmTZtmXLhwwYiKijJ69epllCtXzujUqZM9Q5EiRYyWLVsax44dM06dOmXUrl3b6N69u9GyZUvj+PHjxpkzZ4xHH33UmDVr1l3lbNSokfH999/bv/7nn3+M2rVrG1OnTjVeeuklh2Xnz59vhIeHG/379zemTZtmH582bZpRt25dY8eOHUZSUpKxa9cuo2nTpsYbb7xhXyYyMtKoUKGCw+t16NDBeOyxx4xdu3YZV65cMZYvX25UrlzZKFSokBEZGXnDn2mxYsWMs2fP3nT8888/N0qUKGH88ssvRlxcnLFz506jUaNGRtmyZY2ZM2cahmEYQ4cONYoVK2YMGjTIuHz5srFt2zYjICDA6NGjh/HWW28Zly9fNnbu3GkUKlTIOHTokGEYhnHs2DEjMDDQGDVqlHHmzBnj9OnTxogRI4wKFSoYDRo0uGHmq5YsWWJIMmw2m7Fjx46bLrtx40bDzc3NkGRIMtq0aWMkJycbhvF/22dycrKxa9cuo379+sYnn3xy09dr0KCBsXXrVvt/V61a1Rg/frz95xMcHGwsW7bMMAzDGDBggPHuu+8aly5dMiZMmGD8+++/9te5djuaOXOmYbPZjDlz5hiJiYnpfg/XLnf134FhGMa6deuMQoUKGbNmzTLOnz9vXL582fjqq6+MwMBA4+DBg4Zh/Pf7ef/999Otx7vvvmv07dvXYWz+/PlGsWLFjCVLlhiXLl0yzp8/b0yaNMkICgoyzp8/bwwdOtSoVKmS0b59e+PMmTPGqVOnjP/9739G//797a9xO+8LZ86cMYKDg43BgwcbUVFRRlJSkrFu3TqjcuXKxty5cx3eN0aNGmVUrlzZOHnypGEY//0byJ8/v1G1alXjp59+Mq5cuWIcOHDACA0NNVq2bGn/Hnv27DEKFChgfPrpp8bFixeNI0eOGF26dDEeeeQR+8+4RYsWxurVq2/rd3mzn2VGbrXsjf79XRUWFmbMnj37tr6XYWT83tC1a1ejQYMGxs6dO43Lly8bP/74o1GkSBFj8eLFhmFkvN2lpaUZLVq0MFq3bm3s3r3bSEpKMg4cOGA89dRTxosvvmjPXqNGDWPWrFlGQkKCsX79eiN//vzG7t27M8zWqVMnIyQkxOjdu7dx9OhRIzY21vjqq6+M/PnzG+vXr7cvd+2/LcNw/DcyYsQIo3LlysbmzZuNuLg4Y+3atUZISIjx4Ycf2pe5nferq3mu/j/kWtf//+qqP/74w3BxcTGCgoKMfPnyGePGjbvRryHdel/9Pjd6bQD3N4o3AKeTZPz888/2r0+cOGFIMpYvX24fu/rHsmEYxvHjx40SJUrY/1i7dplChQoZKSkphmGk/2NjwYIFRp06dYy0tDSH533//ffGzT5XvFHxbt68uTF16tR0y4eFhTkUb09PT+PChQv2+Xnz5hk2m804f/68Q7YuXbrccc4zZ84YefLkMRISEuxjK1asMNq3b2/ExcUZQUFBxpkzZ+xzNWvWNDZu3GhMmTLFGDhwoGEYhpGQkGAUKVIk3R/iiYmJRpEiRezPv/6P6z/++MMIDg424uLiHJ63bds2w9XV9Z6Kd0JCgpE/f35j165dDvOXLl0ygoKCHIp3zZo1HZZ56aWXjFq1ajmM9ezZ014kevbsaV/3a/Xt2/e2irdhGMapU6eMcePGGYGBgca5c+cyXObIkSNG0aJFjTlz5hiXL182tmzZYvTq1cv+e1+9erXh6upq5MiRw5Bk5MuXz9i8efNNv+/1xbtHjx4O85MnTzZ69uxpGIZhvPXWW8YHH3yQ4etcX7zLly/vMH87xbtq1arGihUr0r321ZJqGDcugJUqVTI2bdpk/zopKckIDAxM9/u+9vWGDh1qlC9f3uHfxf79++3Zb/d9oU+fPsagQYPSfZ8LFy4Y8fHx9veNAQMGGLVq1XL4dxoZGWm4uLg4FDTDMIzk5GSjWrVq9vexVq1aOZT9q5588kn7B17XF++b/S6vrn9mFO9du3YZpUqVsv+8bsf17w1//fWXUbx4cePy5csOy23evNkICgoyUlNTM9zulixZYtSrV89ITU11GE9NTTVOnz5tzz527FiH+YEDB96wkHbq1MkICwtLN75w4UKH944bFe+TJ08aAQEBxvHjxx2eHxERYeTLl8+4cOHCbb9fXc1zJ8W7SZMmRvfu3Y0LFy4Y27dvN0qVKmX88MMPGa7r9etN8QYebBxqDsAU1x7iGxAQIEmqX7++fczf31/R0dGSpE2bNunIkSPy8fGRp6en/REUFKSzZ8+mO4T6qrVr1+rZZ59Nd85iy5Yt5e3tfceZ161bp2effTbd+PXnbVapUsXh8NCAgABVrFhRefLkyXD97iTnt99+q+bNm8vDw8M+FhkZaT+ksnPnzvbzAjdu3ChJqlOnjooVK6aIiAhJ0q5du3T8+HEVKVLE4efp4+Oj06dP2w8dvt7atWsVHh4um83mMF6tWjWVKVMmw+fcrl27dqlo0aLprpScK1cutWjRwmHs+sPDAwICHLYdKf3Pt0OHDum+552cb1ugQAG9+eabat68uebOnZvhMh988IG6deumDh06yNvbW4888og6duyobt262Zd58sknlZKSokuXLmn69OkKDw+/4UXxMhIeHu7wdalSpXTq1ClJUp8+fTRv3jx1795d58+fv+nr3M5hr2lpafb/Pn/+vI4fP+5wXYGrChYseNPXOXDggC5cuOBwkaddu3apcOHCGV4Z+9rXa926tcO/i+DgYPv63u77wsqVKzP8/fv5+cnT01OS9Ouvv2rdunX69ddfHf6dSv/9jKtXr+4w5ubmpnbt2tkP412zZo06duyY7nt07Njxhr/fm/0uM9OoUaM0cODAOzrt4XqrV69WeHh4uverWrVqyWaz6d9//5WUfrtbuXKl2rdvL1dXxz83XV1dHS5Ed/3P6trtICPXL391bPfu3elOVbjexo0bVb9+fRUuXNhhvESJEnrooYf0xx9/3NH71Z04f/689u7dq4kTJ8rPz09VqlTRhx9+qE8//fSuXxPAg4PiDcDprv6BfJWbm5s8PDzk5eVlH3N1dXU4x++pp55SQkJCukdycrJKlSqV4fdxcXGxn0d4PeOac5mvvZ3OsmXLbpj7di86dP0f7m5ubsqbN6/D2LXrdzs5r8roAlVXi7ckvfLKK5oxY4YSEhL0wQcf6PXXX5f03y15rv2A4pFHHsnw55mUlKTGjRtnmOVmOa+6el7h1ceUKVNuuvydvPZVzvz5XvX000875L5y5Yq2bNmSbrkqVaro5MmTGW43Bw4cSPcBQPXq1fXbb7+le51cuXIpLCxM7777rqZMmWI/B/vq40YfClx/oSR3d3f7ucYBAQHavHmzypcvr9q1a+vkyZM3XF8fHx+Hrz08PJScnOwwFhsba//v1NRUh2sS3ImrVzO/9t9PamrqbV1l//r1zZkzp8O51bfzvnA73yswMFBHjx7Vnj170s3d7naZUXHNkSOHwwcY17rZ7/J6V8+nvvoYMGDAbWW6lYMHD2rLli16/vnn7+l10tLS5ObmluHctT+D67c7Z20H17uXOzjczrrcyfvVnTh06JDKlCmjnDlz2scqV67MhTGBbILiDcDpMvoD9UZ/6EhS7dq1tWHDhnT3Mz1+/Lj69+9/w+c1bNhQ8+bNS/eH79KlSxUXFydJ6tmzp8MtdZo3b37D12vQoEGGF/X55ptvHL6+0/W7nZySdPbsWW3bti3dBb4iIyPttwvKnz+/mjZtqqFDh2rHjh32PT/FihWzF++KFSvqyJEjOnr0qMPrXL58WS+//PINi0LDhg313XffOWSSpL///lv//POPpP9ul3Xtz7Nnz543XO9rVapUSceOHdPu3bvTZbr+w5C7+flmtJf62t/bN99845Db29tbHTp00MGDBx2es3XrVpUvXz7D7SY4OFj79+93WH7Hjh32Izoy4uPjI1dXV3l7ezu83vXb1FXX7xm8npubm1577TWFhYXp66+/vuFy1/8MCxYsaD8i4qqrF82S/iv1+fPn1/fff5/utW61lzajD4sqVaqkqKgo+0UQr3XtBwY3W9/bfV949NFHNXPmzHTPv3jxon3vZ/ny5bVgwQK1bdtWGzZscFju0KFD6e6lfvV31KBBA0lSvXr1HH5eV82fP9++zPVu9bu8VoUKFRy2j/fee++2n3szo0eP1htvvOFQ9O5GgwYN9MMPPygpKclh/O+//9alS5fsR8Rcv909+uijmjNnTroPddLS0hwurnknPytJGW77ixYtUqVKlRw+9M1InTp1tH79+nRHjRw/flx//vmnHnnkkTt6v7oTRYoU0YEDBxw+BNu1a5dKlChx168J4MFB8QZgucDAQD333HMKCwvT3r17lZSUpI0bN6pp06YOhzi7uro6/MESFhYmm82mZ599VhEREbp8+bIWLFigkSNH3tWh5mPGjNHQoUM1ffp0xcTE6NixY+rdu7cOHTp0T+t3uzm/++47NWvWLN0fjtfu8Zakfv366f3331fv3r3tf+hefZ1Lly7J09NTQ4YMUevWrbV161YlJSVpx44dat68ufLly2f/I/f6n+fDDz+s+vXrq1WrVtq9e7fi4+O1YsUKvfjii7c83PhW3N3dNXbsWP3vf//Tr7/+qvj4eO3atUuhoaHKnTv3Pb32W2+9pa+++kqjR4/WuXPndPbsWY0cOVKrV6++6fP69u2rrl27KiIiQleuXNHUqVO1ZcuWG+6N7tWrl0aOHKkVK1YoISFB27dvV6dOndJdGVyS/b7Jb775ptq3b39P63fVsGHD9Ndff+n8+fPauHGjw72bDcO44Qcq0n9XcH/77bd1/PhxxcbGqnfv3rp48aLDMh9++KG6du2qmTNn6vz587py5Ypmz56tGjVq2P8NXL/NHDx4UNHR0apdu7bDa3l6emrMmDEKDQ3Vd999p0uXLunChQv6+OOPVadOnXTfOyO3+77w9ttv65tvvtHAgQMVFRWl5ORkrVmzRvXq1XP4IKFOnTr69ttv9eyzzzpsG/nz59fLL7+sZcuWKS4uTv/884/atGmjwoULq1mzZpL+e28YOHCg5syZo0uXLunYsWPq1auXIiMj1blz51uuS0au/1k62+HDh7Vq1Sp17dr1jp97fbZHHnlEDz/8sNq2basDBw4oLi5Oy5cvV3h4uN5///0bFue2bdvK29tboaGh2r17t1JSUrR//361adNGQ4cOva0s58+fV7169Rw+JDt79qxefPFFHT16VJcuXdKcOXPUq1evG95y8VqBgYHq0qWLWrZsqb///lsJCQnatGmTnnzySb3++uvKmzfvHb1f3cnvsVChQnrkkUfs//527typfv366bXXXrut5wN4sFG8AdwXxo4dq2bNmqlly5by8fFRjx499NZbb+nFF1+0L1O2bFnt2bPHfh6hq6urfvzxRxUoUEC1a9dWwYIF9c0332jJkiW33OuRkYoVK2rFihVasGCBChUqpFq1aqlIkSIaMWLEPa3b7eZctGhRhrf7OXz4sEPJKleunNq3b5/uD+prz/N++eWX9dprr6lTp07KnTu32rRpozZt2jisS6FCheTm5uZwvvoXX3yhRx99VE8++aT8/f01fvx4zZ07V4UKFbrlehYsWNB+qGxGRf2FF17Qe++9p379+ilPnjx67rnn1KdPH3u5uVuFChXSunXrtHXrVpUoUULly5dXbGysPv/885s+7+WXX1aLFi3UqFEjBQQE6IcfftCyZcsczq+/Vrly5TR9+nT1799ffn5+euaZZ/Tiiy/q1VdftS9z9VB8Ly8vde/eXSNHjlRoaOg9rd9V9erV09NPP60SJUqoatWqDue51qlTR76+vjp27FiGz+3Xr58qVKig8uXLq1y5cipatKj69evnsEyzZs20aNEizZw5U4GBgQoKCtKSJUu0YsUK+22PateurdGjR9uLwsKFC9WmTZsMT9N48cUX9fHHH2vkyJEKCAhQSEiItm3bpvXr19/2LbRu530hMDBQmzZtUmRkpCpVqqQ8efLo7bff1pgxY9J9iFKjRg398MMPeuGFF+z3WM+XL5++/vprTZkyxX49gVKlSjncjqxKlSr68ccf9eWXX6pAgQKqUqWK4uPjtXLlyrt6r5HS/yydbceOHRo0aNANt+ebyei9YdasWXr44YfVuHFj5cmTRwMHDtSHH36oZ5555oavkyNHDi1btkxly5ZV06ZNlStXLoWHh6t+/fqaNGnSbWVJSEjQ/v37HW7dNmjQIJUvX17169dXQECApk2bpiVLlqhOnTq39ZojR47Us88+q3bt2snHx0edO3dWr169HA7xv933q/r166tr164aP378bX3vWbNm6cqVKwoODla7du00dOhQNWnS5LaeC+DB5mKYcRILAOCOREdHq1SpUjp58uRd/yEPZLZq1app4sSJqlevntVR7srhw4fVsmXLdIcUAwDgbOzxBoD7wLlz5/Txxx9TuvHASExMVJs2bVS3bl2ro+AOXXsht2sf+fLlszpatjV8+PAb/l4++eQTq+MBcAL2eAMAgGyJPd4AgMxC8QYAAAAAwEQcag4AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmOj/AcmRbmoOPyqgAAAAAElFTkSuQmCC","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["for col in df.columns[5:]:\n"," print(\"*\" * 10, col, \"*\" * 10)\n"," print(df[col].value_counts())\n"," plot_value_counts(df, col)"]},{"cell_type":"code","execution_count":9,"metadata":{},"outputs":[],"source":["import pandas as pd\n","import numpy as np\n","from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score\n","\n","\n","def calc_metrics_for_col(df, col):\n"," y_true = df[\"label\"]\n"," y_pred = df[col]\n"," try:\n"," accuracy = accuracy_score(y_true, y_pred)\n"," precision = precision_score(y_true, y_pred, average=\"weighted\", labels=np.unique(y_pred))\n"," recall = recall_score(y_true, y_pred, average=\"weighted\", labels=np.unique(y_pred))\n"," f1 = f1_score(y_true, y_pred, average=\"weighted\", labels=np.unique(y_pred))\n"," except Exception as e:\n"," print(e)\n"," accuracy = precision = recall = f1 = np.nan\n","\n"," return accuracy, float(precision), float(recall), float(f1)"]},{"cell_type":"code","execution_count":10,"metadata":{},"outputs":[{"name":"stderr","output_type":"stream","text":["/var/folders/7x/56svhln929zdh2xhr3mwqg4r0000gn/T/ipykernel_84362/3667033001.py:18: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n"," perf_df = pd.concat([perf_df, pd.DataFrame([new_model_metrics])], ignore_index=True)\n"]},{"data":{"text/html":["
\n","\n","
\n"," \n","
\n","
\n","
epoch
\n","
model
\n","
accuracy
\n","
precision
\n","
recall
\n","
f1
\n","
\n"," \n"," \n","
\n","
0
\n","
0.333333
\n","
meta-llama/Meta-Llama-3-8B-Instruct/checkpoint...
\n","
0.648667
\n","
0.652593
\n","
0.648667
\n","
0.631272
\n","
\n","
\n","
1
\n","
0.666667
\n","
meta-llama/Meta-Llama-3-8B-Instruct/checkpoint...
\n","
0.561000
\n","
0.689710
\n","
0.561000
\n","
0.608339
\n","
\n","
\n","
2
\n","
1.000000
\n","
meta-llama/Meta-Llama-3-8B-Instruct/checkpoint...
\n","
0.621000
\n","
0.686843
\n","
0.621000
\n","
0.641744
\n","
\n"," \n","
\n","
"],"text/plain":[" epoch model accuracy \\\n","0 0.333333 meta-llama/Meta-Llama-3-8B-Instruct/checkpoint... 0.648667 \n","1 0.666667 meta-llama/Meta-Llama-3-8B-Instruct/checkpoint... 0.561000 \n","2 1.000000 meta-llama/Meta-Llama-3-8B-Instruct/checkpoint... 0.621000 \n","\n"," precision recall f1 \n","0 0.652593 0.648667 0.631272 \n","1 0.689710 0.561000 0.608339 \n","2 0.686843 0.621000 0.641744 "]},"execution_count":10,"metadata":{},"output_type":"execute_result"}],"source":["import pandas as pd\n","\n","perf_df = pd.DataFrame(\n"," columns=[\"epoch\", \"model\", \"accuracy\", \"precision\", \"recall\", \"f1\"]\n",")\n","for i, col in enumerate(df.columns[5:]):\n"," accuracy, precision, recall, f1 = calc_metrics_for_col(df, col)\n"," new_model_metrics = {\n"," \"epoch\": (i + 1) / 3,\n"," \"model\": col,\n"," \"accuracy\": accuracy,\n"," \"precision\": precision,\n"," \"recall\": recall,\n"," \"f1\": f1,\n"," }\n","\n"," # Convert the dictionary to a DataFrame and concatenate it with the existing DataFrame\n"," perf_df = pd.concat([perf_df, pd.DataFrame([new_model_metrics])], ignore_index=True)\n","\n","perf_df"]},{"cell_type":"code","execution_count":13,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABE0AAAHACAYAAABXiZaAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYrUlEQVR4nO3dfVgVdf7/8dcB4SAoqCE3EkqKN5gKCklopRVF2c/S2o1cN9FSu5HU6EbN27LE8iYr/Uq6ku6WaVmpra5mlO2mmLeUJuJNKqYCmqsoFhhnfn90eeosg3oQOCLPx3Wd6/LMvGfmPVOO8vIzn7EYhmEIAAAAAAAADtxc3QAAAAAAAMCViNAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMFHH1Q1cCpvNpiNHjqh+/fqyWCyubgcAAAAAcJUzDEOnT59WkyZN5ObGeIPaqkaEJkeOHFFoaKir2wAAAAAA1DKHDh3Stdde6+o24CI1IjSpX7++pN/+Z/X19XVxNwAAAACAq11hYaFCQ0PtP4+idqoRocn5R3J8fX0JTQAAAAAA1YYpImo3HswCAAAAAAAwQWgCAAAAAABggtAEAIBKNGvWLIWFhcnLy0uxsbHauHHjBetPnjypIUOGKDg4WFarVa1atdLKlSvt60+fPq3hw4erWbNmqlu3rrp06aJNmzY57MMwDI0bN07BwcGqW7eu4uPjtWfPnio5PwAAgNqE0AQAgEqyePFipaSkaPz48dq6dasiIyOVkJCggoIC0/qSkhLdcccdOnDggJYsWaKcnBzNnTtXISEh9pqBAwdqzZo1+sc//qHt27frzjvvVHx8vA4fPmyvee211/Tmm28qLS1N33zzjXx8fJSQkKBffvmlys8ZAADgakZoAgBAJZk+fboGDRqkAQMGqG3btkpLS5O3t7fS09NN69PT03XixAktXbpUXbt2VVhYmLp166bIyEhJ0s8//6yPPvpIr732mm655RaFh4drwoQJCg8P1+zZsyX9NspkxowZGjNmjO677z516NBBf//733XkyBEtXbq0uk4dwFWsskfQlZaWauzYsbruuutUt25dtWjRQhMnTpRhGPYai8Vi+pkyZUqVnScAmKlQaOLMjbN79+6mN7x77rmnwk0DAHClKSkp0ZYtWxQfH29f5ubmpvj4eGVmZppus3z5csXFxWnIkCEKDAxUu3btNGnSJJWWlkqSfv31V5WWlsrLy8thu7p16+rrr7+WJO3fv195eXkOx/Xz81NsbGy5xwWAS1UVI+heffVVzZ49WzNnzlR2drZeffVVvfbaa3rrrbfsNUePHnX4pKeny2Kx6IEHHqjycwaAP3L6lcPnb5xpaWmKjY3VjBkzlJCQoJycHAUEBJSp//jjj1VSUmL//tNPPykyMlJ//vOfL69zAACuIMePH1dpaakCAwMdlgcGBmrXrl2m2/zwww/64osv1LdvX61cuVJ79+7Vk08+qXPnzmn8+PGqX7++4uLiNHHiREVERCgwMFDvv/++MjMzFR4eLknKy8uzH+d/j3t+HQBU1B9H0ElSWlqaVqxYofT0dI0cObJM/fkRdOvXr5eHh4ckKSwszKFm/fr1uu++++z/iBoWFqb333/f4R9ig4KCHLZZtmyZbr31VjVv3rwyTw8ALsrpkSbODj1u1KiRgoKC7J81a9bI29ub0AQAUOvZbDYFBARozpw5io6OVmJiokaPHq20tDR7zT/+8Q8ZhqGQkBBZrVa9+eab6tOnj9zceMIWQNWqihF0ktSlSxdlZGRo9+7dkqRvv/1WX3/9te6++27Tfebn52vFihV69NFHK/HsAODSODXS5PyNc9SoUfZlF7tx/q958+bpoYceko+Pj3OdAgBwBfP395e7u7vy8/Mdlufn55f5F9PzgoOD5eHhIXd3d/uyiIgI5eXlqaSkRJ6enmrRooW++uorFRUVqbCwUMHBwUpMTLT/a+v5fefn5ys4ONjhuFFRUZV8lgBqk6oYQSdJI0eOVGFhodq0aSN3d3eVlpbqlVdeUd++fU33uWDBAtWvX1/3339/5Z4gAFwCp/6Z6kI3zksZArxx40bt2LFDAwcOvGBdcXGxCgsLHT4AAFzJPD09FR0drYyMDPsym82mjIwMxcXFmW7TtWtX7d27Vzabzb5s9+7dCg4Olqenp0Otj4+PgoOD9d///lerV6/WfffdJ0m67rrrFBQU5HDcwsJCffPNN+UeFwCqyqWMoPvggw/03nvvaeHChdq6dasWLFigqVOnasGCBab7TE9PV9++fcvM7wQA1cHpOU0ux7x589S+fXt17tz5gnWpqal68cUXq6krAAAqR0pKipKSkhQTE6POnTtrxowZKioqss8F0K9fP4WEhCg1NVWS9MQTT2jmzJkaNmyYnnrqKe3Zs0eTJk3S0KFD7ftcvXq1DMNQ69attXfvXj333HNq06aNfZ8Wi0XDhw/Xyy+/rJYtW+q6667T2LFj1aRJE/Xq1avarwGAq0dVjaB77rnnNHLkSD300EOSpPbt2+vgwYNKTU1VUlKSw/7+85//KCcnR4sXL67kswOAS+PUSJOK3DjPKyoq0qJFiy7pWcRRo0bp1KlT9s+hQ4ecaRMAAJdITEzU1KlTNW7cOEVFRSkrK0urVq2yj9DMzc3V0aNH7fWhoaFavXq1Nm3apA4dOmjo0KEaNmyYw+SKp06d0pAhQ9SmTRv169dPN910k1avXm2fYFGSnn/+eT311FMaPHiwbrjhBp05c0arVq3iX2UBXJaqGkF39uzZMvMyubu7O2xz3rx58xQdHW1/FTsAVDeL8ccXol+C2NhYde7c2f5KMJvNpqZNmyo5Odl0Bu3z5s+fr8cff1yHDx/WNddc41SThYWF8vPz06lTp+Tr6+vUtgAAAAAqZvHixUpKStLbb79tH0H3wQcfaNeuXQoMDCwzgu7QoUO6/vrrlZSUZB9B98gjj2jo0KEaPXq0JKl///76/PPP9fbbb+v666/Xtm3bNHjwYD3yyCN69dVX7cc+P4/TtGnT9Pjjj7vk/FG78XMopAo8nuPs0OPz5s2bp169ejkdmAAAAABwjcTERB07dkzjxo1TXl6eoqKiyoyg++OokfMj6J5++ml16NBBISEhGjZsmEaMGGGveeuttzR27Fg9+eSTKigoUJMmTfTYY49p3LhxDsdetGiRDMNQnz59qudkAcCE0yNNJGnmzJmaMmWK/cb55ptvKjY2VpLUvXt3hYWFaf78+fb6nJwctWnTRp999pnuuOMOp5sk4QMAAAAAVCd+DoVUwdCkuvE/KwDgijfBz9UdlG/CKVd3AABAjcPPoZCcnAgWAAAAAACgtqjWVw4DAAAAqCEYQQcAjDQBAAAAAAAwQ2gCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITuNSsWbMUFhYmLy8vxcbGauPGjResP3nypIYMGaLg4GBZrVa1atVKK1eutK+fMGGCLBaLw6dNmzYO+3jsscfUokUL1a1bV40bN9Z9992nXbt2Vcn5AQAAAABqLkITuMzixYuVkpKi8ePHa+vWrYqMjFRCQoIKCgpM60tKSnTHHXfowIEDWrJkiXJycjR37lyFhIQ41F1//fU6evSo/fP11187rI+OjtY777yj7OxsrV69WoZh6M4771RpaWmVnSsAAAAAoOYhNKklKntExx9NnjxZFotFw4cPd1i+b98+9e7dW40bN5avr68efPBB5efn29dPnz5dgwYN0oABA9S2bVulpaXJ29tb6enppsdJT0/XiRMntHTpUnXt2lVhYWHq1q2bIiMjHerq1KmjoKAg+8ff399h/eDBg3XLLbcoLCxMnTp10ssvv6xDhw7pwIEDV/w1AwAAAABUH0KTWqCqRnRI0qZNm/T222+rQ4cODsuLiop05513ymKx6IsvvtC6detUUlKinj17ymazqaSkRFu2bFF8fLx9Gzc3N8XHxyszM9O0r+XLlysuLk5DhgxRYGCg2rVrp0mTJpUZIbJnzx41adJEzZs3V9++fZWbm1vutSkqKtI777yj6667TqGhoVf0NQMAAAAAVK86rm4AVe+PIzokKS0tTStWrFB6erpGjhxZpv78iI7169fLw8NDkhQWFlam7syZM+rbt6/mzp2rl19+2WHdunXrdODAAW3btk2+vr6SpAULFqhhw4b64osv1LZtW5WWliowMNBhu8DAwHLnF/nhhx/0xRdfqG/fvlq5cqX27t2rJ598UufOndP48eMlSbGxsZo/f75at26to0eP6sUXX9TNN9+sHTt2qH79+vZ9/d///Z+ef/55FRUVqXXr1lqzZo08PT2v6Gv2x4AJAAAAAFD1GGlylavKER1DhgzRPffcY/rDfHFxsSwWi6xWq32Zl5eX3NzcyswxcqlsNpsCAgI0Z84cRUdHKzExUaNHj1ZaWpq95u6779af//xndejQQQkJCVq5cqVOnjypDz74wGFfffv21bZt2/TVV1+pVatWevDBB/XLL79IurquGQAAAACg4ghNrnLHjx8vd0RHXl6e6TY//PCDlixZotLSUq1cuVJjx47VtGnTHEZGLFq0SFu3blVqaqrpPm688Ub5+PhoxIgROnv2rIqKivTss8+qtLRUR48elb+/v9zd3cvM15Gfn6+goCDTfQYHB6tVq1Zyd3e3L4uIiFBeXp5KSkpMt2nQoIFatWqlvXv3Oiz38/NTy5Ytdcstt2jJkiXatWuXPvnkkyv6mgEAAKDmqO758U6cOKGnnnpKrVu3Vt26ddW0aVMNHTpUp06dqszTAmodQhOUcbERHYcOHdKwYcP03nvvycvLy3QfjRs31ocffqhPP/1U9erVk5+fn06ePKlOnTrJzc1Nnp6eio6OVkZGhsNxMzIyFBcXZ7rPrl27au/evQ7ze+zevVvBwcEOj9b80ZkzZ7Rv3z4FBweXe76GYcgwDBUXF1/02pSnOq4ZAAAAagZXzI935MgRHTlyRFOnTtWOHTs0f/58rVq1So8++miVnCNQWzCnyVWuoiM6PDw8yh3RsWXLFhUUFKhTp0729aWlpfr3v/+tmTNnqri4WO7u7rrzzju1b98+HT9+XHXq1FGDBg0UFBSk5s2bS5JSUlKUlJSkmJgYde7cWTNmzFBRUZF9HpF+/fopJCTEPjLjiSee0MyZMzVs2DA99dRT2rNnjyZNmqShQ4fa+3j22WfVs2dPNWvWTEeOHNH48ePl7u6uPn36SPptRMjixYt15513qnHjxvrxxx81efJk1a1bVz169LjirxkAAACufK6YH69du3b66KOP7N9btGihV155RX/961/166+/qk4dfvQDKoJ/vr7KVcWIjttvv13bt29XVlaW/RMTE6O+ffsqKyvLITiQfgshGjRooC+++EIFBQW69957JUmJiYmaOnWqxo0bp6ioKGVlZWnVqlX2x2Jyc3MdHksJDQ3V6tWrtWnTJnXo0EFDhw7VsGHDHP7g+fHHH9WnTx+1bt1aDz74oK655hpt2LBBjRs3lvTbHCH/+c9/1KNHD4WHhysxMVH169fX+vXrFRAQcMVfMwAAAFzZXDU/nplTp07J19eXwAS4DPzuqQUqe0RH/fr11a5dO4dj+Pj46JprrnFY/s477ygiIkKNGzdWZmamhg0bpqefflqtW7e21yQnJys5Odm077Vr15ZZFhcXpw0bNpR7rosWLbrgtWjSpEm5z4b+0ZV8zQAAAHDlutD8eJfzlsjz8+Nt2rTpkvuYOHGiBg8efHknBNRyjDSpBapiRMelyMnJUa9evRQREaGXXnpJo0eP1tSpUyv13KrKlX7NKntisdmzZ6tDhw7y9fWVr6+v4uLi9K9//cthH3PmzFH37t3l6+sri8WikydPOnVuAAAAMFcZ8+P9UWFhoe655x61bdtWEyZMqOLugaubxTAMw9VNXExhYaH8/Pzsw8uA2mzx4sXq16+f0tLSFBsbqxkzZujDDz9UTk6O/RGjPyopKVHXrl0VEBCgF154QSEhITp48KAaNGigyMhISdKnn34qd3d3tWzZUoZhaMGCBZoyZYq2bdum66+/XpI0Y8YM+2uZR40apf/+979q0KBBtZ03cMWb4OfqDso3gTcnAKgA7msVUlJSIm9vby1ZskS9evWyL09KStLJkye1bNmyMtt069ZNHh4e+vzzz+3L/vWvf6lHjx4qLi7WypUr1bt3b4dHuktLS2WxWOTm5mafH0+STp8+rYSEBHl7e+uf//znJYUsMMfPoZB4PAeuwh/CFVYVE4v17NnT4fsrr7yi2bNna8OGDfbQ5Pwr7cwemwIAAMBv/jg/3vnQ5Pz8eOU9lt61a1ctXLhQNpvN/tZEs/nx/mjAgAFq06aNRowYYQ9MCgsLlZCQIKvVquXLlxOYAJWAx3OAGqQqJxY7r7S0VIsWLVJRUVG5E98CAACgfCkpKZo7d64WLFig7OxsPfHEE2Xmxxs1apS9/oknntCJEyc0bNgw7d69WytWrNCkSZM0ZMgQSb/Pj/fHz//Oj1dYWKg777xTRUVFmjdvngoLC5WXl6e8vLxy/94H4OIYaXIVCxu5wtUtlOvAFRx6t1/Q3tUtmNqetL3KJhaTpO3btysuLk6//PKL6tWrp08++URt27at0nMCAAC4GiUmJurYsWMaN26c8vLyFBUVVWZ+vPMjSqTf58d7+umn1aFDB4WEhGjYsGEaMWLEJR9z69at+uabbyRJ4eHhDuv2799v+gpjABdHaAJc5f44sZi7u7uio6N1+PBhTZkyxSE0ad26tbKysnTq1CktWbJESUlJ+uqrrwhOAAAAKqCy3xJ5sX10795dNWC6SqDG4fEcoAbx9/eXu7u78vPzHZbn5+crKCjIdJvg4GC1atXKYeKwiIgI5eXlqaSkxL7M09NT4eHhio6OVmpqqiIjI/XGG29UzYkAAIAyKvvteKmpqbrhhhtUv359BQQEqFevXsrJyXHYR01/Ox7XDEBVIzQBapA/Tix23vmJxcqbf6Rr167au3evbDabfdkfJxYrj81mU3FxceU1DwAAyrV48WKlpKRo/Pjx2rp1qyIjI5WQkKCCggLT+pKSEt1xxx06cOCAlixZopycHM2dO1chISH2mq+++kpDhgzRhg0btGbNGp07d84+58V5Z8+e1V133aUXXnihys+xsnHNAFQHHs8BapiUlBQlJSUpJiZGnTt31owZM8pMLBYSEqLU1FRJv00sNnPmTA0bNkxPPfWU9uzZo0mTJmno0KH2fY4aNUp33323mjZtqtOnT2vhwoVau3atVq9eba85P5HY3r17Jf02B0r9+vXVtGlTNWrUqBqvAAAAV5+qeDveqlWrHL7Pnz9fAQEB2rJli2655RZJNfvteFfiNctuE3GZZ1V1InZlu7oFoEZipAlQwyQmJmrq1KkaN26coqKilJWVVWZisaNHj9rrz08stmnTJnXo0EFDhw7VsGHDHP4yUVBQoH79+ql169a6/fbbtWnTJq1evVp33HGHvSYtLU0dO3bUoEGDJEm33HKLOnbsqOXLl1fTmQMAcHWqjrfjSdKpU6ck6ar4xw6uGYDqwkgToAaq7InF5s2bd9FjTpgwQRMmTLjUFgEAwCWqyrfjnWez2TR8+HB17drV/oramoxrBqC6EJoAAAAANcylvh3vvCFDhmjHjh36+uuvXdDtlYFrBqAiCE0AAAAAF6ro2/E8PDzKfTveHyd7T05O1j//+U/9+9//1rXXXls1J1HNuGYAqguhCVBDMLEYgKvZrFmzNGXKFOXl5SkyMlJvvfWWOnfuXG79yZMnNXr0aH388cc6ceKEmjVrphkzZqhHjx6XvM+8vDw999xzWrNmjU6fPq3WrVtr9OjReuCBB6r0XIH/9ce34/Xq1UvS72/HK+9x3K5du2rhwoWy2Wxyc/ttmsL/fTueYRh66qmn9Mknn2jt2rW67rrrquV8qgPXDEB1YSJYAADgUlXx2tBL2We/fv2Uk5Oj5cuXa/v27br//vv14IMPatu2bVV+zsD/SklJ0dy5c7VgwQJlZ2friSeeKPN2vFGjRtnrn3jiCZ04cULDhg3T7t27tWLFCk2aNElDhgyx1wwZMkTvvvuuFi5cqPr169vfhPfzzz/ba/Ly8pSVleXwdrysrCydOHGims684rhmAKoDI00AAIBLVcVrQy9ln+vXr9fs2bPto0/GjBmj119/XVu2bFHHjh2r6nQBU4mJiTp27JjGjRunvLw8RUVFlXk73vnREdLvb8d7+umn1aFDB4WEhGjYsGEaMWKEvWb27NmSpO7duzsc65133lH//v0l/fZ748UXX7SvO/9a3XfeeUf9q+A8K9OVeM1iq+JEAbiUxTAMw9VNXExhYaH8/Px06tQp+fr6urqdGiNs5ApXt1CuA15/cXUL5Wp/XVNXt2Dqg9RfXd1CuXg8B5A0wc/VHZRvwilXd1CukpISeXt7a8mSJfYh9pKUlJSkkydPatmyZWW26dGjhxo1aiRvb28tW7ZMjRs31l/+8heNGDFC7u7ul7zPO++8U56envr73/+uBg0a6IMPPtCjjz6qb7/9VuHh4VV96sCVj/ua03ic+urCz6GQGGkCAABcqCpeG3qp+/zggw+UmJioa665RnXq1JG3t7c++eQTAhMAAGBHaAIAAGoUZ18bWp6xY8fq5MmT+vzzz+Xv76+lS5fqwQcf1H/+8x+1b9++Cs8AAADUFIQmAADAZaritaGXss99+/Zp5syZ2rFjh66//npJUmRkpP7zn/9o1qxZSktLq8zTBMp1ZT9O7eoOytd+wZUZbH7g6gYAVDrengMAAFzmj68NPe/8a0Pj4uJMt+natav27t0rm81mX/bH14Zeyj7Pnj0rSQ6TREqSu7u7w34BAEDtRmgCAABcqipeG3qxfbZp00bh4eF67LHHtHHjRu3bt0/Tpk3TmjVrHCaPBQAAtRuP5wAAAJeqiteGXmyfHh4eWrlypUaOHKmePXvqzJkzCg8P14IFC9SjR4/qvQAAAOCKRWgCAABcLjk5WcnJyabr1q5dW2ZZXFycNmzYUOF9SlLLli310UcfOdUnAACoXXg8BwAAAAAAwAQjTQAAgEtkt4lwdQvlitiV7eoWAADAFaBCI01mzZqlsLAweXl5KTY2Vhs3brxg/cmTJzVkyBAFBwfLarWqVatWWrlyZYUaBgAAAAAAqA5OjzRZvHixUlJSlJaWptjYWM2YMUMJCQnKyclRQEBAmfqSkhLdcccdCggI0JIlSxQSEqKDBw+qQYMGldE/AAAAAABAlXA6NJk+fboGDRpkf2VfWlqaVqxYofT0dI0cObJMfXp6uk6cOKH169fLw8NDkhQWFnZ5XQMAAAAAAFQxpx7PKSkp0ZYtWxQfH//7DtzcFB8fr8zMTNNtli9frri4OA0ZMkSBgYFq166dJk2apNLS0nKPU1xcrMLCQocPAAAAAABAdXIqNDl+/LhKS0sVGBjosDwwMFB5eXmm2/zwww9asmSJSktLtXLlSo0dO1bTpk3Tyy+/XO5xUlNT5efnZ/+EhoY60yYAAAAAAMBlq/JXDttsNgUEBGjOnDmKjo5WYmKiRo8erbS0tHK3GTVqlE6dOmX/HDp0qKrbBAAAAAAAcODUnCb+/v5yd3dXfn6+w/L8/HwFBQWZbhMcHCwPDw+5u7vbl0VERCgvL08lJSXy9PQss43VapXVanWmNQAAAAAAgErl1EgTT09PRUdHKyMjw77MZrMpIyNDcXFxptt07dpVe/fulc1msy/bvXu3goODTQMTAAAAAACAK4HTj+ekpKRo7ty5WrBggbKzs/XEE0+oqKjI/jadfv36adSoUfb6J554QidOnNCwYcO0e/durVixQpMmTdKQIUMq7ywAAAAAAAAqmdOvHE5MTNSxY8c0btw45eXlKSoqSqtWrbJPDpubmys3t9+zmNDQUK1evVpPP/20OnTooJCQEA0bNkwjRoyovLMAAAAAAACoZE6HJpKUnJys5ORk03Vr164tsywuLk4bNmyoyKEAAAAAAABcosrfngMAAAAAAFATEZoAAGqkWbNmKSwsTF5eXoqNjdXGjRvLrZ0/f74sFovDx8vLq0xddna27r33Xvn5+cnHx0c33HCDcnNz7evnzJmj7t27y9fXVxaLRSdPnqyKU6syXDMAAADnEJoAAGqcxYsXKyUlRePHj9fWrVsVGRmphIQEFRQUlLuNr6+vjh49av8cPHjQYf2+fft00003qU2bNlq7dq2+++47jR071iEoOHv2rO666y698MILVXZuVYVrBgAA4LwKzWkCAIArTZ8+XYMGDbK/uS0tLU0rVqxQenq6Ro4cabqNxWJRUFBQufscPXq0evTooddee82+rEWLFg41w4cPl2Q+f9eVjmsGAADgPEaaAABqlJKSEm3ZskXx8fH2ZW5uboqPj1dmZma52505c0bNmjVTaGio7rvvPn3//ff2dTabTStWrFCrVq2UkJCggIAAxcbGaunSpVV5KtWGawYAAFAxhCYAgBrl+PHjKi0ttb/q/rzAwEDl5eWZbtO6dWulp6dr2bJlevfdd2Wz2dSlSxf9+OOPkqSCggKdOXNGkydP1l133aXPPvtMvXv31v3336+vvvqqys+pqnHNAAAAKobHcwAAV724uDjFxcXZv3fp0kURERF6++23NXHiRNlsNknSfffdp6efflqSFBUVpfXr1ystLU3dunVzSd+uxDUDAABgpAkAoIbx9/eXu7u78vPzHZbn5+dfcP6NP/Lw8FDHjh21d+9e+z7r1Kmjtm3bOtRFREQ4vAmmpuKaAQAAVAyhCQCgRvH09FR0dLQyMjLsy2w2mzIyMhxGRlxIaWmptm/fruDgYPs+b7jhBuXk5DjU7d69W82aNau85l2EawYAAFAxPJ4DAKhxUlJSlJSUpJiYGHXu3FkzZsxQUVGR/c0w/fr1U0hIiFJTUyVJL730km688UaFh4fr5MmTmjJlig4ePKiBAwfa9/ncc88pMTFRt9xyi2699VatWrVKn376qcNbX/Ly8pSXl2cfbbF9+3bVr19fTZs2VaPqO/0KuRKvGQAAwJWO0AQAUOMkJibq2LFjGjdunPLy8hQVFaVVq1bZJzrNzc2Vm9vvgyn/+9//atCgQcrLy1PDhg0VHR2t9evXOzxa0rt3b6WlpSk1NVVDhw5V69at9dFHH+mmm26y16SlpenFF1+0f7/lllskSe+88476V/E5X64r8ZrFVvVJAwAAXCaLYRiGq5u4mMLCQvn5+enUqVPy9fV1dTs1RtjIFa5uoVwHvP7i6hbK1f66K/NfPz9I/dXVLZQrYle2q1sAXG+Cn6s7KN+EU67uwFR2mwhXt1Au7muoLvx9rWL4+5rzuK85j59DITGnCQAAAAAAgCkezwEA1BhX9r/IurqD8rVf0N7VLZj6wNUNAAAAXAQjTQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAAThCYAAAAAAAAmCE0AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwQWgCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYILQBAAAAAAAwAShCQAAAAAAgAlCEwAAAAAAABOEJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCiQqHJrFmzFBYWJi8vL8XGxmrjxo3l1s6fP18Wi8Xh4+XlVeGGAQAAAAAAqoPTocnixYuVkpKi8ePHa+vWrYqMjFRCQoIKCgrK3cbX11dHjx61fw4ePHhZTQMAAAAAAFQ1p0OT6dOna9CgQRowYIDatm2rtLQ0eXt7Kz09vdxtLBaLgoKC7J/AwMDLahoAAAAAAKCqORWalJSUaMuWLYqPj/99B25uio+PV2ZmZrnbnTlzRs2aNVNoaKjuu+8+ff/99xc8TnFxsQoLCx0+AAAAAAAA1cmp0OT48eMqLS0tM1IkMDBQeXl5ptu0bt1a6enpWrZsmd59913ZbDZ16dJFP/74Y7nHSU1NlZ+fn/0TGhrqTJsAAAAAAACXrcrfnhMXF6d+/fopKipK3bp108cff6zGjRvr7bffLnebUaNG6dSpU/bPoUOHqrpNAAAAAAAAB3WcKfb395e7u7vy8/Mdlufn5ysoKOiS9uHh4aGOHTtq79695dZYrVZZrVZnWgMAAAAAAKhUTo008fT0VHR0tDIyMuzLbDabMjIyFBcXd0n7KC0t1fbt2xUcHOxcpwAAAAAAANXIqZEmkpSSkqKkpCTFxMSoc+fOmjFjhoqKijRgwABJUr9+/RQSEqLU1FRJ0ksvvaQbb7xR4eHhOnnypKZMmaKDBw9q4MCBlXsmAAAAAAAAlcjp0CQxMVHHjh3TuHHjlJeXp6ioKK1atco+OWxubq7c3H4fwPLf//5XgwYNUl5enho2bKjo6GitX79ebdu2rbyzAAAAAAAAqGROhyaSlJycrOTkZNN1a9eudfj++uuv6/XXX6/IYQAAAAAAAFymyt+eAwAAAAAAUBMRmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAAThCYAAAAAAAAmCE0AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwQWgCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYILQBAAAAAAAwEQdVzcAAAAAAEBNZLPZVFJS4uo24CQPDw+5u7tfUi2hCQAAAAAATiopKdH+/ftls9lc3QoqoEGDBgoKCpLFYrlgHaEJAAAAAABOMAxDR48elbu7u0JDQ+XmxswXNYVhGDp79qwKCgokScHBwResJzQBAAAAAMAJv/76q86ePasmTZrI29vb1e3ASXXr1pUkFRQUKCAg4IKP6hCHAQAAAADghNLSUkmSp6eniztBRZ0Pu86dO3fBOkITAAAAAAAq4GLzYeDKdan/7QhNAAAAAAAATBCaAAAAAAAAmGAiWAAAAAAAKkHYyBXVerwDk++p1uPVRow0AQAAAAAALnGxiVhdjdAEAAAAAIBaYtWqVbrpppvUoEEDXXPNNfp//+//ad++ffb1P/74o/r06aNGjRrJx8dHMTEx+uabb+zrP/30U91www3y8vKSv7+/evfubV9nsVi0dOlSh+M1aNBA8+fPlyQdOHBAFotFixcvVrdu3eTl5aX33ntPP/30k/r06aOQkBB5e3urffv2ev/99x32Y7PZ9Nprryk8PFxWq1VNmzbVK6+8Ikm67bbblJyc7FB/7NgxeXp6KiMj47KuF6EJAAAAAAC1RFFRkVJSUrR582ZlZGTIzc1NvXv3ls1m05kzZ9StWzcdPnxYy5cv17fffqvnn39eNptNkrRixQr17t1bPXr00LZt25SRkaHOnTs73cPIkSM1bNgwZWdnKyEhQb/88ouio6O1YsUK7dixQ4MHD9bDDz+sjRs32rcZNWqUJk+erLFjx2rnzp1auHChAgMDJUkDBw7UwoULVVxcbK9/9913FRISottuu+2yrhdzmgAAAAAAUEs88MADDt/T09PVuHFj7dy5U+vXr9exY8e0adMmNWrUSJIUHh5ur33llVf00EMP6cUXX7Qvi4yMdLqH4cOH6/7773dY9uyzz9p//dRTT2n16tX64IMP1LlzZ50+fVpvvPGGZs6cqaSkJElSixYtdNNNN0mS7r//fiUnJ2vZsmV68MEHJUnz589X//79L/u10Iw0AQAAAACgltizZ4/69Omj5s2by9fXV2FhYZKk3NxcZWVlqWPHjvbA5H9lZWXp9ttvv+weYmJiHL6XlpZq4sSJat++vRo1aqR69epp9erVys3NlSRlZ2eruLi43GN7eXnp4YcfVnp6uiRp69at2rFjh/r373/ZvTLSBAAAAACAWqJnz55q1qyZ5s6dqyZNmshms6ldu3YqKSlR3bp1L7jtxdZbLBYZhuGwzGyiVx8fH4fvU6ZM0RtvvKEZM2aoffv28vHx0fDhw1VSUnJJx5V+e0QnKipKP/74o9555x3ddtttatas2UW3uxhGmgAAAAAAUAv89NNPysnJ0ZgxY3T77bcrIiJC//3vf+3rO3TooKysLJ04ccJ0+w4dOlxwYtXGjRvr6NGj9u979uzR2bNnL9rXunXrdN999+mvf/2rIiMj1bx5c+3evdu+vmXLlqpbt+4Fj92+fXvFxMRo7ty5WrhwoR555JGLHvdSEJoAAAAAAFALNGzYUNdcc43mzJmjvXv36osvvlBKSop9fZ8+fRQUFKRevXpp3bp1+uGHH/TRRx8pMzNTkjR+/Hi9//77Gj9+vLKzs7V9+3a9+uqr9u1vu+02zZw5U9u2bdPmzZv1+OOPy8PD46J9tWzZUmvWrNH69euVnZ2txx57TPn5+fb1Xl5eGjFihJ5//nn9/e9/1759+7RhwwbNmzfPYT8DBw7U5MmTZRiGw1t9LgehCQAAAAAAtYCbm5sWLVqkLVu2qF27dnr66ac1ZcoU+3pPT0999tlnCggIUI8ePdS+fXtNnjxZ7u7ukqTu3bvrww8/1PLlyxUVFaXbbrvN4Q0306ZNU2hoqG6++Wb95S9/0bPPPitvb++L9jVmzBh16tRJCQkJ6t69uz24+aOxY8fqmWee0bhx4xQREaHExEQVFBQ41PTp00d16tRRnz595OXldRlX6nfMaQIAAAAAQCU4MPkeV7dwUfHx8dq5c6fDsj/OQ9KsWTMtWbKk3O3vv//+Mm++Oa9JkyZavXq1w7KTJ0/afx0WFlZmzhNJatSokZYuXXrBvt3c3DR69GiNHj263Jrjx4/rl19+0aOPPnrBfTmD0AQAAAAAANRY586d008//aQxY8boxhtvVKdOnSpt3zyeAwAAAAAAaqx169YpODhYmzZtUlpaWqXuu0KhyaxZsxQWFiYvLy/FxsY6PMN0IYsWLZLFYinzbBIAAAAAAEBFdO/eXYZhKCcnR+3bt6/UfTsdmixevFgpKSkaP368tm7dqsjISCUkJJSZgOV/HThwQM8++6xuvvnmCjcLAAAAAABQXZwOTaZPn65BgwZpwIABatu2rdLS0uTt7a309PRytyktLVXfvn314osvqnnz5pfVMAAAAAAAQHVwKjQpKSnRli1bFB8f//sO3NwUHx9vf2+zmZdeekkBAQGXPINtcXGxCgsLHT4AAAAAAADVyanQ5Pjx4yotLVVgYKDD8sDAQOXl5Zlu8/XXX2vevHmaO3fuJR8nNTVVfn5+9k9oaKgzbQIAAAAAAFy2Kn17zunTp/Xwww9r7ty58vf3v+TtRo0apVOnTtk/hw4dqsIuAQAAAAAAyqrjTLG/v7/c3d2Vn5/vsDw/P19BQUFl6vft26cDBw6oZ8+e9mU2m+23A9epo5ycHLVo0aLMdlarVVar1ZnWAAAAAAAAKpVTI008PT0VHR2tjIwM+zKbzaaMjAzFxcWVqW/Tpo22b9+urKws++fee+/VrbfeqqysLB67AQAAAADgKrZ27VpZLBadPHmyUmuri1MjTSQpJSVFSUlJiomJUefOnTVjxgwVFRVpwIABkqR+/fopJCREqamp8vLyUrt27Ry2b9CggSSVWQ4AAAAAQI02wa+aj3eqeo9XAV26dNHRo0fl53fxa+NMbXVxOjRJTEzUsWPHNG7cOOXl5SkqKkqrVq2yTw6bm5srN7cqnSoFAAAAAABUsZKSEnl6el7WPjw9PU2n87jc2upSoXQjOTlZBw8eVHFxsb755hvFxsba161du1bz588vd9v58+dr6dKlFTksAAAAAACooO7duys5OVnJycny8/OTv7+/xo4dK8MwJElhYWGaOHGi+vXrJ19fXw0ePFjSb2/Fvfnmm1W3bl2FhoZq6NChKioqsu+3uLhYI0aMUGhoqKxWq8LDwzVv3jxJZR+5OXjwoHr27KmGDRvKx8dH119/vVauXGlaK0kfffSRrr/+elmtVoWFhWnatGkO5xQWFqZJkybpkUceUf369dW0aVPNmTOn0q4ZQ0IAAAAAAKglFixYoDp16mjjxo164403NH36dP3tb3+zr586daoiIyO1bds2jR07Vvv27dNdd92lBx54QN99950WL16sr7/+WsnJyfZt+vXrp/fff19vvvmmsrOz9fbbb6tevXqmxx8yZIiKi4v173//W9u3b9err75abu2WLVv04IMP6qGHHtL27ds1YcIEjR07tsxAjWnTpikmJkbbtm3Tk08+qSeeeEI5OTmXf7FUgcdzAAAAAABAzRQaGqrXX39dFotFrVu31vbt2/X6669r0KBBkqTbbrtNzzzzjL1+4MCB6tu3r4YPHy5Jatmypd58801169ZNs2fPVm5urj744AOtWbNG8fHxkqTmzZuXe/zc3Fw98MADat++/UVrp0+frttvv11jx46VJLVq1Uo7d+7UlClT1L9/f3tdjx499OSTT0qSRowYoddff11ffvmlWrdu7fwF+h+MNAEAAAAAoJa48cYbZbFY7N/j4uK0Z88elZaWSpJiYmIc6r/99lvNnz9f9erVs38SEhJks9m0f/9+ZWVlyd3dXd26dbuk4w8dOlQvv/yyunbtqvHjx+u7774rtzY7O1tdu3Z1WNa1a1eHfiWpQ4cO9l9bLBYFBQWpoKDgkvq5GEITAAAAAAAgSfLx8XH4fubMGT322GPKysqyf7799lvt2bNHLVq0UN26dZ3a/8CBA/XDDz/o4Ycf1vbt2xUTE6O33nrrsnr28PBw+G6xWGSz2S5rn+cRmgAAAAAAUEt88803Dt83bNigli1byt3d3bS+U6dO2rlzp8LDw8t8PD091b59e9lsNn311VeX3ENoaKgef/xxffzxx3rmmWc0d+5c07qIiAitW7fOYdm6devUqlWrcvutbIQmAAAAAADUErm5uUpJSVFOTo7ef/99vfXWWxo2bFi59SNGjND69euVnJysrKws7dmzR8uWLbNPBBsWFqakpCQ98sgjWrp0qfbv36+1a9fqgw8+MN3f8OHDtXr1au3fv19bt27Vl19+qYiICNPaZ555RhkZGZo4caJ2796tBQsWaObMmXr22Wcv/0JcIiaCBQAAAACglujXr59+/vlnde7cWe7u7ho2bJj91cJmOnTooK+++kqjR4/WzTffLMMw1KJFCyUmJtprZs+erRdeeEFPPvmkfvrpJzVt2lQvvPCC6f5KS0s1ZMgQ/fjjj/L19dVdd92l119/3bS2U6dO+uCDDzRu3DhNnDhRwcHBeumllxwmga1qhCYAAAAAAFSGCadc3cFFeXh4aMaMGZo9e3aZdQcOHDDd5oYbbtBnn31W7j69vLw0ffp0TZ8+vcy67t27yzAM+/cLzV/yv7WS9MADD+iBBx4odxuznrOyssqtdxaP5wAAAAAAAJggNAEAAAAAADDB4zkAAAAAANQCa9eudXULNQ4jTQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAFAlJkyYoKioKPv3/v37q1evXi7rx1l1XN0AAAAAAABXg/YL2lfr8bYnba/W49VGjDQBAAAAAKAWKikpcXULVzxCEwAAAAAAaoHu3bsrOTlZw4cPl7+/vxISErRjxw7dfffdqlevngIDA/Xwww/r+PHj9m1sNptee+01hYeHy2q1qmnTpnrllVfs60eMGKFWrVrJ29tbzZs319ixY3Xu3DlXnF6VIDQBAAAAAKCWWLBggTw9PbVu3TpNnjxZt912mzp27KjNmzdr1apVys/P14MPPmivHzVqlCZPnqyxY8dq586dWrhwoQIDA+3r69evr/nz52vnzp164403NHfuXL3++uuuOLUqwZwmAAAAAADUEi1bttRrr70mSXr55ZfVsWNHTZo0yb4+PT1doaGh2r17t4KDg/XGG29o5syZSkpKkiS1aNFCN910k71+zJgx9l+HhYXp2Wef1aJFi/T8889X0xlVLUITAAAAAABqiejoaPuvv/32W3355ZeqV69embp9+/bp5MmTKi4u1u23317u/hYvXqw333xT+/bt05kzZ/Trr7/K19e3Snp3BUITAAAAAABqCR8fH/uvz5w5o549e+rVV18tUxccHKwffvjhgvvKzMxU37599eKLLyohIUF+fn5atGiRpk2bVul9uwqhCQAAAAAAtVCnTp300UcfKSwsTHXqlI0HWrZsqbp16yojI0MDBw4ss379+vVq1qyZRo8ebV928ODBKu25ujERLAAAAAAAtdCQIUN04sQJ9enTR5s2bdK+ffu0evVqDRgwQKWlpfLy8tKIESP0/PPP6+9//7v27dunDRs2aN68eZJ+C1Vyc3O1aNEi7du3T2+++aY++eQTF59V5SI0AQAAAACgFmrSpInWrVun0tJS3XnnnWrfvr2GDx+uBg0ayM3tt7hg7NixeuaZZzRu3DhFREQoMTFRBQUFkqR7771XTz/9tJKTkxUVFaX169dr7NixrjylSmcxDMNwdRMXU1hYKD8/P506deqqmlCmqoWNXOHqFsp1wOsvrm6hXO2va+rqFkx9kPqrq1soV8SubFe3gFqC+1rFcF9zHvc1VBfuaxXDfc153Necd6GfQ3/55Rft379f1113nby8vFzUIS7Hpf43ZKQJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYILQBAAAAAAAwAShCQAAAAAAgAlCEwAAAAAAagHDMDR48GA1atRIFotFWVlZrm7pilfH1Q0AAAAAAHA1yG4TUa3Hi9iV7VT9qlWrNH/+fK1du1bNmzfX7t271bNnT23ZskVHjx7VJ598ol69elVNszUUI00AAAAAAKgF9u3bp+DgYHXp0kVBQUEqKipSZGSkZs2a5erWrliMNAEAAAAA4CrXv39/LViwQJJksVjUrFkzHThwQHfffbeLO7uyVWikyaxZsxQWFiYvLy/FxsZq48aN5dZ+/PHHiomJUYMGDeTj46OoqCj94x//qHDDAAAAAADAOW+88YZeeuklXXvttTp69Kg2bdrk6pZqBKdDk8WLFyslJUXjx4/X1q1bFRkZqYSEBBUUFJjWN2rUSKNHj1ZmZqa+++47DRgwQAMGDNDq1asvu3kAAAAAAHBxfn5+ql+/vtzd3RUUFKTGjRu7uqUawenQZPr06Ro0aJAGDBigtm3bKi0tTd7e3kpPTzet7969u3r37q2IiAi1aNFCw4YNU4cOHfT1119fdvMAAAAAAABVxanQpKSkRFu2bFF8fPzvO3BzU3x8vDIzMy+6vWEYysjIUE5Ojm655ZZy64qLi1VYWOjwAQAAAAAAqE5OhSbHjx9XaWmpAgMDHZYHBgYqLy+v3O1OnTqlevXqydPTU/fcc4/eeust3XHHHeXWp6amys/Pz/4JDQ11pk0AAAAAAIDLVi1vz6lfv76ysrJ05swZZWRkKCUlRc2bN1f37t1N60eNGqWUlBT798LCQoITAAAAAAAq0ZkzZ7R371779/379ysrK0uNGjVS06ZNXdjZlcOp0MTf31/u7u7Kz893WJ6fn6+goKByt3Nzc1N4eLgkKSoqStnZ2UpNTS03NLFarbJarc60BgAAAAAAnLB582bdeuut9u/nBy8kJSVp/vz5LurqyuJUaOLp6ano6GhlZGSoV69ekiSbzaaMjAwlJydf8n5sNpuKi4udahQAAAAAgCtZxK5sV7dwQcOHD9fw4cPt37t37y7DMFzXUA3g9OM5KSkpSkpKUkxMjDp37qwZM2aoqKhIAwYMkCT169dPISEhSk1NlfTb/CQxMTFq0aKFiouLtXLlSv3jH//Q7NmzK/dMAAAAAAAAKpHToUliYqKOHTumcePGKS8vT1FRUVq1apV9ctjc3Fy5uf0+v2xRUZGefPJJ/fjjj6pbt67atGmjd999V4mJiZV3FgAAAAAAAJWsQhPBJicnl/s4ztq1ax2+v/zyy3r55ZcrchgAAAAAAACXceqVwwAAAAAAALUFoQkAAAAAABXAJKo116X+tyM0AQAAAADACe7u7pKkkpISF3eCijp79qwkycPD44J1FZrTBAAAAACA2qpOnTry9vbWsWPH5OHh4fAyFFzZDMPQ2bNnVVBQoAYNGtgDsPIQmgAAAAAA4ASLxaLg4GDt379fBw8edHU7qIAGDRooKCjoonWEJgAAAAAAOMnT01MtW7bkEZ0ayMPD46IjTM4jNAEAAAAAoALc3Nzk5eXl6jZQhXjwCgAAAAAAwAShCQAAAAAAgAlCEwAAAAAAABOEJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAAThCYAAAAAAAAmCE0AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwQWgCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYILQBAAAAAAAwAShCQAAAAAAgAlCEwAAAAAAABOEJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAATFQpNZs2apbCwMHl5eSk2NlYbN24st3bu3Lm6+eab1bBhQzVs2FDx8fEXrAcAAAAAALgSOB2aLF68WCkpKRo/fry2bt2qyMhIJSQkqKCgwLR+7dq16tOnj7788ktlZmYqNDRUd955pw4fPnzZzQMAAAAAAFQVp0OT6dOna9CgQRowYIDatm2rtLQ0eXt7Kz093bT+vffe05NPPqmoqCi1adNGf/vb32Sz2ZSRkXHZzQMAAAAAAFQVp0KTkpISbdmyRfHx8b/vwM1N8fHxyszMvKR9nD17VufOnVOjRo3KrSkuLlZhYaHDBwAAAAAAoDo5FZocP35cpaWlCgwMdFgeGBiovLy8S9rHiBEj1KRJE4fg5X+lpqbKz8/P/gkNDXWmTQAAAAAAgMtWrW/PmTx5shYtWqRPPvlEXl5e5daNGjVKp06dsn8OHTpUjV0CAAAAAABIdZwp9vf3l7u7u/Lz8x2W5+fnKygo6ILbTp06VZMnT9bnn3+uDh06XLDWarXKarU60xoAAAAAAEClcmqkiaenp6Kjox0mcT0/qWtcXFy527322muaOHGiVq1apZiYmIp3CwAAAAAAUE2cGmkiSSkpKUpKSlJMTIw6d+6sGTNmqKioSAMGDJAk9evXTyEhIUpNTZUkvfrqqxo3bpwWLlyosLAw+9wn9erVU7169SrxVAAAAAAAACqP06FJYmKijh07pnHjxikvL09RUVFatWqVfXLY3Nxcubn9PoBl9uzZKikp0Z/+9CeH/YwfP14TJky4vO4BAAAAAACqiNOhiSQlJycrOTnZdN3atWsdvh84cKAihwAAAAAAAHCpan17DgAAAAAAQE1BaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAAThCYAAAAAAAAmCE0AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwQWgCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYILQBAAAAAAAwAShCQAAAAAAgAlCEwAAAAAAABOEJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAAThCYAAAAAAAAmCE0AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwQWgCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYKJCocmsWbMUFhYmLy8vxcbGauPGjeXWfv/993rggQcUFhYmi8WiGTNmVLRXAAAAAACAauN0aLJ48WKlpKRo/Pjx2rp1qyIjI5WQkKCCggLT+rNnz6p58+aaPHmygoKCLrthAAAAAACA6uB0aDJ9+nQNGjRIAwYMUNu2bZWWliZvb2+lp6eb1t9www2aMmWKHnroIVmt1stuGAAAAAAAoDo4FZqUlJRoy5Ytio+P/30Hbm6Kj49XZmZmpTcHAAAAAADgKnWcKT5+/LhKS0sVGBjosDwwMFC7du2qtKaKi4tVXFxs/15YWFhp+wYAAAAAALgUV+Tbc1JTU+Xn52f/hIaGurolAAAAAABQyzgVmvj7+8vd3V35+fkOy/Pz8yt1ktdRo0bp1KlT9s+hQ4cqbd8AAAAAAACXwqnQxNPTU9HR0crIyLAvs9lsysjIUFxcXKU1ZbVa5evr6/ABAAAAAACoTk7NaSJJKSkpSkpKUkxMjDp37qwZM2aoqKhIAwYMkCT169dPISEhSk1NlfTb5LE7d+60//rw4cPKyspSvXr1FB4eXomnAgAAAAAAUHmcDk0SExN17NgxjRs3Tnl5eYqKitKqVavsk8Pm5ubKze33ASxHjhxRx44d7d+nTp2qqVOnqlu3blq7du3lnwEAAAAAAEAVcDo0kaTk5GQlJyebrvvfICQsLEyGYVTkMAAAAAAAAC5zRb49BwAAAAAAwNUITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAAThCYAAAAAAAAmCE0AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwQWgCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYILQBAAAAAAAwAShCQAAAAAAgAlCEwAAAAAAABOEJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAAThCYAAAAAAAAmCE0AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwQWgCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATFQoNJk1a5bCwsLk5eWl2NhYbdy48YL1H374odq0aSMvLy+1b99eK1eurFCzAAAAAAAA1cXp0GTx4sVKSUnR+PHjtXXrVkVGRiohIUEFBQWm9evXr1efPn306KOPatu2berVq5d69eqlHTt2XHbzAAAAAAAAVcXp0GT69OkaNGiQBgwYoLZt2yotLU3e3t5KT083rX/jjTd011136bnnnlNERIQmTpyoTp06aebMmZfdPAAAAAAAQFVxKjQpKSnRli1bFB8f//sO3NwUHx+vzMxM020yMzMd6iUpISGh3HoAAAAAAIArQR1nio8fP67S0lIFBgY6LA8MDNSuXbtMt8nLyzOtz8vLK/c4xcXFKi4utn8/deqUJKmwsNCZdms9W/FZV7dQrkKL4eoWylX6c6mrWzB1pvTK7Evi9yaqD/e1iuG+5jzua6gu3Ncqhvua87ivOe/8NTOMK/f3AqqeU6FJdUlNTdWLL75YZnloaKgLukFV8HN1AxeU7eoGTHV2dQMX4ndl/xcFqsOV/buA+5rTuK8B3NcqgPva1en06dPy4/rVWk6FJv7+/nJ3d1d+fr7D8vz8fAUFBZluExQU5FS9JI0aNUopKSn27zabTSdOnNA111wji8XiTMuAUwoLCxUaGqpDhw7J19fX1e0AwGXjvgbgasN9DdXFMAydPn1aTZo0cXUrcCGnQhNPT09FR0crIyNDvXr1kvRboJGRkaHk5GTTbeLi4pSRkaHhw4fbl61Zs0ZxcXHlHsdqtcpqtTosa9CggTOtApfF19eXP4QBXFW4rwG42nBfQ3VghAmcfjwnJSVFSUlJiomJUefOnTVjxgwVFRVpwIABkqR+/fopJCREqampkqRhw4apW7dumjZtmu655x4tWrRImzdv1pw5cyr3TAAAAAAAACqR06FJYmKijh07pnHjxikvL09RUVFatWqVfbLX3Nxcubn9/lKeLl26aOHChRozZoxeeOEFtWzZUkuXLlW7du0q7ywAAAAAAAAqmcVgKmDArri4WKmpqRo1alSZR8QAoCbivgbgasN9DUB1IjQBAAAAAAAw4XbxEgAAAAAAgNqH0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAAThCa1yKxZsxQWFiYvLy/FxsZq48aN5dZ+/PHHiomJUYMGDeTj46OoqCj94x//cKiZMGGC2rRpIx8fHzVs2FDx8fH65ptvHGruvfdeNW3aVF5eXgoODtbDDz+sI0eO2Nfn5OTo1ltvVWBgoLy8vNS8eXONGTNG586do5ca1AvgCs7c0yTp5MmTGjJkiIKDg2W1WtWqVSutXLnSoebw4cP661//qmuuuUZ169ZV+/bttXnzZoea7Oxs3XvvvfLz85OPj49uuOEG5ebmOtRkZmbqtttuk4+Pj3x9fXXLLbfo559/dqhZsWKFYmNjVbduXTVs2FC9evUq0/P8+fPVoUMHeXl5KSAgQEOGDHFYbxiGpk6dqlatWslqtSokJESvvPKKQ01xcbFGjx6tZs2ayWq1KiwsTOnp6VybS7w2AKrXv//9b/Xs2VNNmjSRxWLR0qVLL7rN2rVr1alTJ1mtVoWHh2v+/PlV3ieAWsRArbBo0SLD09PTSE9PN77//ntj0KBBRoMGDYz8/HzT+i+//NL4+OOPjZ07dxp79+41ZsyYYbi7uxurVq2y17z33nvGmjVrjH379hk7duwwHn30UcPX19coKCiw10yfPt3IzMw0Dhw4YKxbt86Ii4sz4uLi7Ov37dtnpKenG1lZWcaBAweMZcuWGQEBAcaoUaPopQb1AlQ3Z+9pxcXFRkxMjNGjRw/j66+/Nvbv32+sXbvWyMrKstecOHHCaNasmdG/f3/jm2++MX744Qdj9erVxt69e+01e/fuNRo1amQ899xzxtatW429e/cay5Ytczju+vXrDV9fXyM1NdXYsWOHsWvXLmPx4sXGL7/8Yq9ZsmSJ0bBhQ2P27NlGTk6O8f333xuLFy926HnatGlGkyZNjPfee8/Yu3ev8e233xrLli1zqHnqqaeM1q1bG8uWLTN++OEHY/PmzcZnn33mUHPvvfcasbGxxpo1a4z9+/cb69evN77++muuzSVcGwDVb+XKlcbo0aONjz/+2JBkfPLJJxes/+GHHwxvb28jJSXF2Llzp/HWW2+V+fsQAFwOQpNaonPnzsaQIUPs30tLS40mTZoYqampl7yPjh07GmPGjCl3/alTpwxJxueff15uzbJlywyLxWKUlJSUW/P0008bN910E73U8F6AquTsPW327NlG8+bNL/j/9YgRIy76/3ViYqLx17/+9YI1sbGxF/x9eO7cOSMkJMT429/+Vm7NiRMnjLp1617w9+rOnTuNOnXqGLt27Sq35l//+pfh5+dn/PTTT+XWcG3KvzYAXOtSQpPnn3/euP766x2WJSYmGgkJCVXYGYDahMdzaoGSkhJt2bJF8fHx9mVubm6Kj49XZmbmRbc3DEMZGRnKycnRLbfcUu4x5syZIz8/P0VGRprWnDhxQu+99566dOkiDw8P05q9e/dq1apV6tatG73U0F6AqlaRe9ry5csVFxenIUOGKDAwUO3atdOkSZNUWlrqUBMTE6M///nPCggIUMeOHTV37lz7epvNphUrVqhVq1ZKSEhQQECAYmNjHYaOFxQU6JtvvlFAQIC6dOmiwMBAdevWTV9//bW9ZuvWrTp8+LDc3NzUsWNHBQcH6+6779aOHTvsNWvWrJHNZtPhw4cVERGha6+9Vg8++KAOHTpkr/n000/VvHlz/fOf/9R1112nsLAwDRw4UCdOnChzTq+99ppCQkLUqlUrPfvssw6Pw3Btyr82AK58mZmZDn8eSFJCQsIl/R0XAC6JazMbVIfDhw8bkoz169c7LH/uueeMzp07l7vdyZMnDR8fH6NOnTqG1Wo15s2bV6bm008/NXx8fAyLxWI0adLE2LhxY5ma559/3vD29jYkGTfeeKNx/PjxMjVxcXGG1Wo1JBmDBw82SktL6aWG9QJUl4rc01q3bm1YrVbjkUceMTZv3mwsWrTIaNSokTFhwgR7jdVqNaxWqzFq1Chj69atxttvv214eXkZ8+fPNwzDMI4ePWpIMry9vY3p06cb27ZtM1JTUw2LxWKsXbvWMAzDyMzMNCQZjRo1MtLT042tW7caw4cPNzw9PY3du3cbhmEY77//viHJaNq0qbFkyRJj8+bNRp8+fYxrrrnGPuohNTXV8PDwMFq3bm2sWrXKyMzMNG6//XajdevWRnFxsWEYhvHYY48ZVqvViI2NNf79738bX375pREVFWXceuut9nNKSEgwrFarcc899xjffPONsWLFCvtjNlybi18bAK6lSxhp0rJlS2PSpEkOy1asWGFIMs6ePVuF3QGoLQhNaoGKhialpaXGnj17jG3bthlTp041/Pz8jC+//NKh5syZM8aePXuMzMxM45FHHjHCwsLKzClw7NgxIycnx/jss8+Mrl27Gj169DBsNptDTW5urvH9998bCxcuNEJCQoxXX32VXmpYL0B1qcg9rWXLlkZoaKjx66+/2pdNmzbNCAoKsn/38PBwmM/HMH6bF+PGG290OG6fPn0canr27Gk89NBDhmEYxrp16wxJZeb8ad++vTFy5EjDMH6ba0iS8fbbb9vX//LLL4a/v7+RlpZmGIZhvPLKK4YkY/Xq1faagoICw83Nzf6c/qBBgwxJRk5Ojr1my5YthiT7Yyl33HGH4eXlZZw8edJe89FHHxkWi8X+wwTXpvxrA8C1CE0AXAnqVPVIFriev7+/3N3dlZ+f77A8Pz9fQUFB5W7n5uam8PBwSVJUVJSys7OVmpqq7t2722t8fHwUHh6u8PBw3XjjjWrZsqXmzZunUaNGORzf399frVq1UkREhEJDQ7VhwwbFxcXZa0JDQyVJbdu2VWlpqQYPHqxnnnlG7u7u9FJDegGqS0XuacHBwfLw8HD4/zUiIkJ5eXkqKSmRp6engoOD1bZtW4ftIiIi9NFHH9mPW6dOHdOa84+YBAcHS5Jpzfm3yJjVWK1WNW/e/II1jRs3lr+/v0NNnTp11KpVK4fjSFJubq5at26t4OBghYSEyM/Pz6HGMAz9+OOPatmyJdfmAtcGwJUvKCjI9M8DX19f1a1b10VdAbiaMKdJLeDp6ano6GhlZGTYl9lsNmVkZDj8UHwxNptNxcXFl1Vjs9kk6aI1586ds9fSS83sBagqFbmnde3aVXv37nX4f3b37t0KDg6Wp6envSYnJ8dhu927d6tZs2b2495www0XrAkLC1OTJk0uWBMdHS2r1epQc+7cOR04cMBe07VrV0lyqDlx4oSOHz/uUPPrr79q3759DseR5FBz5MgRnTlzxqHGzc1N1157LdfmItcGwJUvLi7O4c8D6be5j5z5Oy4AXJCrh7qgeixatMiwWq3G/PnzjZ07dxqDBw82GjRoYOTl5RmGYRgPP/ywfXi0YRjGpEmTjM8++8zYt2+fsXPnTmPq1KlGnTp1jLlz5xqG8dsjH6NGjbK/qnbz5s3GgAEDDKvVauzYscMwDMPYsGGD8dZbbxnbtm0zDhw4YGRkZBhdunQxWrRoYX+95LvvvmssXrzY2Llzp7Fv3z5j8eLFRpMmTYy+ffvSSw3qBahuzt7TcnNzjfr16xvJyclGTk6O8c9//tMICAgwXn75ZXvNxo0bjTp16hivvPKKsWfPHuO9994zvL29jXfffdde8/HHHxseHh7GnDlzjD179thfbfmf//zHXvP6668bvr6+xocffmjs2bPHGDNmjOHl5eXwet5hw4YZISEhxurVq41du3YZjz76qBEQEGCcOHHCXnPfffcZ119/vbFu3Tpj+/btxv/7f//PaNu2rf0tN6WlpUanTp2MW265xdi6dauxefNmIzY21rjjjjvs+zh9+rRx7bXXGn/605+M77//3vjqq6+Mli1bGgMHDuTaXMK1AVD9Tp8+bWzbts3Ytm2bIck+T9LBgwcNwzCMkSNHGg8//LC9/vwrh5977jkjOzvbmDVrFq8cBlCpCE1qkbfeesto2rSp4enpaXTu3NnYsGGDfV23bt2MpKQk+/fRo0cb4eHhhpeXl9GwYUMjLi7OWLRokX39zz//bPTu3dto0qSJ4enpaQQHBxv33nuvwySj3333nXHrrbcajRo1MqxWqxEWFmY8/vjjxo8//mivWbRokdGpUyejXr16ho+Pj9G2bVtj0qRJxs8//0wvNagXwBWcuacZhmGsX7/eiI2NNaxWq9G8eXPjlVdecZjHwzB+mzi5Xbt2htVqNdq0aWPMmTOnzHHnzZtn/70XGRlpLF26tExNamqqce211xre3t5GXFycQ3BgGIZRUlJiPPPMM0ZAQIBRv359Iz4+3h5mnnfq1CnjkUceMRo0aGA0atTI6N27t5Gbm+tQc/jwYeP+++836tWrZwQGBhr9+/cv8wrd7OxsIz4+3qhbt65x7bXXGikpKWWe8+falH9tAFSvL7/80pBU5nP+np6UlGR069atzDZRUVGGp6en0bx5c+Odd96p9r4BXL0shmEYrhzpAgAAAAAAcCViThMAAAAAAAAThCYAAAAAAAAmCE0AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwQWgCAAAAAABggtAEAAAAAADABKEJAAAow2KxaOnSpa5uAwAAwKUITQAAuML0799fFoulzOeuu+5ydWsAAAC1Sh1XNwAAAMq666679M477zgss1qtLuoGAACgdmKkCQAAVyCr1aqgoCCHT8OGDSX99ujM7Nmzdffdd6tu3bpq3ry5lixZ4rD99u3bddttt6lu3bq65pprNHjwYJ05c8ahJj09Xddff72sVquCg4OVnJzssP748ePq3bu3vL291bJlSy1fvrxqTxoAAOAKQ2gCAEANNHbsWD3wwAP69ttv1bdvXz300EPKzs6WJBUVFSkhIUENGzbUpk2b9OGHH+rzzz93CEVmz56tIUOGaPDgwdq+fbuWL1+u8PBwh2O8+OKLevDBB/Xdd9+pR48e6tu3r06cOFGt5wkAAOBKFsMwDFc3AQAAfte/f3+9++678vLyclj+wgsv6IUXXpDFYtHjjz+u2bNn29fdeOON6tSpk/7v//5Pc+fO1YgRI3To0CH5+PhIklauXKmePXvqyJEjCgwMVEhIiAYMGKCXX37ZtAeLxaIxY8Zo4sSJkn4LYurVq6d//etfzK0CAABqDeY0AQDgCnTrrbc6hCKS1KhRI/uv4+LiHNbFxcUpKytLkpSdna3IyEh7YCJJXbt2lc1mU05OjiwWi44cOaLbb7/9gj106NDB/msfHx/5+vqqoKCgoqcEAABQ4xCaAABwBfLx8SnzuExlqVu37iXVeXh4OHy3WCyy2WxV0RIAAMAViTlNAACogTZs2FDme0REhCQpIiJC3377rYqKiuzr161bJzc3N7Vu3Vr169dXWFiYMjIyqrVnAACAmoaRJgAAXIGKi4uVl5fnsKxOnTry9/eXJH344YeKiYnRTTfdpPfee08bN27UvHnzJEl9+/bV+PHjlZSUpAkTJujYsWN66qmn9PDDDyswMFCSNGHCBD3++OMKCAjQ3XffrdOnT2vdunV66qmnqvdEAQAArmCEJgAAXIFWrVql4OBgh2WtW7fWrl27JP32ZptFixbpySefVHBwsN5//321bdtWkuTt7a3Vq1dr2LBhuuGGG+Tt7a0HHnhA06dPt+8rKSlJv/zyi15//XU9++yz8vf315/+9KfqO0EAAIAagLfnAABQw1gsFn3yySfq1auXq1sBAAC4qjGnCQAAAAAAgAlCEwAAAAAAABPMaQIAQA3Dk7UAAADVg5EmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYILQBAAAAAAAwAShCQAAAAAAgAlCEwAAAAAAABOEJgAAAAAAACb+PwFFogEvPtdTAAAAAElFTkSuQmCC","text/plain":["