"],"text/plain":[" text label \\\n","0 Was Zhen Zhesuo suicide? No \n","1 Was Zhen Zhesuo sickly? Yes \n","2 The painting was by Zhen. Yes \n","3 Was Zhen with a heart condition? Yes \n","4 The wheel was the murderer's weapon. No \n","... ... ... \n","2995 Did the weeping person have to make a sacrific... Yes \n","2996 Was the body in the lake? No \n","2997 Do mourners have a special relationship with t... Yes \n","2998 Was the owner of the hat dead? No \n","2999 Was the dead person wounded? No \n","\n"," title \\\n","0 The Mystery of the Coast \n","1 The Mystery of the Coast \n","2 The Mystery of the Coast \n","3 The Mystery of the Coast \n","4 The Mystery of the Coast \n","... ... \n","2995 Zhen Zhuo's wails \n","2996 Zhen Zhuo's wails \n","2997 Zhen Zhuo's wails \n","2998 Zhen Zhuo's wails \n","2999 Zhen Zhuo's wails \n","\n"," puzzle \\\n","0 In the quiet seaside cottage of a neighbor, a ... \n","1 In the quiet seaside cottage of a neighbor, a ... \n","2 In the quiet seaside cottage of a neighbor, a ... \n","3 In the quiet seaside cottage of a neighbor, a ... \n","4 In the quiet seaside cottage of a neighbor, a ... \n","... ... \n","2995 One night, in a quiet village, a weeping sound... \n","2996 One night, in a quiet village, a weeping sound... \n","2997 One night, in a quiet village, a weeping sound... \n","2998 One night, in a quiet village, a weeping sound... \n","2999 One night, in a quiet village, a weeping sound... \n","\n"," truth \\\n","0 Zhen Zhesao was a nature-loving painter who ca... \n","1 Zhen Zhesao was a nature-loving painter who ca... \n","2 Zhen Zhesao was a nature-loving painter who ca... \n","3 Zhen Zhesao was a nature-loving painter who ca... \n","4 Zhen Zhesao was a nature-loving painter who ca... \n","... ... \n","2995 It turned out that the old hat belonged to a l... \n","2996 It turned out that the old hat belonged to a l... \n","2997 It turned out that the old hat belonged to a l... \n","2998 It turned out that the old hat belonged to a l... \n","2999 It turned out that the old hat belonged to a l... \n","\n"," meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-117_torch.bfloat16_lf \\\n","0 No \n","1 Yes \n","2 Yes \n","3 Yes \n","4 No \n","... ... \n","2995 Unimportant \n","2996 No \n","2997 Yes \n","2998 Yes \n","2999 No \n","\n"," meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-234_torch.bfloat16_lf \\\n","0 No \n","1 Yes \n","2 Yes \n","3 Yes \n","4 No \n","... ... \n","2995 No \n","2996 No \n","2997 Yes \n","2998 Yes \n","2999 No \n","\n"," meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-351_torch.bfloat16_lf \n","0 No \n","1 Yes \n","2 Yes \n","3 Yes \n","4 No \n","... ... \n","2995 No \n","2996 No \n","2997 Yes \n","2998 No \n","2999 No \n","\n","[3000 rows x 8 columns]"]},"execution_count":5,"metadata":{},"output_type":"execute_result"}],"source":["import pandas as pd\n","\n","df = pd.read_csv(\"results/llama3-8b_lora_sft_bf16-p2_en.csv\")\n","df"]},{"cell_type":"code","execution_count":6,"metadata":{},"outputs":[],"source":["import matplotlib.pyplot as plt\n","from matplotlib import rcParams\n","\n","def plot_value_counts(df, column):\n"," font_family = rcParams[\"font.family\"]\n"," # Set the font to SimHei to support Chinese characters\n"," rcParams[\"font.family\"] = \"STHeiti\"\n"," rcParams[\"axes.unicode_minus\"] = False # This is to support the minus sign in Chinese.\n","\n"," plt.figure(figsize=(12, 6))\n"," df[column].value_counts().plot(kind=\"bar\")\n"," # add values on top of bars\n"," for i, v in enumerate(df[column].value_counts()):\n"," plt.text(i, v + 0.1, str(v), ha=\"center\")\n"," plt.show()\n"," \n"," rcParams[\"font.family\"] = font_family\n"]},{"cell_type":"code","execution_count":7,"metadata":{},"outputs":[{"data":{"text/plain":["['text',\n"," 'label',\n"," 'title',\n"," 'puzzle',\n"," 'truth',\n"," 'meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-117_torch.bfloat16_lf',\n"," 'meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-234_torch.bfloat16_lf',\n"," 'meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-351_torch.bfloat16_lf']"]},"execution_count":7,"metadata":{},"output_type":"execute_result"}],"source":["df.columns.to_list()"]},{"cell_type":"code","execution_count":8,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["********** meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-117_torch.bfloat16_lf **********\n","meta-llama/Meta-Llama-3-8B-Instruct/checkpoint-117_torch.bfloat16_lf\n","No 1564\n","Yes 1012\n","Unimportant 353\n","Incorrect questioning 50\n","Correct answer 21\n","Name: count, dtype: int64\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAA94AAAKOCAYAAABQlMFoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABy30lEQVR4nO3de3zO9eP/8edmdmSbw5xmZDmflUPOFFFobCKlnHMuJIcUyjGHfCoklVNITlESFZJTqOUciZmROWxs2Hl7//7o5/q6bM7Xe2+2x/12u243e73e17Xnde29y57X++RkGIYhAAAAAABgCmerAwAAAAAAkJVRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABO5WB3AUdLS0vTvv/8qd+7ccnJysjoOAAAAACCLMwxDly9fVpEiReTsfPPt2lmmeP/7778KCAiwOgYAAAAAIJuJiIhQ0aJFbzqfZYp37ty5Jf33hL29vS1OAwAAAADI6mJjYxUQEGDrozeTZYr3td3Lvb29Kd4AAAAAgExzu8OdObkaAAAAAAAmongDAAAAAGAiijcAAAAAACYyrXgvXrxYR48eNevhAQAAAAB4KNxT8W7cuLGcnZ01ZcqUDOdPnz6tgQMHKmfOnHbj7733ngoWLChvb2917dpVV65csc3FxsbqpZdeUq5cuVSkSBG9//779xINAAAAAIAHyj0V702bNmnkyJE3nR84cKAGDhyoRx55xDY2a9YsrVq1Sr/99ptOnTolJycn9ejRwzb/6quvKmfOnDp9+rR27Nih5cuX69NPP72XeAAAAAAAPDAcfjmxDRs26NChQ1q0aJHd+LRp07R48WKVKFFC0n9F/NFHH9WxY8fk7u6uTZs2KTw8XO7u7vLx8dGCBQv0zDPPqGfPno6OCAAAAABApnHoMd7Jycl67bXX9Mknn9jtZn7u3DldvXpVjz/+uG0sZ86ceu6557Rx40Zt27ZNTZs2lbu7u22+XLlyypUrF8eJP2SmTp2qq1evWh0DAAAAAB4YDi3eH374oY4dO6bnn39epUqV0o8//ihJOnnypEqWLJlu+TJlyuj48eO3nc9IYmKiYmNj7W64P7c6dt/f318uLi6226RJk9Its2rVKi1YsEBubm43/R6TJ0/WhQsXHJobAAAAAB5kDiveV69e1cSJEzVjxgwdO3ZMkydP1ksvvaQzZ84oPj5enp6e6e7j4eGh+Pj4285nZMKECfLx8bHdAgICHPVUsq2bHbt/6dIlubm5KSUlxXYbMmSI3TLx8fEaNGiQZs2aJReXjI9g2Ldvn9555x1TsgMAAADAg8phxfvHH3/Uk08+qW7dusnLy0utW7dWp06d9OWXX8rDw0MJCQnp7hMVFSVPT8/bzmdk+PDhiomJsd0iIiIc9VRwg4MHD6pMmTK3XGb8+PFq0qSJateuneF8UlKSXn75ZaWkpJgREQAAAAAeWA47udo///yjihUr2o1VrlxZO3fuVLFixRQWFpbuPmFhYapevbq8vb31ww8/ZDgfGBiY4fdzc3O75S7NcJxDhw7dsnj/888/mj9/vvbu3XvTZUaMGKFKlSopJibGjIgAAAAA8MBy2BbvokWL6sCBA3Zj+/fvV4kSJVSgQAG5urrqyJEjtrmUlBStXr1aTz31lOrWrasNGzbYbQ09cOCAEhMTMzz2G5nr4MGDWrJkifLmzauqVatq/fr1dvMDBgzQ1atXFRgYqPr166c7Lv/XX3/V8uXLNWPGjMyMDQAAAAAPBIcV7+eee047d+7UF198obi4OH377bdavHixOnXqJOm/a3t3795dp06d0uXLl9W/f381adJEJUqUkL+/v+rUqaOBAwfqypUrioiIUI8ePfT22287Kh7uQ4sWLbR9+3ZFRkZq6tSp6tq1qw4dOiRJ2r59u3bv3q1Vq1YpIiJCTZo0Ubt27WQYhiQpNjZWnTt31ty5c+Xj42Pl0wAAAAAASziseHt5eWn9+vVasGCBChUqpIkTJ2rNmjXy8/OTJPXq1UtNmzbVY489Jn9/fyUlJWnWrFm2+3/66aeKjo5WoUKFVLNmTQUHB6tbt26Oiof70LRpUwUGBsrV1VVPPfWUhg4dqi+++EKS9PXXX2vUqFGqX7++cuXKpVGjRkmSdu/eLUl67bXXFBISokaNGlkVHwAAAAAsdc/HeI8ePTrdWNmyZbV58+ab3mfkyJEZnjVbknx8fLRo0aJ7jYNMFBgYqG3btkn67/jukJAQu/nKlSsrPDxcZ86c0aJFi5QjRw59/PHHkv67DFzRokW1bNkytWrVKtOzAwAAAEBmc+h1vJH1jBkzRt9++63d2NatW1W6dGlJGR/bf+DAAZUoUUJBQUFKTk5WQkKC7Va8eHGdOnWK0g0AAAAg23DYWc2RNT322GPq37+/ihUrptKlS2vp0qX64osvbGcw79Wrl1q0aKFKlSqpWrVqmjZtmtzc3PT4449bnBwAAAAAHgwUb9xSixYt9O+//yokJESnT59WtWrVtHr1ahUpUkSSVK1aNc2aNUs9e/bUmTNn1LRpU61cuVJOTk4WJwcAAACAB4OTce300w+52NhY+fj4KCYmRt7e3lbHuSuPDPve6gjZzomJLayOAAAAAOAhd6c9lGO8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABPdU/Fu3LixnJ2dNWXKlJsuk5ycrHfeecdubPbs2SpWrJi8vLzUpk0bnT171m751157TXny5FG+fPn05ptvKiUl5V7iAQAAAADwwLin4r1p0yaNHDnylsuMHDlSf/75p+3rdevWafz48VqzZo0uXLigihUrqk2bNrb5d955R3///bcOHz6sw4cP69ChQ+mKOwAAAAAADxtTdjXftm2bPvjgA7uxadOmaerUqapcubI8PDw0ZswYpaWlaePGjUpKStJnn32mefPmqWDBgvLz89OCBQv0+eef6+rVq2ZEBAAAAAAgUzi8eF+5ckWdOnXS4MGDbWOGYWjnzp1q0aKF3bJt27bVhg0btGfPHpUrV06FChWyzeXLl0+1atXS9u3bHR0RAAAAAIBM4/Di/frrr6tFixZq2rSpbSwqKkq+vr5yd3e3W7ZMmTI6fvy4Tp48qZIlS6Z7rGvzAAAAAAA8rFwc+WCrV6/Wb7/9pj/++EO//fabbTw+Pl6enp7plvfw8FB8fPxt5zOSmJioxMRE29exsbEOeAYAAAAAADiWw7Z4nzt3Tn379tXChQvTbdn28PBQQkJCuvtERUXJ09PztvMZmTBhgnx8fGy3gIAAxzwRAAAAAAAcyGFbvHv37q2zZ8+qdu3akqS0tDSlpqaqUKFCOnPmjC5duqTk5GTlzJnTdp+wsDAFBgaqWLFiCgsLS/eYYWFhCgkJyfD7DR8+XIMGDbJ9HRsbS/kGAAAAADxwHLbFe8WKFUpOTlZCQoISEhL0448/6plnnlFkZKScnJxUvXp1bdy40e4+y5cvV5MmTVS1alUdOnRIFy9etM1FR0dr586dqlOnTobfz83NTd7e3nY3AAAAAAAeNKZcTiwjgwYN0oABA3T48GElJCRozJgx8vDwUKNGjeTq6qouXbqoR48eioqK0oULF9S1a1f169fvpruaAwAAAADwMMi04t28eXMNGDBATZs2Vd68eRUaGqoVK1bY5t977z0VLlxYjz76qEqXLq1SpUpp9OjRmRUPAAAAAABTOBmGYVgdwhFiY2Pl4+OjmJiYh26380eGfW91hGznxMQWt18IAAAAAG7hTntopm3xBgAAAAAgO6J4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgonsq3o0bN5azs7OmTJliN75161bVqlVL3t7eeuKJJ/Tbb7/Zzb/33nsqWLCgvL291bVrV125csU2Fxsbq5deekm5cuVSkSJF9P77799LNAAAAAAAHij3VLw3bdqkkSNH2o0dPXpU7dq107hx43T27FkNGTJErVu31qlTpyRJs2bN0qpVq/Tbb7/p1KlTcnJyUo8ePWz3f/XVV5UzZ06dPn1aO3bs0PLly/Xpp5/ex1MDAAAAAMB6Lo56oOnTp2vQoEFq0qSJJCk4OFg7d+7U0qVLNWjQIE2bNk2LFy9WiRIlJP1XxB999FEdO3ZM7u7u2rRpk8LDw+Xu7i4fHx8tWLBAzzzzjHr27OmoiAAAAAAAZDqHFe8SJUqoRYsWdmMBAQGKiIjQuXPndPXqVT3++OO2uZw5c+q5557Txo0b5ePjo6ZNm8rd3d02X65cOeXKlUtHjx5VqVKlHBUTAAAAAIBM5bCTqw0YMCBdQV6zZo2qV6+ukydPqmTJkunuU6ZMGR0/fvy28wAAAAAAPKxMO6v5vHnzFBkZqTZt2ig+Pl6enp7plvHw8FB8fPxt5zOSmJio2NhYuxsAAAAAAA8aU4r37t27NXToUH311VdycXGRh4eHEhIS0i0XFRUlT0/P285nZMKECfLx8bHdAgICHP48AAAAAAC4Xw4v3idPnlSbNm30xRdfqFy5cpKkYsWKKSwsLN2yYWFhCgwMvO18RoYPH66YmBjbLSIiwrFPBAAAAAAAB3Bo8b58+bJatmypN998Uy1btrSNFyhQQK6urjpy5IhtLCUlRatXr9ZTTz2lunXrasOGDUpJSbHNHzhwQImJiRke+y1Jbm5u8vb2trsBAAAAAPCgcVjxTk1NVbt27dSgQQO9/vrr6eYHDhyo7t2769SpU7p8+bL69++vJk2aqESJEvL391edOnU0cOBAXblyRREREerRo4fefvttR8UDAAAAAMASDive/fv317p16zRr1iy5uLjYbk899ZQkqVevXmratKkee+wx+fv7KykpSbNmzbLd/9NPP1V0dLQKFSqkmjVrKjg4WN26dXNUPAAAAAAALOFkGIZhdQhHiI2NlY+Pj2JiYh663c4fGfa91RGynRMTW9x+IQAAAAC4hTvtoaZdTgwAAAAAAFC8AQAAAAAwFcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAFkK40bN5azs7OmTJliN75t2zZVrVpVHh4eqlGjhnbt2mU3P2fOHLm4uKhixYrpHvPixYvq1KmT/Pz89Mgjj2jixIlKS0sz9XkAAADg4UHxBpCtbNq0SSNHjrQbO3v2rNq0aaORI0cqNjZWI0aMUFBQkCIjI23LdO3aVf/880+Gj9m2bVv5+/vr2LFj+umnn7Rq1SpNnz7d1OcBAACAhwfFG0C2N2fOHLVv317BwcHKmTOnWrdurU6dOmnmzJm3ve+ff/6pc+fOady4cfL29lapUqU0d+5cff7555mQHAAAAA8DijeAbG/Lli0KCgqyG2vbtq02bNhw2/umpqZq0KBBcnJyso0FBATo7NmzDs8JAACAh5OL1QEAwGonT55UyZIl7cbKlCmj48eP3/a+1atXV/Xq1e3G1qxZk24MAAAA2RfFG0C2Fx8fL09PT7sxDw8PxcfH3/VjRUZG6o033tDKlSsdFQ8AAAAPOXY1B5DteXh4KCEhwW4sKioqXRm/ncTERIWEhKhPnz6qVauWIyMCAADgIUbxBpDtFStWTGFhYXZjYWFhCgwMvKvH6datmwICAvTWW285Mh4AAAAechRvANlevXr1tG7dOrux5cuXq0mTJnf8GKNHj9bx48c1b948uxOtAQAAABzjDSDb69atm6pVq6YGDRqoadOmWrdunZYsWaLQ0NA7uv+iRYv05ZdfaseOHXJ3dzc5LQAAAB4297TFu3HjxnJ2dtaUKVPsxrdt26aqVavKw8NDNWrU0K5du+zmZ8+erWLFisnLy0tt2rSxu9xOcnKyXnvtNeXJk0f58uXTm2++qZSUlHuJBwB3pWDBglq2bJmGDx+uXLlyafTo0Vq1apUKFChw2/tu2bJFXbt2VVhYmIoUKSIXFxfbLTw8PBPSAwAA4EHnZBiGcS93HD16tHLlyqXBgwdLks6ePatKlSpp1qxZatWqlb7//nv17t1bf/75pwoVKqR169apV69e+vbbb1WqVCmNHz9eGzZs0Pbt2yVJw4YN0549ezR//nw5Ozurc+fOqly5siZMmHBHeWJjY+Xj46OYmBh5e3vfy1OyzCPDvrc6QrZzYmILqyMAAAAAeMjdaQ912K7mc+bMUfv27RUcHCxJat26tX777TfNnDlT7733nqZNm6apU6eqcuXKkqQxY8bop59+0saNG1WvXj199tlnOnjwoAoWLChJWrBggcqWLau3335bXl5ejooJwCJ8wJT5+IAJAADgweCwk6tt2bJFQUFBdmNt27bVhg0bZBiGdu7cqRYtWmQ4v2fPHpUrV06FChWyzeXLl0+1atWybREHAAAAAOBh5LDiffLkSZUsWdJurEyZMjp+/LiioqLk6+ub7qRD1+Yzuu/18xlJTExUbGys3Q0AAAAAgAeNw4p3fHy8PD097cY8PDwUHx+f4dzdzGdkwoQJ8vHxsd0CAgIc80QAAAAAAHAghxVvDw8PJSQk2I1FRUXJ09Mzw7m7mc/I8OHDFRMTY7tFREQ45okAAAAAAOBADivexYoVU1hYmN1YWFiYAgMDlS9fPl26dEnJyckZzmd03+vnM+Lm5iZvb2+7GwAAAAAADxqHFe969epp3bp1dmPLly9XkyZN5OTkpOrVq2vjxo0ZzletWlWHDh3SxYsXbXPR0dHauXOn6tSp46iIAAAAAABkOocV727dumn+/Pn64YcflJKSojVr1mjJkiXq06ePJGnQoEEaMGCADh8+rISEBI0ZM0YeHh5q1KiRXF1d1aVLF/Xo0UNRUVG6cOGCunbtqn79+t10V3MAAAAAAB4GDiveBQsW1LJlyzR8+HDlypVLo0eP1qpVq1SgQAFJUvPmzTVgwAA1bdpUefPmVWhoqFasWGG7/3vvvafChQvr0UcfVenSpVWqVCmNHj3aUfEAAAAAALCEk2EYhtUhHCE2NlY+Pj6KiYl56I73fmTY91ZHyHZOTGxx+4XgUKznmY/1HAAAwFx32kMdtsUbAAAAAACkR/EGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATETxBgAAAADARBRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATETxBgAAAADARBRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATETxBgAAAADARBRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATETxBgAAAADARBRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATETxBgAAAADARBRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATETxBgAAAADARBRvAAAAAABMRPEGAAAAAMBEFG8AAAAAAExE8QYAAAAAwEQUbwAAAAAATETxBgAAAADARBRvAAAAAABMRPEGAAAAAMBEDi3eUVFR6tixo/LmzatixYpp6tSptrm//vpL9erVk4eHhypUqKC1a9fa3XfVqlUqXbq0PDw89OSTT+ro0aOOjAYAAAAAgCUcWrw7deqkkiVLKiIiQrt379aWLVs0f/58JSYm6tlnn1WHDh0UExOjWbNmqXv37tq/f78kaf/+/erZs6c+++wzxcTEqF27dmrevLkSEhIcGQ8AAAAAgEzn0OL966+/6q233pKXl5cKFiyo/v3765tvvtHKlStVsWJF9e3bV66urqpfv75GjhypyZMnS5KmT5+uIUOGqGHDhnJ1dVWvXr1Uo0YNLV682JHxAAAAAADIdA4t3i1atNCQIUMUGxuriIgIjR8/XgULFtSWLVsUFBRkt2zbtm21YcMGSbrtPAAAAAAADyuHFu8ZM2ZoxYoV8vHxUbFixXTmzBmNGjVKJ0+eVMmSJe2WzZ8/vxISEpSYmKjTp08rMDDQbr5MmTI6fvz4Tb9XYmKiYmNj7W4AAAAAADxoHFa8U1JS1KpVK7344ouKiopSeHi4mjdvrnPnzik+Pl6enp7p7uPh4aH4+HilpaXJ2dk5w7mbmTBhgnx8fGy3gIAARz0VAAAAAAAcxmHFe82aNfLw8ND7779vO6v5mDFj1KVLF7m6umZ4orTo6Gh5enrK2dlZhmHYzUVFRWVY1q8ZPny4YmJibLeIiAhHPRUAAAAAABzGYcX7yJEjql+/vt2Yl5eXfH19JUlhYWF2c5GRkcqbN69cXV3l7++vkydP2s2HhYWl2/38em5ubvL29ra7AQAAAADwoHFY8Q4MDNThw4ftxhISEvTXX3+pY8eOWrdund3c8uXL1aRJE0lSvXr1bjkPAAAAAMDDymHFu1WrVgoNDdWMGTN0+fJlnT59Wp06dVLt2rUVEhKiXbt2acGCBUpOTtaOHTs0adIkvfnmm5Kk/v37a+zYsdq5c6eSk5M1Z84c7du3Tx06dHBUPAAAAAAALOGw4u3u7q41a9bo22+/VcGCBVWrVi0VKFBACxYskLu7u7777jvNnj1buXPnVrdu3TR79mxVqFBBklSpUiV9/PHHevnll+Xt7a2FCxdq7dq1cnNzc1Q8AAAAAAAs4eLIBytVqpTWr1+f4Vz58uW1devWm963devWat26tSPjAAAAAABgOYdexxsAAAAAANijeAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAABgIoo3AAAAAAAmongDAAAAAGAiijcAAAAAACYytXiHh4dr/vz5Zn4LAAAAAAAeaKYW79dff11nz561fb1t2zZVrVpVHh4eqlGjhnbt2mW3/OzZs1WsWDF5eXmpTZs2dvcFAAAAAOBhZFrxXrt2rY4dO6ZBgwZJks6ePas2bdpo5MiRio2N1YgRIxQUFKTIyEhJ0rp16zR+/HitWbNGFy5cUMWKFdWmTRuz4gEAAAAAkClMKd6JiYkaMGCAZs2aJRcXF0nSnDlz1L59ewUHBytnzpxq3bq1OnXqpJkzZ0qSpk2bpqlTp6py5cry8PDQmDFjlJaWpo0bN5oREQAAAACATGFK8Z40aZIaNGigunXr2sa2bNmioKAgu+Xatm2rDRs2yDAM7dy5Uy1atMhwHgAAAACAh5XDi3dERIQmTJig9evXK0+ePHrjjTeUlpamkydPqmTJknbLlilTRsePH1dUVJR8fX3l7u6e4TwAAAAAAA8rhxfvMWPGqGnTpvrjjz8UGhqqrVu3asaMGYqPj5enp6fdsh4eHoqPj89w7vr5jCQmJio2NtbuBgAAAADAg8bF0Q+4evVqHT58WHny5JEkffHFF2rXrp08PDyUkJBgt2xUVJQ8PT0znLt+PiMTJkzQu+++6+j4AAAAAAA4lEO3eJ8/f15eXl620i1JFSpU0KlTp1SsWDGFhYXZLR8WFqbAwEDly5dPly5dUnJycobzGRk+fLhiYmJst4iICEc+FQAAAAAAHMKhxTtfvny6ePGiLl68aBs7dOiQihUrpnr16mndunV2yy9fvlxNmjSRk5OTqlevnu4M5tfmM+Lm5iZvb2+7GwAAAAAADxqHFm9nZ2d17txZnTt31rlz5xQWFqbu3bvr9ddfV7du3TR//nz98MMPSklJ0Zo1a7RkyRL16dNHkjRo0CANGDBAhw8fVkJCgsaMGSMPDw81atTIkREBAAAAAMhUDj/Ge+LEiRo6dKgqVqwoLy8vvfbaa+rRo4ckadmyZerbt6/atGmjihUratWqVSpQoIAkqXnz5goPD1fTpk0VFRWlZs2aacWKFY6OBwAAAABApnIyDMOwOoQjxMbGysfHRzExMQ/dbuePDPve6gjZzomJLW6/EByK9TzzsZ4DAACY6057qMMvJwYAAAAAAP4PxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADARxRsAAAAAABOZWrwnT56sCxcuSJL++usv1atXTx4eHqpQoYLWrl1rt+yqVatUunRpeXh46Mknn9TRo0fNjAYAAAAAQKYwrXjv27dP77zzjiQpMTFRzz77rDp06KCYmBjNmjVL3bt31/79+yVJ+/fvV8+ePfXZZ58pJiZG7dq1U/PmzZWQkGBWPAAAAAAAMoUpxTspKUkvv/yyUlJSJEkrV65UxYoV1bdvX7m6uqp+/foaOXKkJk+eLEmaPn26hgwZooYNG8rV1VW9evVSjRo1tHjxYjPiAQAAAACQaUwp3iNGjFClSpVUtGhRSdKWLVsUFBRkt0zbtm21YcOGO5oHAAAAAOBh5fDi/euvv2r58uWaMWOGbezkyZMqWbKk3XL58+dXQkKCEhMTdfr0aQUGBtrNlylTRsePH3d0PAAAAAAAMpWLIx8sNjZWnTt31ty5c+Xj42Mbj4+Pl6enZ7rlPTw8FB8fr7S0NDk7O2c4dzOJiYlKTEy0+94AAAAAADxoHLrF+7XXXlNISIgaNWpkN+7h4ZHhidKio6Pl6ekpZ2dnGYZhNxcVFZVhWb9mwoQJ8vHxsd0CAgIc8hwAAAAAAHAkhxXv1atXa9GiRfr444/l7u4ud3d3hYeHq2jRojp48KDCwsLslo+MjFTevHnl6uoqf39/nTx50m4+LCws3e7n1xs+fLhiYmJst4iICEc9FQAAAAAAHMZhxTsoKEjJyclKSEiw3YoXL65Tp05p3LhxWrdund3yy5cvV5MmTSRJ9erVu+V8Rtzc3OTt7W13AwAA9sLCwtS8eXPlzp1bZcqU0ZIlS+zm/f395eLiYrtNmjRJkpSWlqYRI0aoUKFCyp8/v3r37q24uDgrngIAAA89067jfb3g4GDt2rVLCxYsUHJysnbs2KFJkybpzTfflCT1799fY8eO1c6dO5WcnKw5c+Zo37596tChQ2bEAwAgSzIMQ88995yefPJJXbhwQUuXLtXw4cP122+/SZIuXbokNzc3paSk2G5DhgyRJE2dOlVbtmxRaGio/vnnH8XFxdn+3wYAAHcnU4q3u7u7vvvuO82ePVu5c+dWt27dNHv2bFWoUEGSVKlSJX388cd6+eWX5e3trYULF2rt2rVyc3PLjHgAAGRJly5dUr9+/TRkyBC5ubmpSpUqCgoK0tatWyVJBw8eVJkyZTK8b9GiRbVw4UIVKVJEvr6+GjhwoDZv3pyZ8QEAyDIcelbzG504ccL27/Lly9v+o89I69at1bp1azPjAACQreTJk0c9e/aUJCUlJWnz5s1asWKFVq9eLUk6dOjQTYv3tb3ODMNQWFiYRo8erWbNmmVOcAAAsphM2eINAACsVatWLT399NNq1KiRqlWrJum/Ld5LlixR3rx5VbVqVa1fvz7d/T766CM9+uij2rFjhwYNGpTZsQEAyBIo3gAAZAM7duzQjh07dOTIEY0fP16S1KJFC23fvl2RkZGaOnWqunbtqkOHDtnd77XXXtPJkyf18ssv6+mnn1ZSUpIV8QEAeKhRvAEAyAbc3d31xBNP6JtvvtEHH3wgSWratKkCAwPl6uqqp556SkOHDtUXX3xhdz8nJycFBARoypQp8vf31w8//GBFfAAAHmoUbwAAsqgTJ07ozJkzdmP+/v7KkSOH4uPj0y0fGBioU6dOKS4uTnv27Ek3X6VKlXSPBwAAbo/iDQBAFrVt2zYNHjzYbuzEiRPKnTu3pkyZom+//dZubuvWrSpdurRy5Mihp59+WrGxsXbzu3fvVvny5U3PDQBAVkPxBgAgi2rdurV27dql+fPnKz4+XocPH9YLL7ygd955R4899pgGDBigPXv2KC4uTvPmzdMXX3yh3r17y83NTZ07d1bXrl0VGRmpmJgYjRo1SpLUoEEDi58VAAAPH1MvJwYAAKzj5eWlNWvWqF+/furbt6/y5s2rwYMHq3PnzpKkf//9VyEhITp9+rSqVaum1atXq0iRIpKksWPHasSIEapWrZquXLmili1bavny5RY+GwAAHl5OhmEYVodwhNjYWPn4+CgmJkbe3t5Wx7krjwz73uoI2c6JiS2sjpDtsJ5nPtbzzMd6nvlYzwEAVrrTHsqu5gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmMihxfvixYvq1KmT/Pz89Mgjj2jixIlKS0uTJG3btk1Vq1aVh4eHatSooV27dtndd/bs2SpWrJi8vLzUpk0bnT171pHRAAAAAACwhEOLd9u2beXv769jx47pp59+0qpVqzR9+nSdPXtWbdq00ciRIxUbG6sRI0YoKChIkZGRkqR169Zp/PjxWrNmjS5cuKCKFSuqTZs2jowGAAAAAIAlHFa8//zzT507d07jxo2Tt7e3SpUqpblz5+rzzz/XnDlz1L59ewUHBytnzpxq3bq1OnXqpJkzZ0qSpk2bpqlTp6py5cry8PDQmDFjlJaWpo0bNzoqHgAAAAAAlnBY8U5NTdWgQYPk5ORkGwsICNDZs2e1ZcsWBQUF2S3ftm1bbdiwQYZhaOfOnWrRokWG8wAAAAAAPMxcHPVA1atXV/Xq1e3G1qxZo+rVqys8PFwlS5a0mytTpoyOHz+uqKgo+fr6yt3dPd384sWLb/r9EhMTlZiYaPs6NjbWAc8CAAAAAADHMu2s5pGRkXrjjTc0cuRIxcfHy9PT027ew8ND8fHxGc5dP38zEyZMkI+Pj+0WEBDg8OcAAAAAAMD9MqV4JyYmKiQkRH369FGtWrXk4eGhhIQEu2WioqLk6emZ4dz18zczfPhwxcTE2G4REREOfx4AAAAAANwvh+1qfr1u3bopICBAb731liSpWLFiCgsLU7FixWzLhIWFKTAwUPny5dOlS5eUnJysnDlzppu/GTc3N7m5uZkRHwAAAAAAh3H4Fu/Ro0fr+PHjmjdvnu1Ea/Xq1dO6devsllu+fLmaNGkiJycnVa9ePd0ZzK/NAwAAAADwMHPoFu9Fixbpyy+/1I4dO+xOltatWzdVq1ZNDRo0UNOmTbVu3TotWbJEoaGhkqRBgwZpwIAB+uabb/TII49o8uTJ8vDwUKNGjRwZDwAAAACATOew4r1lyxZ17dpVycnJKlKkiN3csWPHtGzZMvXt21dt2rRRxYoVtWrVKhUoUECS1Lx5c4WHh6tp06aKiopSs2bNtGLFCkdFAwAAAADAMg4r3vXr17e7vNeNihcvrj179tx0vmfPnurZs6ej4gAAAAAA8EAw7XJiAAAAAACA4g0AAAAAgKko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAAAAAJiI4g0AAAAAgIko3gAAAAAAmIjiDQAAAACAiSjeAAAAAACYiOINAAAAAICJKN4AAADIUkaMGKEcOXLIxcVFLi4uqlixoiTpr7/+Ur169eTh4aEKFSpo7dq1FicFkF1QvAEAAJClHDx4UBs3blRKSopSUlJ04MABJSYm6tlnn1WHDh0UExOjWbNmqXv37tq/f7/VcQFkAxRvAAAAZCkHDx5U2bJl7cZWrlypihUrqm/fvnJ1dVX9+vU1cuRITZ482aKUALITijcAAACyjISEBF28eFEFCxa0G9+yZYuCgoLsxtq2basNGzZkZjwA2RTFGwAAAFnG4cOHdfXqVQUEBKho0aIaOnSokpOTdfLkSZUsWdJu2fz58yshIUGJiYkWpQWQXVC8AQAAkGV4eXnp559/1t9//60dO3bo4MGDGj16tOLj4+Xp6ZlueQ8PD8XHx1uQFEB24mJ1AAAAAMBRSpUqpVKlSkmSAgIC9OWXX6pMmTKqWbOmEhIS0i0fHR2dYSEHAEdiizcAAACyrDx58sgwDPn5+SksLMxuLjIyUnnz5pWrq6tF6QBkFxRvAAAAZAl//PGHevXqZTd2+PBhubu7q2nTplq3bp3d3PLly9WkSZPMjAg4xMWLF9WpUyf5+fnpkUce0cSJE5WWlibpv3Xe09NTTk5OunDhgsVJcQ3FGwAAAFlC+fLltW7dOs2cOVMJCQnau3ev2rdvr6FDhyo4OFi7du3SggULlJycrB07dmjSpEl68803rY4N3LW2bdvK399fx44d008//aRVq1Zp+vTpkqSyZcsqLi5OxYsXtzglrkfxBgAAQJbg4eGh77//XsuWLVO+fPnUsmVLdejQQX379pW7u7u+++47zZ49W7lz51a3bt00e/ZsVahQwerYwF35888/de7cOY0bN07e3t4qVaqU5s6dq88//9zqaLgFTq4GAACAO/bIsO+tjnB7tQbLr9Z//5x1SZo1fO3/zdUbrkL1pDhJvX5JlX558J/PiYktrI6AB0hqaqoGDRokJycn21hAQIDOnj1rYSrcDsUbAAAAAB4S1atXV/Xq1e3G1qxZk24MDxaKNwAAAAA8pCIjI/XGG29o5cqVVkfBLXCMNwAAAAA8hBITExUSEqI+ffqoVq1aVsfBLVC8AQAAAOAh1K1bNwUEBOitt96yOgpug13NAQAAAOAhM3r0aB0/flwbN260O9EaHkwUbwAAAAB4iCxatEhffvmlduzYIXd3d6vj4A5QvAEAAADgIbFlyxZ17dpVycnJKlKkiN3csWPHVLx4cYuS4VYo3gAAAABwnQf9evWFB2Z8BvOGnxyQdOC/L16YoepTdmZeqPuU1a9X/0CdXC02NlYvvfSScuXKpSJFiuj999+3OhIAAAAAAPflgdri/eqrr8rd3V2nT5/WpUuX1LZtW/n6+qpnz55WRwMAAAAA4J48MMX79OnT2rRpk8LDw+Xu7i4fHx8tWLBAzzzzDMUbAAAAAPDQemB2Nd+2bZuaNm1qd1a+cuXKKVeuXDp69KiFyQAAAAAAuHcPzBbvkydPqmTJkunGy5Qpo+PHj6tUqVJ244mJiUpMTLR9HRMTI+m/48QfNmmJcVZHyHYexvXkYcd6nvlYzzMf63nmYz3PfKznmY/1PPOxnme+h3U9v5bbMIxbLvfAFO/4+Hh5enqmG/fw8FB8fHy68QkTJujdd99NNx4QEGBKPmQtPv+zOgFgPtZzZAes58gOWM+RHTzs6/nly5fl4+Nz0/kHpnh7eHgoLi79J0tRUVEZFvLhw4dr0KBBtq/T0tIUHR2tfPnyycnJydSs+E9sbKwCAgIUEREhb29vq+MApmA9R3bAeo7sgPUc2QHreeYzDEOXL19Od031Gz0wxbtYsWL64Ycf0o2HhYUpMDAw3bibm5vc3Nzsxnx9fc2Kh1vw9vbmFxtZHus5sgPWc2QHrOfIDljPM9ettnRf88CcXK1u3brasGGDUlJSbGMHDhxQYmJihsd+AwAAAADwMHhgire/v7/q1KmjgQMH6sqVK4qIiFCPHj309ttvWx0NAAAAAIB79sAUb0n69NNPFR0drUKFCqlmzZoKDg5Wt27drI6Fm3Bzc9OoUaPS7fIPZCWs58gOWM+RHbCeIztgPX9wORm3O+85AAAAAAC4Zw/UFm8AAAAAALIaijcAAAAAACaieAMAAAAAYCKKNwAAAAAAJqJ4AwAAAMBDKD4+3uoIuEOc1RwAAABZTqtWreTk5JRu3MXFRT4+PqpSpYpeeeUV5c2b14J0gGMUKVJE4eHhypkzp9VRcBts8QaA66xYsUIfffSR7etx48Ypb968qlKlikJDQy1MBjjWxYsXrY4AmKpXr146evSoPD091alTJ3Xr1k358+fXvn379PTTT+vcuXOqUaOGzpw5Y3VU4J499dRTmjp1qlJTU62OgttgizfuWkpKiubNm6dffvlFaWlpatiwobp06SJXV1erowH3rXjx4lqzZo0qVaqk77//XpMmTdIPP/ygtWvX6r333tO+ffusjgg4hKurq5KSkjKcCw4O1sqVKzM5EeBY7777rq5evapJkybZjY8aNUqpqakaO3as5s+fr/Xr12vx4sUWpQTuT8uWLbVp0ya5u7urfPny8vb2Vo4cOWzz3377rYXpcD2KN+5KbGysnn76aeXPn18dO3ZUjhw5tGTJEp04cUIbNmyQr6+v1RGB+1KwYEHt379fnp6eqlmzpr755huVKVNGV65cUaFChXTlyhWrIwL3rH///nJycpJhGJo5c6b69u2bbpmkpCQtX75cFy5csCAh4Dj+/v4KDQ1VwYIF7cbPnj2r6tWrKyIiQsnJyfL399e5c+csSgncn82bN99yvmHDhpmUBLfjYnUAPFyGDh2qihUr6vPPP7eNPf/88+rXr5/efPNNffbZZxamA+7fmDFjVKNGDbm6umrw4MEqU6aMJOl///uf2rVrZ3E64P5Ur17d9m8nJyc9/vjj6ZZxdnZW//79MzMWYIrY2Fi5ubmlG/fy8rJ9sJQzZ84MjwMHHhbXinVUVJT27t2rJ5980uJEuBm2eOOuFChQQKGhoSpatKjd+KlTp1StWjWdP3/eomSA41y9elVOTk7y9PS0jf31118qUaKE3N3dLUwGOM4LL7ygJUuWWB0DME3Lli31zDPPpNuz46uvvtKMGTO0detW/fHHH+rbt69+++03i1IC92/o0KH66quvdP78ecXHx6tPnz4qUKCARo8ebXU0XIct3rgrV69elY+PT7pxX19fxcXFWZAIcDwvLy/t3btXoaGh6tKli+Li4lSuXDmrYwEORelGVjd58mQ9+eSTSk1NVefOneXm5qZVq1Zp8ODBWr58ucLDw9W5c2e99957VkcF7tkHH3yg/fv3659//rH9jT5p0iS1aNFC+fPnV79+/SxOiGvY4o270rx5c4WEhKhHjx5244sWLdK8efP0008/WZQMcIzk5GR17NhRx44d04EDB5SQkKC+ffvqypUrmjt3rpyduRgEso5PP/1Ua9asUWRkpBITEyVJhmHIycmJEwkiS/j77781bNgwbdy4UZJUu3ZtjR07Vo8//rjthGovvviilRGB+1KqVCmtXr1a5cuXl6enp21D2N69e/X888/r77//tjghrqF4467s27dPzZo106hRo2wnV1uxYoWGDRumNWvWqGrVqlZHBO7LiBEjdOrUKc2fP18eHh6Kj49Xamqq2rVrp0qVKrHbFrKMYcOGadOmTRo9erRKliyZ7soUxYsXtygZAOBOubu76+rVq8qRI4dd8U5OTpa3t7fi4+MtTohrKN64a4cOHdLw4cP1yy+/yMnJSfXq1dP48eNVuXJlq6MB96148eLavHmzHnnkEbv/wI4ePaomTZooPDzc4oSAY+TLl0+hoaEUbGRpqamp2rNnj91eHdcEBwdblApwnAoVKmjp0qWqUKGCbYOBJP3+++/q1KmTDh48aHFCXEPxxm1FR0dnOH5t1bn+bKB58+bNlEyAWTw8PHT58mW5uLjYFe+kpCTOZYAsxd/fX0ePHrU7iSCQlfz5558KCgpSkSJF9Oijj9rt1eHk5KQ5c+ZYmA5wjIULF2r27NlatWqVihYtqri4OEVERKh169YaMGCAXn75Zasj4v/j5Gq4rccff9x23ddrri/b58+fV1xcnIYNG6Zx48ZZERFwmIoVKyo0NFQ1a9a0W+e3bt2q8uXLW5gMcKy+fftq9OjRmjRpktVRAFP07NlTo0aNUrdu3ayOApimY8eOiouLU9WqVZWYmKg6deooPDxc77zzDqX7AcMWb9yXL774QkOHDtWsWbPUtm1bq+MA9239+vUaMmSIlixZoscff1xxcXH6/fff1aFDB3388cdq3ry51REBh1i2bJnGjh2rokWLKjg4WD4+PnYnD2Q3XDzsvLy8FB0dneG1vIGsJikpSfv375f030YE1vsHD1u8cU9SUlLUv39//fzzz9q8ebMqVKhgdSTAIZo1a6a0tDS1a9dOCQkJKlKkiHx9ffW///2P0o0sZe3atXrsscck/bdHx/WcnJwo3njo1axZU/v371f16tWtjgKYpnbt2urVq5fat2+vxx9/3Oo4uAW2eOOunTlzRsHBwfL19dXixYuVJ08eqyMB9+X999/XwIED053VOSoqStJ/J6ECADxc/vrrL3Xu3FkzZsygfCPL2r17tz777DOtX79ezz33nHr27KmKFStaHQsZoHjjrmzdulXPP/+8OnXqpPHjx3NNY2QJwcHBCg0N1bhx4/TSSy9ZHQfIFL/++ust5xs0aJBJSQBzVKpUSVFRUYqMjJS/v7/tcAquVY+sKC4uTkuWLNEXX3wh6b9zHLRr107u7u4WJ8M1FG/csY8//lijRo3SJ598ovbt21sdB3CorVu36s0331RSUpKmTJmixo0bWx0JMNXzzz+vvXv36uzZs6pbt64kadu2bSpcuLAqV66spUuXWpwQuD+3u/wjl9JDVnT8+HENHDhQGzduVO/evTmB5gOE4o3bSkxMVI8ePbRy5Up9/PHHqlKlyk2XvXa8IPCwWrZsmYYMGaLSpUurTJky6eY/+ugjC1IBjrdx40YNGzZM33zzjfz9/SVJp0+fVkhIiD788EPVqlXL4oTA3YuMjJSHh4d8fHysjgJkmtTUVK1evVqzZs3S+fPn9eqrr+qll16St7e31dFwHU6uhtsaPny4IiIiVKNGDS1YsOCmyzk5OWnjxo2ZmAxwrLi4OO3bt0+XL1/WY489prJly1odCTDN8OHD9fHHH9tKt/Tftb2nTZumgQMHavv27RamA+5N5cqVVaZMGW3ZskUlSpSwu/zpNdd2NT9+/LgFCQHHGjt2rGbOnKly5cpp3LhxeuKJJ6yOhJtgizeAbM8wDH3++ecaPXq0mjRpovHjx9uVESAr8vT01MWLF9NdciYxMVF58uRRXFycRcmAexcaGqrcuXOrVKlSthNk3gwnzkRWcOnSJc2fP1+ff/65AgIC1Lt3b7Vs2TLDD51gLYo3gGyvUqVKyp8/v6ZMmcKlOJBtlCpVSl999VW6sz3v2rVLHTt21N9//21RMsDxrl69qsTERLuxvHnzWpQGMMevv/6qTz/9VLt27dIrr7yi7t27q3DhwlbHwv/HruYAsr2xY8cqKCjI6hhApnrttdfUs2dPrV+/Xvnz55cknTt3Tr169dLAgQMtTgfcv4sXL6p379768ccf5enpqZw5c9rm2NUcWVGDBg2UlJSkqKgozZkzRzlz5tSwYcOsjoX/j+ININujdCM76t+/v86dO6cKFSqoUaNGMgxDv/76q/r06aPevXtbHQ+4b926dZOfn5/Cw8OVO3duq+MApjl58qTmzJmjr776SlWqVNGgQYPUtGlTdjd/wLCrOQAA2diZM2e0fft2OTk5qW7duipYsKDVkQCH8Pb2VkREBGc4R5bWpEkTnTlzRl27dtUrr7wiPz8/qyPhJijeAABkQ//73/80YMCADOf+/fdfFSlSJHMDAQ5WoUIF/fzzzxzjiixty5Ytql+/vtUxcAecrQ4AAAAy35AhQzIcNwxD5cqVy+Q0gOONHz9eXbp0UUJCgtVRANMYhmF3ud+FCxeqSpUqCgoKUlhYmIXJcCOO8QYAIJvInTu3nJycZBiGUlNT5e3tnW4ZwzBUu3ZtC9IBjvXzzz/r9OnTKlasmJo1ayYfHx85O//fNqePPvrIwnSAY/Ts2VOzZ8+WJO3YsUNTp07V0qVL9f3336tjx47atm2bxQlxDbuaAwCQDeXMmVPJyclWxwBMM3/+/FvOd+rUKZOSAObJmzevwsPD5eHhoSeeeEIzZsxQrVq1FB8fr/z58+vq1atWR8T/xxZvAACyodWrV1sdATAVxRrZwWuvvaYGDRrI1dVVzzzzjGrVqiVJmjt3rpo0aWJxOlyPLd4AAGRDVapU0R9//CEXFz6DR9Z14sQJjRgxQps3b1ZaWpoaNmyosWPH6tFHH7U6GuAwR44cUY4cOVSyZEnb2ObNm1W5cmXlyZPHwmS4HidXAwAgGypYsKCWLVtmdQzANEeOHFHdunVVrVo1/f7779q7d69q166tBg0a6NChQ1bHAxymTJkyKlmypK5evaro6GhFR0erUqVKYvvqg4Ut3gAAZEM9evTQ4sWLFRgYqKpVq8rb21s5cuSwzXPiKTzsWrVqpSZNmuj111+3G//kk0/07bff6ocffrAoGeA40dHR6tOnj3788Ud5enoqZ86ctjknJycdP37cwnS4HsUbAIBsiBNPIavLnTu3IiIi5Ovrazd+6dIlFS1aVFeuXLEmGOBAwcHB8vPz05QpU5Q7d26r4+AWKN4AAGRz//zzj9LS0lS6dGmrowAOkz9/fh04cECFChWyGz937pzKli2r6Ohoi5IBjuPt7a2IiAj5+PhYHQW3wTHeAABkU6tWrVLx4sXVqlUrtWnTRsWLF+e4b2QZrVu31oQJE9KNT58+XUFBQRYkAhwvICBAcXFxVsfAHWCLNwAA2dDatWvVu3dvLV261Hb5mT///FMhISH68MMP1apVK4sTAvcnOjpajRs3VtmyZfXKK6/IxcVFy5Yt02+//abNmzcrX758VkcE7tvq1av1ySefaNWqVXJ3d7c6Dm6B4g0AQDZUvXp1vfvuu2rRooXd+Lp16/TWW28pNDTUomSA48THx2vWrFnatGmT7XJiffr0kZeXl9XRAIfo37+/fvnlF509e1bNmjWTj4+PnJ3/b6dmTpT54KB4AwCQDXl6eioqKkoeHh524/Hx8cqbN6/i4+MtSgYAuFOcKPPh4WJ1AAAAkPkKFCigsLAwlS9f3m48IiJCfn5+FqUC7s/zzz+vEiVKaNKkSXr33Xfl5OR002VHjhyZickAc1CsHx4UbwAAsqEePXqoX79+Wrt2re24wJSUFA0ZMkQ9evSwOB1wbx555BH5+/tLknLlymVxGsB877333i3n+YDpwUHxBgAgG3rrrbcUFhamChUqKDg4WC4uLlq9erWqV6+uESNGWB0PuCeTJ0+2/fvJJ59UtWrVLEwDmC9fvnyaOXOmvLy81LZtW0nS8uXLlZyczIeoDxiO8QYAIBsLDQ3VL7/8YjvxVI0aNayOBDiEq6urkpKSMpx77LHHOIEgsoQZM2Zo8+bNWrJkie2kaqmpqerQoYOeffZZde7c2dqAsKF4AwCQzV0rJ66urhYnAe5Pq1at5OTkJMMwtHbt2nRn7Zf+W98PHjyoiIgICxICjlWqVCn9+OOPKlGihN34sWPH9Mwzz+jvv/+2KBluRPEGACCb+u233zRw4EAdPHhQklSxYkVNnTpVtWvXtjgZcG82b94sSTIMQ02aNNGGDRvSLePs7KyyZctyEkFkCR4eHoqKipKnp6fdeFxcnPLnz6+4uDiLkuFGHOMNAEA2tGPHDoWEhGjGjBlq3bq1JGnlypUKDg7WihUrVKdOHWsDAvegYcOGtn8PHjzY7msgK6pcubLWr1+vNm3a2I2vXbtWVapUsSgVMsIWbwAAsqGGDRuqZ8+eevHFF+3GFy5cqFmzZmnr1q0WJQMcwzAMJScn2x1CsWfPHhUpUkQFChSwMBngOBs2bFDHjh315ZdfqkmTJpKk9evXq0uXLvrqq6/48OkBQvEGACAb8vLy0rlz5+Tl5WU3fuXKFRUoUIDdE/HQGzlypFxcXDRy5EilpqaqRYsWiomJ0cmTJzVx4kS9/PLLVkcEHGL9+vV64403dP78eUlSoUKF9MEHH+ipp56yOBmuR/EGACAbKl68uLZt26aiRYvajUdERKhhw4Y6fvy4RckAx8iTJ4/+/vtv+fn5adq0aTpy5IhmzZqlv/76S02aNNHp06etjgg4VFRUlJycnJQ3b16royADzlYHAAAAma9Xr16aMGFCuvGJEydq4MCBFiQCHKtQoUI6cuSI9uzZoxkzZmjixImSJF9fXyUnJ1ucDnC8fPnyUbofYJxcDQCAbKhkyZJauHChWrdurRdeeEGGYejrr79WeHi4nnzySa1cudK2bHBwsIVJgXszd+5cDRw4UC4uLlq0aJF8fX0lSZMnT9awYcOsDQcg22FXcwAAsqEuXbrc0XJOTk6aM2eOyWmAzBMfHy8PDw+rYwDIZijeAAAAyJKuXLmiL774Qnv27NHcuXO1f/9+lSxZkuKNLOPPP/9UtWrVrI6BO0DxBgAgm4qPj1doaKiioqKUkpJiN8fu5XjYRUZGqnHjxnr22Wc1c+ZMxcfHa/LkyZo3b55++eUX+fn5WR0RuG+urq5KSkrKcO6xxx5TaGhoJifCzVC8AQDIhtatW6dOnTqpZs2ayps3r5yd/+98q+xejqzg5ZdfVuXKlfXmm2/Kw8ND8fHxkqRRo0YpLCxMCxYssDghcG9atWolJycnGYahtWvXqkWLFumWSUpK0sGDBxUREWFBQmSE4g0AQDZUqlQpzZkzR/Xr17c6CmCKfPny6Z9//lGePHnk6elpuzZ9VFSUypQpowsXLlicELg3mzdvliQZhqEmTZpow4YN6ZZxdnZW2bJl2bPjAcJZzQEAyIaioqJUq1Ytq2MApklKSpKnp2e6cVdXVyUmJlqQCHCMhg0b2v49ePBgu6/x4OI63gAAZEMvv/yyvvjiC6tjAKZp3LixvvvuO0n/bRm8ZtmyZWrUqJFFqQDHmjhxor766iu747wTExO1bNkyC1MhI2zxBgAgG5oyZYp69uyprVu3qn79+sqbN69cXP7vzwJOroaH3dSpU9W8eXNFRUVJko4eParVq1drxowZWr9+vcXpAMdYuXKlJk2apBYtWsjV1VWSlJCQoPfee09eXl569tlnLU6IazjGGwCAbGjt2rV65ZVXVL16dfn5+dmVbk6uhqzi1KlTmjhxou2Y2Pr16+utt95S0aJFLU4GOEbt2rU1ZcoU1a1b1278l19+0ciRI/Xrr79alAw3ongDAJANlSxZUrNnz9aTTz5pdRQAwD3KlSuXYmJilCNHDrvxlJQU5c2bV7GxsRYlw43Y1RwAgGzo/PnzqlevntUxANOsXLnylvMcToGswNPTU2fPnlWRIkXsxiMjI9OVcViL4g0AQDb00ksv6fPPP1efPn2sjgKY4tqJ1SQpLS1NsbGx2rhxowICAlSzZk2KN7KEli1b6tNPP9W7775rNz5z5kw1a9bMolTICMUbAIBsqG7duho5cqS2bt2qRo0aKU+ePHZbRygleNjNnTs33dilS5cUEhKi9u3bW5AIcLzx48erXr16Sk1NVceOHZWSkqI5c+Zo6dKl2r59u9XxcB2O8QYAIBvq0qXLTec4uRqyspMnT6ply5bat2+f1VEAh7hw4YLGjx+vDRs2KDU1VQ0bNtSIESPS7X4Oa1G8AQAAkG1cuXJFBQsW1NWrV62OAiAbYVdzAACyiSFDhsjf31+vv/66FixYcMtlX3nllUxKBWSe5ORkvfvuu6pfv77VUQCHMgxDYWFhCgwMtDoKboLiDQBANhEWFmb79+7du2+5LMUbD7tKlSrJycnJ9nVycrLOnz+vJ554QvPmzbMuGOBgn3zyicaOHauoqCglJCRo6NChKlOmjLp27Wp1NFyHXc0BAACQ5YSHh9t97ebmprx588rV1dWiRIDjLVy4UB9//LG+//57BQQEKD4+XqdPn1bz5s319ttvcyLBBwjFGwCAbOqvv/7S2rVrFRkZqcTERLu5jz76yKJUAIA7ValSJc2ZM0c1atSQp6en4uLiJEnbtm1Tnz59tHfvXosT4hqKNwAA2dDixYs1YMAAde3aVY8++mi6rYCdOnWyKBngGDfuap4RwzDk5OTEGc7x0HJ3d9eVK1fk4uJiV7yTk5Pl4+Nj+xrW4xhvAACyoREjRuibb75R3bp1rY4CmGLx4sXq2LGjgoKC9NJLL0mSFixYoHXr1mnRokXy8PCwOCFw//z9/RUREaESJUrYjf/zzz8qXLiwRamQEbZ4AwCQDfn4+OjChQvKmTOn1VEAU/Tp00eBgYEaPHiw3fi4ceN04cIFTZs2zaJkgONMmzZNW7du1ddffy1vb2/FxcXp6tWrat26tZ555hkNGjTI6oj4/yjeAABkQ507d1bTpk1tWwKBrMbPz09HjhxR3rx57cbPnTunChUq6Pz58xYlAxzrrbfe0tdff63w8HC1a9dOW7du1UsvvaQJEyZYHQ3XoXgDAJANHTt2TB07dlRISIjatGkjHx8fOTs72+ZvLCvAw8bb21vHjh2Tn5+f3fiFCxcUGBio2NhYi5IBjnfmzBlt375dklS7dm0VKVLE4kS4EcUbAIBs6MbjAa/n5OSk48ePZ2IawPFCQkL02GOPacSIEXbj48aNU2hoqFasWGFRMsBx+vfvr//973/KkSOH1VFwGxRvAAAAZDnh4eGqX7++XnzxRb3yyitycnLS/Pnz9dVXX+nXX39V8eLFrY4I3LdHH31Ua9euVZkyZayOgtvgrOYAAGQTN7u8Uo4cOZQrVy6VKVNG3bp1U+3atS1IBzhW8eLFtWvXLo0bN07t27eXs7OzGjVqpJ07d6pQoUJWxwMc4tVXX1Xjxo0VEhKiqlWrytvb227rd3BwsIXpcD22eAMAkE2Eh4dnOG4YhuLj47V9+3aNHj1aH374IX+sAcBDoEuXLjedc3Jy0pw5czIxDW6F4g0AAGx++eUX9enTR4cOHbI6CgDgNpYvX66QkJAM92bCg4XiDQAAbJKTk+Xj46O4uDirowAAbiNPnjwKCwuTr6+v1VFwG863XwQAAGQXW7duVenSpa2OAQC4A1OmTFFQUJBWrlypY8eO6fz584qOjrbd8OBgizcAANlEaGjoTeeSk5P1+++/a+zYsVqyZIkaNmyYickAx/vf//6nAQMGZDj377//cp1jZAlcGvLhQfEGACCbaNy4cYbjzs7OcnNzU7FixdSlSxfVqlUrk5MBjufq6qqkpKR044ZhyNfXVzExMRakApBdcTkxAACyiU2bNlkdATBV7ty55eTkJMMwlJqaKm9v73TLGIbBJfOQpaSkpGjevHn65ZdflJaWpkaNGqlz585ydXW1OhquwxZvAAAAZDk5c+ZUcnKy1TEAU8XGxurpp59W/vz51bFjR+XIkUNLlizRiRMntGHDBk669gCheAMAACDL+eGHH/TMM89YHQMwVe/evZWcnKzPP//cbrxfv35KTEzUZ599ZlEy3IjiDQAAgCwnNTVVffr00bhx45Q/f35J0vnz5zV69GhNnz6d6x4jSyhQoIBCQ0NVtGhRu/FTp06pWrVqOn/+vEXJcCMuJwYAAIAs54MPPtClS5dspVuS8ufPrzNnzuijjz6yMBngOFevXpWPj0+6cV9fX8XFxVmQCDdD8QYAAECW88UXX2jcuHF2Y05OTho/fjy73yLLqF+/vpYsWZJufPXq1apTp44FiXAznNUcAAAAWc7JkyczvMZxqVKluLYxsoxJkyapWbNmSk1NtZ1cbcWKFRo+fLi+++47q+PhOmzxBgAAQJZTuHBhHT16NN344cOHlTdvXgsSAY5XuXJlbdiwQT/88IP8/f1VuHBhLVmyRN9//72qVq1qdTxch5OrAQAAIMsZNWqUDhw4oBUrVtjGDMNQUFCQypYtq0mTJlmYDkB2Q/EGAABAlpOcnKw2bdro8uXL6tChg1JSUrRgwQLlypVLa9eulbu7u9URgXsWFxenM2fO6NFHH003d/r0aXl4eLBnxwOGXc0BAACQ5eTMmVNr1qzRG2+8ob/++kuHDx/W4MGD9fPPP1O68VBLTU1Vs2bNtGDBggznly5dqoYNGyohISGTk+FW2OINAAAAAA+JGTNm6Pvvv9fatWtvukxwcLAef/xxjRgxIhOT4VbY4g0AAIAsa+/evZo7d64kcV1jZAlffvml3nnnnVsuM3z4cC1dujSTEuFOsMUbAAAAWU5ycrI6duyoY8eO6cCBA0pISFDfvn115coVzZ07V87ObH/Cw8nX11fnzp2Tq6vrTZdJTk5W3rx5dfny5UxMhlvhHQcAAABZzujRo+Xu7q7ff/9dTk5OkqSPPvpIV65c0XvvvWdxOuDeubi4KCUl5ZbLJCUl8eHSA4afBgAAALKchQsX6t1335UkW/HOkSOHJk6caNv1HHgYVatWTT/++OMtl9m0aRPX8X7AULwBAACQ5Zw7d05FixZNN168eHGdP3/egkSAY/Tr109Dhw5VbGxshvPx8fF6++231adPn0xOhluheAMAACDLqVixokJDQyVJ15/SaOvWrSpfvrxVsYD7FhQUpKZNm6pevXravXu33dzBgwf15JNP6vHHH1f79u0tSoiMuFgdAAAAAHC0sWPHqkePHlqyZIltV/Pff/9dPXv21Mcff2xxOuD+TJ8+XZ999pleeOEFGYYhf39/nT17VgkJCRo6dKj69u1rdUTcgLOaAwAAIEv64YcfNGTIEB08eFCFChWSr6+vJk+erBYtWlgdDXCY48eP6+zZs8qfP79KlSpldRzcBMUbAAAAWVpUVJQkKV++fBYnAZBdcYw3AAAAspwqVarYLrmUL18+SjcAS1G8AQAAkOUULFhQy5YtszoGAEhiV3MAAABkQT169NDixYsVGBioqlWrytvbWzly5LDNf/TRRxamA5DdcFZzAAAAZDn16tVTvXr1rI4BAJIo3gAAAMiCfv/9d/3vf/+z28oNAFbhGG8AAABkOWvXrtU///xjdQwAkMQWbwAAAGRBr776qho3bqyQkJAMj/EODg62MB2A7IaTqwEAACDL6dKly03nnJycNGfOnExMAyC7o3gDAAAAAGAijvEGAABAlnTixAl17NhRRYsWVZEiRdShQwcdO3bM6lgAsiGKNwAAALKcI0eOqE6dOqpatap+//137d27V7Vr11aDBg106NAhq+MByGbY1RwAAABZTqtWrdSkSRO9/vrrduOffPKJvv32W/3www8WJQOQHVG8AQAAkOXkzp1bERER8vX1tRu/dOmSihYtqitXrlgTDEC2xK7mAAAAyHLc3NyUkJCQbjwpKUmurq4WJAKQnVG8AQAAkOW0bt1aEyZMSDc+ffp0BQUFWZAIQHbGruYAAADIcqKjo9W4cWOVLVtWr7zyilxcXLRs2TL99ttv2rx5s/Lly2d1RADZCMUbAAAAWVJ8fLxmzZqlTZs2KS0tTQ0bNlSfPn3k5eVldTQA2QzFGwAAAFlSTEyMfHx87MZiY2Pl7e1tUSIA2RXHeAMAACDLCQ8PV5UqVXTu3DnbWGRkpKpVq6Z///3XwmQAsiO2eAMAACDL6dixo+rUqaM+ffrYjX/44Yfas2eP5s6da1EyANkRxRsAAABZToECBXT06NF0u5pfunRJZcuWVWRkpEXJAGRH7GoOAACALOfq1avKmTNnunEXFxfFxsZakAhAdkbxBgAAQJZTrVo1bdy4Md34zz//rPLly1uQCEB2RvEGAABAlvPOO+/otdde019//WUb+/PPP9W/f3+NGDHCwmQAsiOO8QYAAECW9PXXX2vw4MHy9/dXSkqKIiIiNH78eHXr1s3qaACyGYo3AAAAsqyUlBTt379fqampqlSpktzc3KyOBCAbongDAAAAAGAiF6sDAAAAAGb466+/tHbtWkVGRioxMdFu7qOPPrIoFYDsiOINAACALGfx4sUaMGCAunbtqtKlS8vV1dXqSACyMXY1BwAAQJZTokQJLVy4UHXr1rU6CgBQvAEAAJD1+Pj46MKFC8qZM6fVUQCA63gDAAAg62nTpo2WLl1qdQwAkMQWbwAAAGRBx44dU8eOHRUSEqI2bdrIx8dHzs7/t80pb968FqYDkN1QvAEAAJDllChR4qZzTk5OOn78eCamAZDdUbwBAAAAADARlxMDAABAlhAdHX3Hy7KrOYDMxBZvAAAAZAklSpSQk5OTbvfnLbuaA8hsFG8AAAAAAEzE5cQAAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAyGS7d+/WDz/8YHUMAJmE4g3gofHLL7+oZcuW9/048+bNU79+/SRJnTt31vLly+/7MR1t5syZ6tSpk+3rjz766JbL324+IydOnFDFihXv+n4ZeeSRR3ThwoU7Hn9QfPTRRypevLh8fX31wgsv6Pz587dcfu/evWrUqJFy586typUra/369ba5X375Rc7OznJ1dVVAQIBef/11xcfH3/LxGjVqpN9///2+n0euXLnu+zHuxOjRozVlypQM5w4dOqRHHnnEIY/lSI5637idGjVq6OOPP77j5e/0+Tdu3FjOzs4ZLnv48GF5enrKyckp3e/ZU089JRcXF7ubk5OTvvnmm9t+T0e+N9zO3b5H3Ol79jfffCNfX189/fTTksz7Hckoz6hRo5QjR45brndpaWnq1auXLl++fNffJzU1VQ0aNFCePHns3oMAPNgo3gDwAFq2bJmef/5529fLly/XL7/8kuGysbGxGj16tFJSUjIpXdawbNkyzZo1Sz///LP+/fdflShRQp07d77p8levXlVQUJAGDBigqKgoLVq0SG+++aaOHDliW+bZZ59VUlKS/vzzT126dEmjR482/4k8IJYtW6a2bdtaHcMypUqVUoECBRz+uJs2bdLIkSMznCtbtqzi4uJUvHjxdHMbNmxQSkqK7bZ161ZVqlRJrVu3dnjGB9HcuXM1f/58LV68ONO/97vvvqsNGzbccplZs2bJz89P7dq1u+vH37t3r65evarIyEg98cQT9xoTQCajeAPAA+bs2bPat2+fbUuNJIWFhWnq1KkZLv/555/r4sWLCg8Pz6yIWYKnp6e+/vprlSpVSp6enho6dKg2b9580+X/+usvBQQEqHXr1nJ1dVWlSpUUFBSU4a6i+fPn18iRI/XTTz+Z+RQeKDd+WJTdLF68WO3bt7c6xk2NGTNGI0aMkJOTk9VRMkVsbKz8/f2VP39+q6Okc+HCBY0bN04zZsy4p/vHxsaqcOHCcnNzk4+Pj4PTATALxRuAw+XKlUv79+/XE088IS8vLzVr1kznz5/XwYMHVb9+feXKlUvPPvuszp07Z3e/adOmKTAwUG5ubqpQoYK+/PJL29zQoUP11FNPae3atXJxcdEff/wh6b+tkK+99poKFCigXLlyqVWrVgoLC7vnP7ZCQ0P11FNPycPDQ/7+/ho9erRWrVpl2xJ6bbfVZcuW6dFHH5W3t7f69++vtLQ0ffPNNypbtqx8fX31+uuvKzU11fa4d5Nz5cqVatGihVxdXSVJSUlJSktL07Fjx+y2rkr/7XI4Y8YM1ahRQ2FhYXZzCxcuVPny5eXm5qZHH31UU6dOlWEYkv7blb1kyZI6ePCgXFxctHLlSklSSkqKRo0apYCAAHl6eqpRo0bas2ePqlevrhMnTtzTa3q9r7/+WhUrVpS7u7sqVKigr7/+WoMHD9a8efMk/bf77aRJkzRy5Ejlz59fhQsX1pw5c2QYhsaMGaOCBQuqcOHCtuWvOX78uFq3bq1cuXLJz89Pr732mnbt2qVGjRrdNEuLFi1UqVIlSdK///6rIUOGqFmzZjddvkKFCjp79qwWLFigxMRE7d69W/PmzVPBggUzXD4mJkY5cuS449emUaNG2rZtmwYOHKh8+fKpYMGC+uCDD2zz586dU+PGjeXl5aW2bdvq4sWLtt+Hq1evysXFRR988IHmzZun7t27q2nTpqpUqZIMw8hwd97rD7m4ZteuXWrWrJly584tHx8ftWrVSnv37pUkPfHEE3rvvfc0dOhQ+fr62t3vr7/+0uXLl1WzZk278fXr16tu3bry9PRU/vz59eKLL6Zbj2bPnq3AwEB5e3ura9euSkhIsJu/1fvCNWfOnFGXLl3k5+cnT09P1apVSytWrMjwdZ4+fbpKly6t8PBw2y7VBw8eVJMmTeTl5aXChQtr6NChSkxMtLvfvn371KxZM9tz6dmzp2JiYmzzLVu2tO2Vcruf5a1eSzOEhobq+PHjd/TByM3eG9LS0jRu3DgVL15c7u7ueuyxx/T999/b7pfReif99/41atQoBQYGyt3dXaVLl9b7779vt4fOpUuX1KlTJ3l7e6t48eJatGjRLTOmpaVp0qRJeuSRR+Th4aHatWtry5YttvmgoCBt3rxZTzzxhJ566qkMH+PTTz9VmTJl5ObmpnLlyqV7T5Fu/35VqFAhLViwQO3bt1fVqlVv+9peM3ToUPXu3VuPPvroHd/nmj/++MPu/8JbfVgI4AFjAICDubq6GnXq1DF+//13Iy4uzujTp48RFBRk1K9f3/jjjz+M+Ph4Y+DAgUbnzp1t9xk+fLjRunVr4+jRo0ZiYqLx22+/GdWrVzemT59uW2bTpk1GixYtbF+npKQYDRs2NNq3b2/8888/xuXLl42vv/7aqFq1quHl5XXTfHPnzjX69u1rGIZhdOrUyVi2bJlhGIaxd+9ew8/Pz/j000+NixcvGhEREUa/fv2McuXKGZ06dbJlKFq0qNGyZUvj1KlTRmRkpFG7dm2jZ8+eRsuWLY3Tp08b586dMxo0aGDMmzfvnnI2btzYWL16te3rv//+26hdu7Yxa9Ys49VXX7VbdsmSJUZwcLAxZMgQ49NPP7WNf/rpp0bdunWNvXv3GklJScb+/fuNZs2aGYMHD7YtExYWZlSoUMHu8Tp27Gg8+eSTxv79+42rV68a69atMypXrmwULlzYCAsLu+lrWrx4ceP8+fO3HP/888+NEiVKGD/++KMRFxdn7Nu3z2jcuLFRtmxZY+7cuYZhGMaoUaOM4sWLG8OHDzeuXLlihIaGGn5+fkavXr2Mt956y7hy5Yqxb98+o3DhwsaxY8cMwzCMU6dOGf7+/sa4ceOMc+fOGWfPnjXGjBljVKhQwWjYsOFNM1+zatUqQ5Lh4eFh7N2795bLbtu2zXBxcTEkGZKMkJAQIzk52TCM/1s/k5OTjf379xv169c3Pvroo1s+XsOGDY3du3fb/l21alVjypQpttcnMDDQWLt2rWEYhjF06FDj3XffNS5fvmxMnTrV+Oeff2yPc/16NHfuXMPDw8P48ssvjcTExHQ/h+uXu/Z7YBiG8euvvxqFCxc25s2bZ0RHRxtXrlwxFi1aZPj7+xtHjx41DOO/n8/kyZPTPY93333XGDhwoN3YkiVLjOLFixurVq0yLl++bERHRxvTp083AgICjOjoaGPUqFFGpUqVjA4dOhjnzp0zIiMjjeeee84YMmSI7THu5H3h3LlzRmBgoDFixAgjIiLCSEpKMn799VejcuXKxsKFC+3eN8aNG2dUrlzZOHPmjGEY//0OFChQwKhatarx/fffG1evXjWOHDliBAUFGS1btrR9j4MHDxoFCxY0PvnkE+PSpUtGeHi40bVrV6NmzZq217hFixbGpk2b7uhneavXMiO3W/Zmv3/XtGnTxliwYMEdfS/DyPi9oVu3bkbDhg2Nffv2GVeuXDG+++47o2jRosaKFSsMw8h4vUtLSzNatGhhtG7d2jhw4ICRlJRkHDlyxHj++eeN7t2727LXqFHDmDdvnpGQkGBs2bLFKFCggHHgwIEMs3Xq1MkoU6aM0b9/f+PkyZNGbGyssWjRIqNAgQLGli1bbMtd/7tlGPa/I2PGjDEqV65s7Nixw4iLizM2b95slClTxpg2bZptmTt5v7qW59r/Ide78f+ra3bt2mU4OTkZAQEBRv78+Y1Jkybd7MeQ7nlf+z43e2wADzaKNwCHk2T88MMPtq///fdfQ5Kxbt0629i1P5YNwzBOnz5tlChRwvbH2vXLFC5c2EhJSTEMI/0fG0uXLjXq1KljpKWl2d1v9erVxq0+V7xZ8X722WeNWbNmpVu+TZs2dsXb3d3duHjxom1+8eLFhoeHhxEdHW2XrWvXrned89y5c0aePHmMhIQE29j69euNDh06GHFxcUZAQIBx7tw521ytWrWMbdu2GTNnzjSGDRtmGIZhJCQkGEWLFk33h3hiYqJRtGhR2/1v/ON6165dRmBgoBEXF2d3v9DQUMPZ2fm+indCQoJRoEABY//+/Xbzly9fNgICAuyKd61ateyWefXVV40nnnjCbqxPnz62ItGnTx/bc7/ewIED76h4G4ZhREZGGpMmTTL8/f2NCxcuZLhMeHi4UaxYMePLL780rly5YuzcudPo16+f7ee+adMmw9nZ2ciRI4chycifP7+xY8eOW37fG4t3r1697OZnzJhh9OnTxzAMw3jrrbeMDz74IMPHubF4ly9f3m7+Top31apVjfXr16d77Gsl1TBuXgArVapkbN++3fZ1UlKS4e/vn+7nff3jjRo1yihfvrzd78Xhw4dt2e/0fWHAgAHG8OHD032fixcvGvHx8bb3jaFDhxpPPPGE3e9pWFiY4eTkZFfQDMMwkpOTjWrVqtnex1q1amVX9q955plnbB943Vi8b/WzvPb8M6N479+/3yhZsqTt9boTN743/PHHH8YjjzxiXLlyxW65HTt2GAEBAUZqamqG692qVauMevXqGampqXbjqampxtmzZ23ZJ06caDc/bNiwmxbSTp06GW3atEk3vmzZMrv3jpsV7zNnzhh+fn7G6dOn7e5//PhxI3/+/MbFixfv+P3qWp67Kd5NmzY1evbsaVy8eNHYs2ePUbJkSePbb7/N8Lne+Lwp3sDDjV3NAZji+l18/fz8JEn169e3jeXLl09RUVGSpO3btys8PFze3t5yd3e33QICAnT+/Pl0u1Bfs3nzZr344ovpjlls2bKlvLy87jrzr7/+qhdffDHd+I3HbVapUsVu91A/Pz9VrFhRefLkyfD53U3OlStX6tlnn5Wbm5ttLCwszLZLZZcuXWzHBW7btk2SVKdOHRUvXlzHjx+XJO3fv1+nT59W0aJF7V5Pb29vnT171rbr8I02b96s4OBgeXh42I1Xq1ZNpUuXzvA+d2r//v0qVqxYujMl58qVSy1atLAbu3H3cD8/P7t1R0r/+nbs2DHd97yb420LFiyoN998U88++6wWLlyY4TIffPCBevTooY4dO8rLy0s1a9bUyy+/rB49etiWeeaZZ5SSkqLLly9r9uzZCg4OvulJ8TISHBxs93XJkiUVGRkpSRowYIAWL16snj17Kjo6+paPcye7vaalpdn+HR0drdOnT9udV+CaQoUK3fJxjhw5oosXL9qd5Gn//v0qUqRIhmfGvv7xWrdubfd7ERgYaHu+d/q+sGHDhgx//r6+vnJ3d5ck/fTTT/r111/1008/2f2eSv+9xtWrV7cbc3FxUbt27Wy78f7yyy96+eWX032Pl19++aY/31v9LDPTuHHjNGzYsLs67OFGmzZtUnBwcLr3qyeeeEIeHh76559/JKVf7zZs2KAOHTrI2dn+z01nZ2e7E9Hd+Fpdvx5k5Mblr40dOHAg3aEKN9q2bZvq16+vIkWK2I2XKFFCjz32mHbt2nVX71d3Izo6WocOHdLHH38sX19fValSRdOmTdMnn3xyz48J4OFB8QbgcNf+QL7GxcVFbm5u8vT0tI05OzvbHeP3/PPPKyEhId0tOTlZJUuWzPD7ODk52Y4jvJFx3bHM119OZ+3atTfNfacnHbrxD3cXFxflzZvXbuz653cnOa/J6ARV14q3JPXt21dz5sxRQkKCPvjgA73xxhuS/rskz/UfUNSsWTPD1zMpKUlNmjTJMMutcl5z7bjCa7eZM2fecvm7eexrHPn6XtO+fXu73FevXtXOnTvTLVelShWdOXMmw/XmyJEj6T4AqF69un7++ed0j5MrVy61adNG7777rmbOnGk7Bvva7WYfCtx4oiRXV1fbscZ+fn7asWOHypcvr9q1a+vMmTM3fb7e3t52X7u5uSk5OdluLDY21vbv1NRUu3MS3I1rZzO//vcnNTX1js6yf+PzzZkzp92x1XfyvnAn38vf318nT57UwYMH083d6XqZUXHNkSOH3QcY17vVz/JG146nvnYbOnToHWW6naNHj2rnzp165ZVX7utx0tLS5OLikuHc9a/Bjeudo9aDG93PFRzu5LnczfvV3Th27JhKly6tnDlz2sYqV67MiTGBbILiDcDhMvoD9WZ/6EhS7dq1tXXr1nTXMz19+rSGDBly0/s1atRIixcvTveH75o1axQXFydJ6tOnj90ldZ599tmbPl7Dhg0zPKnP119/bff13T6/O8kpSefPn1doaGi6E3yFhYXZLhdUoEABNWvWTKNGjdLevXttW36KFy9uK94VK1ZUeHi4Tp48afc4V65cUe/evW9aFBo1aqRvvvnGLpMk/fnnn/r7778l/Xe5rOtfzz59+tz0eV+vUqVKOnXqlA4cOJAu040fhtzL65vRVurrf25ff/21XW4vLy917NhRR48etbvP7t27Vb58+QzXm8DAQB0+fNhu+b1799r26MiIt7e3nJ2d5eXlZfd4N65T19y4ZfBGLi4uev3119WmTRt99dVXN13uxtewUKFCtj0irrl20izpv1JfoEABrV69Ot1j3W4rbUYfFlWqVEkRERG2kyBe7/oPDG71fO/0faFBgwaaO3duuvtfunTJtvWzfPnyWrp0qdq2bautW7faLXfs2LF011K/9jNq2LChJKlevXp2r9c1S5YssS1zo9v9LK9XoUIFu/Xj/fffv+P73sr48eM1ePBgu6J3Lxo2bKhvv/1WSUlJduN//vmnLl++bNsj5sb1rkGDBvryyy/TfaiTlpZmd3LNu3mtJGW47i9fvlyVKlWy+9A3I3Xq1NGWLVvS7TVy+vRp/f7776pZs+ZdvV/djaJFi+rIkSN2H4Lt379fJUqUuOfHBPDwoHgDsJy/v79eeukltWnTRocOHVJSUpK2bdumZs2a2e3i7OzsbPcHS5s2beTh4aEXX3xRx48f15UrV7R06VKNHTv2nnY1nzBhgkaNGqXZs2crJiZGp06dUv/+/XXs2LH7en53mvObb75R8+bN0/3heP0Wb0kaNGiQJk+erP79+9v+0L32OJcvX5a7u7tGjhyp1q1ba/fu3UpKStLevXv17LPPKn/+/LY/cm98PR9//HHVr19frVq10oEDBxQfH6/169ere/fut93d+HZcXV01ceJEPffcc/rpp58UHx+v/fv3KygoSLlz576vx37rrbe0aNEijR8/XhcuXND58+c1duxYbdq06Zb3GzhwoLp166bjx4/r6tWrmjVrlnbu3HnTrdH9+vXT2LFjtX79eiUkJGjPnj3q1KlTujODS7JdN/nNN99Uhw4d7uv5XTN69Gj98ccfio6O1rZt2+yu3WwYxk0/UJH+O4P722+/rdOnTys2Nlb9+/fXpUuX7JaZNm2aunXrprlz5yo6OlpXr17VggULVKNGDdvvwI3rzNGjRxUVFaXatWvbPZa7u7smTJigoKAgffPNN7p8+bIuXryoDz/8UHXq1En3vTNyp+8Lb7/9tr7++msNGzZMERERSk5O1i+//KJ69erZfZBQp04drVy5Ui+++KLdulGgQAH17t1ba9euVVxcnP7++2+FhISoSJEiat68uaT/3huGDRumL7/8UpcvX9apU6fUr18/hYWFqUuXLrd9Lhm58bV0tBMnTmjjxo3q1q3bXd/3xmw1a9bU448/rrZt2+rIkSOKi4vTunXrFBwcrMmTJ9+0OLdt21ZeXl4KCgrSgQMHlJKSosOHDyskJESjRo26oyzR0dGqV6+e3Ydk58+fV/fu3XXy5EldvnxZX375pfr163fTSy5ez9/fX127dlXLli31559/KiEhQdu3b9czzzyjN954Q3nz5r2r96u7+TkWLlxYNWvWtP3+7du3T4MGDdLrr79+R/cH8HCjeAN4IEycOFHNmzdXy5Yt5e3trV69eumtt95S9+7dbcuULVtWBw8etB1H6OzsrO+++04FCxZU7dq1VahQIX399ddatWrVbbd6ZKRixYpav369li5dqsKFC+uJJ55Q0aJFNWbMmPt6bneac/ny5Rle7ufEiRN2JatcuXLq0KFDuj+orz/Ou3fv3nr99dfVqVMn5c6dWyEhIQoJCbF7LoULF5aLi4vd8epffPGFGjRooGeeeUb58uXTlClTtHDhQhUuXPi2z7NQoUK2XWUzKuqdO3fW+++/r0GDBilPnjx66aWXNGDAAFu5uVeFCxfWr7/+qt27d6tEiRIqX768YmNj9fnnn9/yfr1791aLFi3UuHFj+fn56dtvv9XatWvtjq+/Xrly5TR79mwNGTJEvr6+euGFF9S9e3e99tprtmWu7Yrv6empnj17auzYsQoKCrqv53dNvXr11L59e5UoUUJVq1a1O861Tp068vHx0alTpzK876BBg1ShQgWVL19e5cqVU7FixTRo0CC7ZZo3b67ly5dr7ty58vf3V0BAgFatWqX169fbLntUu3ZtjR8/3lYUli1bppCQkAwP0+jevbs+/PBDjR07Vn5+fipTpoxCQ0O1ZcuWO76E1p28L/j7+2v79u0KCwtTpUqVlCdPHr399tuaMGFCug9RatSooW+//VadO3e2XWM9f/78+uqrrzRz5kzb+QRKlixpdzmyKlWq6LvvvtP8+fNVsGBBValSRfHx8dqwYcM9vddI6V9LR9u7d6+GDx9+0/X5VjJ6b5g3b54ef/xxNWnSRHny5NGwYcM0bdo0vfDCCzd9nBw5cmjt2rUqW7asmjVrply5cik4OFj169fX9OnT7yhLQkKCDh8+bHfptuHDh6t8+fKqX7++/Pz89Omnn2rVqlWqU6fOHT3m2LFj9eKLL6pdu3by9vZWly5d1K9fP7td/O/0/ap+/frq1q2bpkyZckffe968ebp69aoCAwPVrl07jRo1Sk2bNr2j+wJ4uDkZZhzEAgC4K1FRUSpZsqTOnDlzz3/IA5mtWrVq+vjjj1WvXj2ro9yTEydOqGXLlul2KQYAwNHY4g0AD4ALFy7oww8/pHTjoZGYmKiQkBDVrVvX6ii4S9efyO36W/78+a2Olm299957N/25fPTRR1bHA+AAbPEGAADZElu8AQCZheINAAAAAICJ2NUcAAAAAAATUbwBAAAAADARxRsAAAAAABNRvAEAAAAAMBHFGwAAAAAAE1G8AQAAAAAwEcUbAAAAAAATUbwBAAAAADDR/wO7XtX52UV5oQAAAABJRU5ErkJggg==","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["for col in df.columns[5:]:\n"," print(\"*\" * 10, col, \"*\" * 10)\n"," print(df[col].value_counts())\n"," plot_value_counts(df, col)"]},{"cell_type":"code","execution_count":9,"metadata":{},"outputs":[],"source":["import pandas as pd\n","import numpy as np\n","from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score\n","\n","\n","def calc_metrics_for_col(df, col):\n"," y_true = df[\"label\"]\n"," y_pred = df[col]\n"," try:\n"," accuracy = accuracy_score(y_true, y_pred)\n"," precision = precision_score(y_true, y_pred, average=\"weighted\", labels=np.unique(y_pred))\n"," recall = recall_score(y_true, y_pred, average=\"weighted\", labels=np.unique(y_pred))\n"," f1 = f1_score(y_true, y_pred, average=\"weighted\", labels=np.unique(y_pred))\n"," except Exception as e:\n"," print(e)\n"," accuracy = precision = recall = f1 = np.nan\n","\n"," return accuracy, float(precision), float(recall), float(f1)"]},{"cell_type":"code","execution_count":10,"metadata":{},"outputs":[{"name":"stderr","output_type":"stream","text":["/var/folders/7x/56svhln929zdh2xhr3mwqg4r0000gn/T/ipykernel_84419/3667033001.py:18: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n"," perf_df = pd.concat([perf_df, pd.DataFrame([new_model_metrics])], ignore_index=True)\n"]},{"data":{"text/html":["
\n","\n","
\n"," \n","
\n","
\n","
epoch
\n","
model
\n","
accuracy
\n","
precision
\n","
recall
\n","
f1
\n","
\n"," \n"," \n","
\n","
0
\n","
0.333333
\n","
meta-llama/Meta-Llama-3-8B-Instruct/checkpoint...
\n","
0.620333
\n","
0.663582
\n","
0.620333
\n","
0.636363
\n","
\n","
\n","
1
\n","
0.666667
\n","
meta-llama/Meta-Llama-3-8B-Instruct/checkpoint...
\n","
0.561333
\n","
0.700051
\n","
0.561333
\n","
0.611304
\n","
\n","
\n","
2
\n","
1.000000
\n","
meta-llama/Meta-Llama-3-8B-Instruct/checkpoint...
\n","
0.620333
\n","
0.681920
\n","
0.620333
\n","
0.640515
\n","
\n"," \n","
\n","
"],"text/plain":[" epoch model accuracy \\\n","0 0.333333 meta-llama/Meta-Llama-3-8B-Instruct/checkpoint... 0.620333 \n","1 0.666667 meta-llama/Meta-Llama-3-8B-Instruct/checkpoint... 0.561333 \n","2 1.000000 meta-llama/Meta-Llama-3-8B-Instruct/checkpoint... 0.620333 \n","\n"," precision recall f1 \n","0 0.663582 0.620333 0.636363 \n","1 0.700051 0.561333 0.611304 \n","2 0.681920 0.620333 0.640515 "]},"execution_count":10,"metadata":{},"output_type":"execute_result"}],"source":["import pandas as pd\n","\n","perf_df = pd.DataFrame(\n"," columns=[\"epoch\", \"model\", \"accuracy\", \"precision\", \"recall\", \"f1\"]\n",")\n","for i, col in enumerate(df.columns[5:]):\n"," accuracy, precision, recall, f1 = calc_metrics_for_col(df, col)\n"," new_model_metrics = {\n"," \"epoch\": (i + 1) / 3,\n"," \"model\": col,\n"," \"accuracy\": accuracy,\n"," \"precision\": precision,\n"," \"recall\": recall,\n"," \"f1\": f1,\n"," }\n","\n"," # Convert the dictionary to a DataFrame and concatenate it with the existing DataFrame\n"," perf_df = pd.concat([perf_df, pd.DataFrame([new_model_metrics])], ignore_index=True)\n","\n","perf_df"]},{"cell_type":"code","execution_count":11,"metadata":{},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABE0AAAHACAYAAABXiZaAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABafElEQVR4nO3de1gWdf7/8dcNchAUPBAHCSXPmAoGSmibVrSUrWXZRq4pUtmmYCodlDx2EstCKl1JV7LdLO1g5a4u1lLWL8UjUpqIZykT0Fg1McHlnt8fXt1972VQbwVukefjuu7r8v7Me2beM+XtzYuZz1gMwzAEAAAAAAAAOy7ObgAAAAAAAOByRGgCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmGji7AYuhNVq1Y8//qjmzZvLYrE4ux0AAAAAwBXOMAz9/PPPatOmjVxcuN6gsWoQocmPP/6okJAQZ7cBAAAAAGhkvv/+e1199dXObgNO0iBCk+bNm0s6+z+rj4+Pk7sBAAAAAFzpTpw4oZCQENvPo2icGkRo8ustOT4+PoQmAAAAAIB6wxQRjRs3ZgEAAAAAAJggNAEAAAAAADBBaAIAQC2bN2+eQkND5enpqejoaG3cuLHG2gEDBshisVR73XHHHbYawzA0bdo0BQUFqWnTpoqNjdXu3bvttlNWVqZhw4bJx8dHLVq00EMPPaSTJ0/W2TECAAA0BoQmAADUomXLliklJUXTp09XXl6ewsPDFRcXp9LSUtP65cuX6/Dhw7bX9u3b5erqqj/+8Y+2mpdeekmvvfaaMjMztWHDBnl7eysuLk6nT5+21QwbNkzfffedPvvsM/3zn//UV199pUceeaTOjxcAAOBKZjEMw3B2E+dz4sQJ+fr66vjx40wECwC4rEVHR6t3796aO3euJMlqtSokJERjx47VpEmTzrt+RkaGpk2bpsOHD8vb21uGYahNmzZ6/PHH9cQTT0iSjh8/roCAAC1evFj333+/CgoK1K1bN23atElRUVGSpOzsbA0cOFA//PCD2rRpU3cHDADAFYqfQyFxpQkAALWmsrJSW7ZsUWxsrG3MxcVFsbGxys3NvaBtLFq0SPfff7+8vb0lSfv371dxcbHdNn19fRUdHW3bZm5urlq0aGELTCQpNjZWLi4u2rBhQ20cGgAAQKNEaAIAQC05evSoqqqqFBAQYDceEBCg4uLi866/ceNGbd++XQ8//LBt7Nf1zrXN4uJi+fv72y1v0qSJWrVqdUH7BQAAgDlCEwAALhOLFi1Sjx491KdPH2e3AgAAABGaAABQa/z8/OTq6qqSkhK78ZKSEgUGBp5z3fLyci1dulQPPfSQ3fiv651rm4GBgdUmmv3vf/+rsrKy8+4XAAAANSM0AQCglri7uysyMlI5OTm2MavVqpycHMXExJxz3ffff18VFRV64IEH7MavueYaBQYG2m3zxIkT2rBhg22bMTExOnbsmLZs2WKr+fzzz2W1WhUdHV0bhwYAANAoNXF2AwAAXElSUlKUkJCgqKgo9enTRxkZGSovL1diYqIkacSIEQoODlZaWprdeosWLdLgwYPVunVru3GLxaLx48fr+eefV6dOnXTNNddo6tSpatOmjQYPHixJCgsL02233aZRo0YpMzNTZ86cUXJysu6//36enAMAAHAJLupKk3nz5ik0NFSenp6Kjo7Wxo0ba6wdMGCALBZLtdcdd9xx0U0DAHC5io+P18svv6xp06YpIiJC+fn5ys7Otk3kWlRUpMOHD9utU1hYqK+//rrarTm/euqppzR27Fg98sgj6t27t06ePKns7Gx5enraapYsWaKuXbvqlltu0cCBA3XDDTdowYIFdXegAAAAjYDFMAzDkRWWLVumESNGKDMzU9HR0crIyND777+vwsLCajP3S1JZWZkqKytt73/66SeFh4frr3/9q0aOHHlB++T52AAAAIBzzJs3T7Nnz1ZxcbHCw8P1+uuvn3PC6mPHjmny5Mlavny5ysrK1K5dO2VkZGjgwIGSpKqqKs2YMUNvv/22iouL1aZNG40cOVJTpkyRxWLRmTNnNGXKFK1atUr79u2Tr6+vYmNjNWvWLK6eQ73i51BIF3GlSXp6ukaNGqXExER169ZNmZmZ8vLyUlZWlml9q1atFBgYaHt99tln8vLy0h//+MdLbh4AAABA3Vm2bJlSUlI0ffp05eXlKTw8XHFxcdUmn/5VZWWlbr31Vh04cEAffPCBCgsLtXDhQgUHB9tqXnzxRc2fP19z585VQUGBXnzxRb300kt6/fXXJUmnTp1SXl6epk6dqry8PC1fvlyFhYW688476+WYAeD/cuhKk8rKSnl5eemDDz6w3UctSQkJCTp27Jg++eST826jR48eiomJOeclwxUVFaqoqLC9P3HihEJCQkj4AAAAgHoUHR2t3r17a+7cuZLOTm4dEhKisWPHatKkSdXqMzMzNXv2bO3cuVNubm6m2/zDH/6ggIAALVq0yDY2ZMgQNW3aVG+//bbpOps2bVKfPn108OBBtW3bthaODDg/rjSB5OBEsEePHlVVVZXtvuxfBQQEaOfOneddf+PGjdq+fbvdB6SZtLQ0PfPMM460BgCAc83wdXYHNZtx3NkdAGiAKisrtWXLFqWmptrGXFxcFBsbq9zcXNN1VqxYoZiYGCUlJemTTz7RVVddpT/96U+aOHGiXF1dJUl9+/bVggULtGvXLnXu3FnffPONvv76a6Wnp9fYy/Hjx2WxWNSiRYtaPUYAOJ96fXrOokWL1KNHj3PeAylJqampSklJsb3/9UoTAAAAAPXjYn5hum/fPn3++ecaNmyYVq1apT179mjMmDE6c+aMpk+fLkmaNGmSTpw4oa5du8rV1VVVVVV64YUXNGzYMNNtnj59WhMnTtTQoUP5bT+AeudQaOLn5ydXV1eVlJTYjZeUlCgwMPCc65aXl2vp0qV69tlnz7sfDw8PeXh4ONIaAAAAACezWq3y9/fXggUL5OrqqsjISB06dEizZ8+2hSbvvfeelixZonfeeUfXXnut8vPzNX78eLVp00YJCQl22ztz5ozuu+8+GYah+fPnO+OQADRyDk0E6+7ursjISOXk5NjGrFarcnJyFBMTc85133//fVVUVOiBBx64uE4BAAAA1JuL+YVpUFCQOnfubLsVR5LCwsJUXFxse6Lmk08+qUmTJun+++9Xjx49NHz4cE2YMEFpaWl22/o1MDl48KA+++wzrjIB4BQOPz0nJSVFCxcu1FtvvaWCggKNHj1a5eXlSkxMlCSNGDHC7r7HXy1atEiDBw9W69atL71rAAAAAHXqYn5h2q9fP+3Zs0dWq9U2tmvXLgUFBcnd3V3S2afjuLjY/xji6upqt86vgcnu3bv173//m58hADiNw3OaxMfH68iRI5o2bZqKi4sVERGh7Oxs272ORUVF1T4ECwsL9fXXX+vTTz+tna4BAAAA1LmUlBQlJCQoKipKffr0UUZGRrVfmAYHB9uuEhk9erTmzp2rcePGaezYsdq9e7dmzpypxx57zLbNQYMG6YUXXlDbtm117bXXauvWrUpPT9eDDz4o6Wxgcu+99yovL0///Oc/VVVVpeLiYklSq1atbOELANQHh680kaTk5GQdPHhQFRUV2rBhg6Kjo23L1qxZo8WLF9vVd+nSRYZh6NZbb72kZnHlmTdvnkJDQ+Xp6ano6Ght3LjxnPXHjh1TUlKSgoKC5OHhoc6dO2vVqlV2NYcOHdIDDzyg1q1bq2nTpurRo4c2b95sur1HH31UFotFGRkZtXVIAAAAV4z4+Hi9/PLLmjZtmiIiIpSfn1/tF6aHDx+21YeEhGj16tXatGmTevbsqccee0zjxo2zezzx66+/rnvvvVdjxoxRWFiYnnjiCf35z3/Wc889J+nsd7kVK1bohx9+UEREhIKCgmyvdevW1e8JANDoWQzDMJzdxPnwfOwr07JlyzRixAhlZmYqOjpaGRkZev/991VYWCh/f/9q9ZWVlerXr5/8/f319NNPKzg4WAcPHlSLFi0UHh4uSfrPf/6jXr166aabbtLo0aN11VVXaffu3erQoYM6dOhgt72PPvpIzzzzjI4cOaInn3xS48ePr4/DBnCl4pHDAABcUfg5FFI9P3IY+L/S09M1atQo2+WdmZmZWrlypbKysux+G/GrrKwslZWVad26dXJzc5MkhYaG2tW8+OKLCgkJ0Ztvvmkbu+aaa6pt69ChQxo7dqxWr16tO+64oxaPCgAAAABwpbio23OAS1VZWaktW7YoNjbWNubi4qLY2Fjl5uaarrNixQrFxMQoKSlJAQEB6t69u2bOnKmqqiq7mqioKP3xj3+Uv7+/evXqpYULF9ptx2q1avjw4XryySd17bXX1s0BAgAAAAAaPK40gVMcPXpUVVVVtvthfxUQEKCdO3earrNv3z59/vnnGjZsmFatWqU9e/ZozJgxOnPmjKZPn26rmT9/vlJSUvT0009r06ZNeuyxx+Tu7q6EhARJZ69GadKkid2EZAAAAPgf3HYIAIQmaDisVqv8/f21YMECubq6KjIyUocOHdLs2bNtoYnValVUVJRmzpwpSerVq5e2b9+uzMxMJSQkaMuWLXr11VeVl5cni8XizMMBAAAAAFzmuD0HTuHn5ydXV1eVlJTYjZeUlCgwMNB0naCgIHXu3Fmurq62sbCwMBUXF6uystJW061bN7v1wsLCVFRUJEn6f//v/6m0tFRt27ZVkyZN1KRJEx08eFCPP/54tflRAAAAAACNG6EJnMLd3V2RkZHKycmxjVmtVuXk5CgmJsZ0nX79+mnPnj2yWq22sV27dikoKEju7u62msLCQrv1du3apXbt2kmShg8frm+//Vb5+fm2V5s2bfTkk09q9erVtX2YAAAAAIAGjNtz4DQpKSlKSEhQVFSU+vTpo4yMDJWXl9uepjNixAgFBwcrLS1NkjR69GjNnTtX48aN09ixY7V7927NnDnTbm6SCRMmqG/fvpo5c6buu+8+bdy4UQsWLNCCBQskSa1bt1br1q3t+nBzc1NgYKC6dOlST0cOAAAAAGgICE3gNPHx8Tpy5IimTZum4uJiRUREKDs72zY5bFFRkVxcfrsYKiQkRKtXr9aECRPUs2dPBQcHa9y4cZo4caKtpnfv3vroo4+UmpqqZ599Vtdcc40yMjI0bNiwej8+AAAAAEDDZjEMw3B2E+dz4sQJ+fr66vjx4/Lx8XF2OwAAVMdTJgBcafhcQyPHz6GQmNMEAAAAAADAFKEJAAAAAACACeY0gXNwuScAAACuYPPmzdPs2bNVXFys8PBwvf766+rTp0+N9ceOHdPkyZO1fPlylZWVqV27dsrIyNDAgQOr1c6aNUupqakaN26cMjIybOMLFizQO++8o7y8PP3888/6z3/+oxYtWtTB0QGNB1eaAAAAAEAtWrZsmVJSUjR9+nTl5eUpPDxccXFxKi0tNa2vrKzUrbfeqgMHDuiDDz5QYWGhFi5cqODg4Gq1mzZt0htvvKGePXtWW3bq1Cnddtttevrpp2v9mIDGitAEaIDmzZun0NBQeXp6Kjo6Whs3bjxn/bFjx5SUlKSgoCB5eHioc+fOWrVqlW35/Pnz1bNnT/n4+MjHx0cxMTH617/+VW07ubm5uvnmm+Xt7S0fHx/deOON+uWXX2r9+AAAABqy9PR0jRo1SomJierWrZsyMzPl5eWlrKws0/qsrCyVlZXp448/Vr9+/RQaGqr+/fsrPDzcru7kyZMaNmyYFi5cqJYtW1bbzvjx4zVp0iRdf/31dXJcQGNEaAI0MHXxm4urr75as2bN0pYtW7R582bdfPPNuuuuu/Tdd9/ZanJzc3Xbbbfp97//vTZu3KhNmzYpOTnZ7rHQAAAAjV1lZaW2bNmi2NhY25iLi4tiY2OVm5trus6KFSsUExOjpKQkBQQEqHv37po5c6aqqqrs6pKSknTHHXfYbRtA3WJOE6CB+b+/uZCkzMxMrVy5UllZWZo0aVK1+l9/c7Fu3Tq5ublJkkJDQ+1qBg0aZPf+hRde0Pz587V+/Xpde+21kqQJEyboscces9tHly5davPQAAAAGryjR4+qqqpKAQEBduMBAQHauXOn6Tr79u3T559/rmHDhmnVqlXas2ePxowZozNnzmj69OmSpKVLlyovL0+bNm2q82MA8Bt+RQw0IHX5m4tfVVVVaenSpSovL1dMTIwkqbS0VBs2bJC/v7/69u2rgIAA9e/fX19//XXtHyQAAEAjY7Va5e/vrwULFigyMlLx8fGaPHmyMjMzJUnff/+9xo0bpyVLlsjT09PJ3QKNC1eaAA1IXf3mQpK2bdummJgYnT59Ws2aNdNHH32kbt262bYhSTNmzNDLL7+siIgI/e1vf9Mtt9yi7du3q1OnTnV0xAAAAA2Ln5+fXF1dVVJSYjdeUlKiwMBA03WCgoLk5uYmV1dX21hYWJiKi4ttvzQrLS3VddddZ1teVVWlr776SnPnzlVFRYXdugBqD1eaAFe48/3m4lddunRRfn6+NmzYoNGjRyshIUE7duywbUOS/vznPysxMVG9evXSnDlz1KVLlxonNAMAAGiM3N3dFRkZqZycHNuY1WpVTk6O7Sre/9WvXz/t2bPH9p1Lknbt2qWgoCC5u7vrlltu0bZt25Sfn297RUVFadiwYcrPzycwAeoQV5oADUhd/ObC3d1d0tl/4Dt27ChJioyM1KZNm/Tqq6/qjTfeUFBQkCTZrjz5v9spKiqqteMDAAC4EqSkpCghIUFRUVHq06ePMjIyVF5ebpuTbsSIEQoODlZaWpokafTo0Zo7d67GjRunsWPHavfu3Zo5c6Yee+wxSVLz5s3VvXt3u314e3urdevWduPFxcUqLi7Wnj17JJ29krh58+Zq27atWrVqVR+HDlxxuNIEaEDq4jcXNbFaraqoqJB0duLYNm3aqLCw0K5m165dateu3aUcEgAAwBUnPj5eL7/8sqZNm6aIiAjl5+crOzvbdot1UVGRDh8+bKsPCQnR6tWrtWnTJvXs2VOPPfaYxo0bZzrJ/7lkZmaqV69eGjVqlCTpxhtvVK9evbRixYraOzigkSE0aSTmzZun0NBQeXp6Kjo6Whs3bjxn/bFjx5SUlKSgoCB5eHioc+fOWrVqlW15WlqaevfurebNm8vf31+DBw+u9gP16dOnlZSUpNatW6tZs2YaMmRItSskLmeX6zlLSUnRwoUL9dZbb6mgoECjR4+u9puL1NRUW/3o0aNVVlamcePGadeuXVq5cqVmzpyppKQkW01qaqq++uorHThwQNu2bVNqaqrWrFmjYcOGSZIsFouefPJJvfbaa/rggw+0Z88eTZ06VTt37tRDDz10cScYAADYuVy/e1zOLudzlpycrIMHD6qiokIbNmxQdHS0bdmaNWu0ePFiu/qYmBitX79ep0+f1t69e/X000+f87abNWvWKCMjw25sxowZMgyj2mvkyJHnPC8AakZo0ggsW7ZMKSkpmj59uvLy8hQeHq64uDiVlpaa1ldWVurWW2/VgQMH9MEHH6iwsFALFy5UcHCwrebLL79UUlKS1q9fr88++0xnzpzR73//e5WXl9tqJkyYoH/84x96//339eWXX+rHH3/UPffcU+fHWxsu53NWF7+5KC0t1YgRI9SlSxfdcsst2rRpk1avXq1bb73VVjN+/HilpqZqwoQJCg8PV05Ojj777DN16NDh0k42AAC4rL97XK44ZwDqg8UwDMPZTZzPiRMn5Ovrq+PHj8vHx8fZ7TQ40dHR6t27t+bOnSvp7G0XISEhGjt2rOklf5mZmZo9e7Z27twpNze3C9rHkSNH5O/vry+//FI33nijjh8/rquuukrvvPOO7r33XknSzp07FRYWptzcXF2fHVd7B1jbZhy/PM/Z9dfX3jECqH0zfJ3dQc1mHHd2BwDO47L87sH3NYfPme/IxNo7xloWtrPA2S00OPwcCokrTa54vz6iLDY21jbm4uKi2NhY5ebmmq6zYsUKxcTEKCkpSQEBAerevbtmzpypqqqqGvdz/PjZL+S/TjC1ZcsWnTlzxm6/Xbt2Vdu2bWvc7+WCcwYAAOoT3z0cxzkDUF94es4V7ujRo6qqqrLduvGrgIAA7dy503Sdffv26fPPP9ewYcO0atUq7dmzR2PGjNGZM2c0ffr0avVWq1Xjx49Xv379bLN3FxcXy93dXS1atKi23+LiYqlp7RxfXbhcz1lB17DaOcA6wG8uAAC4eJfrdw++r13EOQNwxeFKE1RjtVrl7++vBQsWKDIyUvHx8Zo8ebIyMzNN65OSkrR9+3YtXbq0nju9fHDOAODS1PZkjl999ZUGDRqkNm3ayGKx6OOPP662jeXLl+v3v/+9WrduLYvFovz8/Fo+KqDu8N3DcZwzABeD0OQK5+fnJ1dX12ozepeUlCgwMNB0naCgIHXu3Nlutu6wsDAVFxersrLSrjY5OVn//Oc/9cUXX+jqq6+2jQcGBqqyslLHjh274P1eLjhnAFC/6mIyx/LycoWHh2vevHk17re8vFw33HCDXnzxxVo/JsARfPdwHOcMQH0hNLnCubu7KzIyUjk5ObYxq9WqnJwcxcTEmK7Tr18/7dmzR1ar1Ta2a9cuBQUFyd3dXZJkGIaSk5P10Ucf6fPPP9c111xjt43IyEi5ubnZ7bewsFBFRUU17vdywTkDgPqVnp6uUaNGKTExUd26dVNmZqa8vLyUlZVlWp+VlaWysjJ9/PHH6tevn0JDQ9W/f3+Fh4fbam6//XY9//zzuvvuu2vc7/DhwzVt2jS7uQkAZ+C7h+M4ZwDqC6FJI5CSkqKFCxfqrbfeUkFBgUaPHq3y8nIlJp6d3XvEiBFKTU211Y8ePVplZWUaN26cdu3apZUrV2rmzJlKSkqy1SQlJentt9/WO++8o+bNm6u4uFjFxcX65ZdfJEm+vr566KGHlJKSoi+++EJbtmxRYmKiYmJiGsRTYDhnAFA/6msyR+Byx3cPx3HOANQHJoJtBOLj43XkyBFNmzZNxcXFioiIUHZ2tm3irKKiIrm4/JafhYSEaPXq1ZowYYJ69uyp4OBgjRs3ThMnTrTVzJ8/X5I0YMAAu329+eabGjlypCRpzpw5cnFx0ZAhQ1RRUaG4uDj95S9/qduDrSWcMwCoH/UxmSPQEPDdw3GcMwD1wWIYhuHsJs6H52NfgWb4OruDms047uwOTPH0HOAyx+faRfnxxx8VHBysdevW2V3a/tRTT+nLL7/Uhg0bqq3TuXNnnT59Wvv377fNTZCenq7Zs2fr8OHD1eotFos++ugjDR482LSHAwcO6JprrtHWrVsVERFRK8cFXBH4XHMY39euLPwcCokrTQAAgBNd7GSObm5uNU7m+OvcBAAAAJeKOU0AAIDT1NVkjgAAALWBK02uYKGTVjq7hRod8HR2BzXr8VYPZ7dg6j1nNwAAdSQlJUUJCQmKiopSnz59lJGRUW0yx+DgYKWlpUk6O5nj3LlzNW7cOI0dO1a7d+/WzJkz9dhjj9m2efLkSe3Zs8f2fv/+/crPz1erVq3Utm1bSVJZWZmKior0448/Sjr7BAzp7CNFeXQo6gvf1y4O39cA1BdCEwAA4FR1MZnj5s2bddNNN9nep6SkSJISEhK0ePFiSWefwvNrMCNJ999/vyRp+vTpmjFjRl0dLgAAaEAITQAAgNMlJycrOTnZdNmaNWuqjcXExGj9+vU1bm/AgAE631z3I0eOtD0NAwAAwAxzmgAAAAAAAJggNAEAAAAAADDB7TkAAMApCrqGObuFGoXtLHB2CwAA4DJwUVeazJs3T6GhofL09FR0dLQ2btx4zvpjx44pKSlJQUFB8vDwUOfOnbVq1aqLahgAAAAAAKA+OHylybJly5SSkqLMzExFR0crIyNDcXFxKiwslL+/f7X6yspK3XrrrfL399cHH3yg4OBgHTx4UC1atKiN/gEAAAAAAOqEw6FJenq6Ro0aZXtEX2ZmplauXKmsrCxNmjSpWn1WVpbKysq0bt06ubm5SZJCQ0MvrWsAAAAAAIA65tDtOZWVldqyZYtiY2N/24CLi2JjY5Wbm2u6zooVKxQTE6OkpCQFBASoe/fumjlzpqqqqmrcT0VFhU6cOGH3AgAAAAAAqE8OhSZHjx5VVVWVAgIC7MYDAgJUXFxsus6+ffv0wQcfqKqqSqtWrdLUqVP1yiuv6Pnnn69xP2lpafL19bW9QkJCHGkTAAAAAADgktX5I4etVqv8/f21YMECRUZGKj4+XpMnT1ZmZmaN66Smpur48eO21/fff1/XbQIAAAAAANhxaE4TPz8/ubq6qqSkxG68pKREgYGBpusEBQXJzc1Nrq6utrGwsDAVFxersrJS7u7u1dbx8PCQh4eHI60BAAAAAADUKoeuNHF3d1dkZKRycnJsY1arVTk5OYqJiTFdp1+/ftqzZ4+sVqttbNeuXQoKCjINTAAAAAAAAC4HDt+ek5KSooULF+qtt95SQUGBRo8erfLyctvTdEaMGKHU1FRb/ejRo1VWVqZx48Zp165dWrlypWbOnKmkpKTaOwoAAAAAAIBa5vAjh+Pj43XkyBFNmzZNxcXFioiIUHZ2tm1y2KKiIrm4/JbFhISEaPXq1ZowYYJ69uyp4OBgjRs3ThMnTqy9owAAAAAAAKhlDocmkpScnKzk5GTTZWvWrKk2FhMTo/Xr11/MrgAAAAAAAJyizp+eAwAAAAAA0BARmgAAGqR58+YpNDRUnp6eio6O1saNG2usXbx4sSwWi93L09OzWl1BQYHuvPNO+fr6ytvbW71791ZRUZFt+YIFCzRgwAD5+PjIYrHo2LFjdXFodYZzBgAA4BhCEwBAg7Ns2TKlpKRo+vTpysvLU3h4uOLi4lRaWlrjOj4+Pjp8+LDtdfDgQbvle/fu1Q033KCuXbtqzZo1+vbbbzV16lS7oODUqVO67bbb9PTTT9fZsdUVzhkAAIDjLmpOEwAAnCk9PV2jRo2yPbktMzNTK1euVFZWliZNmmS6jsViUWBgYI3bnDx5sgYOHKiXXnrJNtahQwe7mvHjx0syn7/rcsc5AwAAcBxXmgAAGpTKykpt2bJFsbGxtjEXFxfFxsYqNze3xvVOnjypdu3aKSQkRHfddZe+++472zKr1aqVK1eqc+fOiouLk7+/v6Kjo/Xxxx/X5aHUG84ZAADAxSE0AQA0KEePHlVVVZXtUfe/CggIUHFxsek6Xbp0UVZWlj755BO9/fbbslqt6tu3r3744QdJUmlpqU6ePKlZs2bptttu06effqq7775b99xzj7788ss6P6a6xjkDAAC4ONyeAwC44sXExCgmJsb2vm/fvgoLC9Mbb7yh5557TlarVZJ01113acKECZKkiIgIrVu3TpmZmerfv79T+nYmzhkAAABXmgAAGhg/Pz+5urqqpKTEbrykpOSc82/8X25uburVq5f27Nlj22aTJk3UrVs3u7qwsDC7J8E0VJwzAACAi0NoAgBoUNzd3RUZGamcnBzbmNVqVU5Ojt2VEedSVVWlbdu2KSgoyLbN3r17q7Cw0K5u165dateuXe017yScMwAAgIvD7TkAgAYnJSVFCQkJioqKUp8+fZSRkaHy8nLbk2FGjBih4OBgpaWlSZKeffZZXX/99erYsaOOHTum2bNn6+DBg3r44Ydt23zyyScVHx+vG2+8UTfddJOys7P1j3/8w+6pL8XFxSouLrZdbbFt2zY1b95cbdu2Vav6O/yLcjmeMwAAgMsdoQkAoMGJj4/XkSNHNG3aNBUXFysiIkLZ2dm2iU6Liork4vLbxZT/+c9/NGrUKBUXF6tly5aKjIzUunXr7G4tufvuu5WZmam0tDQ99thj6tKliz788EPdcMMNtprMzEw988wztvc33nijJOnNN9/UyDo+5kt1OZ6z6Lo+aAAAgEtkMQzDcHYT53PixAn5+vrq+PHj8vHxcXY7DUbopJXObqFGBzz/5OwWatTjmsvzt5/vpf3X2S3UKGxngbNbAJxvhq+zO6jZjOPO7sBUQdcwZ7dQIz7XUF/4vnZx+L7mOD7XHMfPoZCY0wQAAAAAAMAUoQkAAAAAAIAJ5jQBADQYl/dl7M7uoGY93urh7BZMvefsBgAAAM6DK00AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwQWgCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYILQBAAAAAAAwAShCQAAAAAAgAlCEwAAAAAAABOEJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAAThCYAAAAAAAAmCE0AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwcVGhybx58xQaGipPT09FR0dr48aNNdYuXrxYFovF7uXp6XnRDQMAAAAAANQHh0OTZcuWKSUlRdOnT1deXp7Cw8MVFxen0tLSGtfx8fHR4cOHba+DBw9eUtMAAAAAAAB1zeHQJD09XaNGjVJiYqK6deumzMxMeXl5KSsrq8Z1LBaLAgMDba+AgIBLahoAAAAAAKCuORSaVFZWasuWLYqNjf1tAy4uio2NVW5ubo3rnTx5Uu3atVNISIjuuusufffdd+fcT0VFhU6cOGH3AgAAAAAAqE8OhSZHjx5VVVVVtStFAgICVFxcbLpOly5dlJWVpU8++URvv/22rFar+vbtqx9++KHG/aSlpcnX19f2CgkJcaRNAAAAAACAS1bnT8+JiYnRiBEjFBERof79+2v58uW66qqr9MYbb9S4Tmpqqo4fP257ff/993XdJgAAAAAAgJ0mjhT7+fnJ1dVVJSUlduMlJSUKDAy8oG24ubmpV69e2rNnT401Hh4e8vDwcKQ1AAAAAACAWuXQlSbu7u6KjIxUTk6ObcxqtSonJ0cxMTEXtI2qqipt27ZNQUFBjnUKAAAAAABQjxy60kSSUlJSlJCQoKioKPXp00cZGRkqLy9XYmKiJGnEiBEKDg5WWlqaJOnZZ5/V9ddfr44dO+rYsWOaPXu2Dh48qIcffrh2jwQAAAAAAKAWORyaxMfH68iRI5o2bZqKi4sVERGh7Oxs2+SwRUVFcnH57QKW//znPxo1apSKi4vVsmVLRUZGat26derWrVvtHQUAAAAAAEAtczg0kaTk5GQlJyebLluzZo3d+zlz5mjOnDkXsxsAAAAAAACnqfOn5wAAAAAAADREhCYAAAAAAAAmCE0AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwQWgCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYILQBAAAAAAAwAShCQAAAAAAgAlCEwAAAAAAABNNnN0AAAAAAAANkdVqVWVlpbPbgIPc3Nzk6up6QbWEJgAAAAAAOKiyslL79++X1Wp1diu4CC1atFBgYKAsFss56whNAAAAAABwgGEYOnz4sFxdXRUSEiIXF2a+aCgMw9CpU6dUWloqSQoKCjpnPaEJAAAAAAAO+O9//6tTp06pTZs28vLycnY7cFDTpk0lSaWlpfL39z/nrTrEYQAAAAAAOKCqqkqS5O7u7uROcLF+DbvOnDlzzjpCEwAAAAAALsL55sPA5etC/9sRmgAAAAAAAJggNAEAAAAAADDBRLAAAAAAANSC0Ekr63V/B2bdUa/7a4y40gQAAAAAADjF+SZidTZCEwAAAAAAGons7GzdcMMNatGihVq3bq0//OEP2rt3r235Dz/8oKFDh6pVq1by9vZWVFSUNmzYYFv+j3/8Q71795anp6f8/Px0991325ZZLBZ9/PHHdvtr0aKFFi9eLEk6cOCALBaLli1bpv79+8vT01NLlizRTz/9pKFDhyo4OFheXl7q0aOH3n33XbvtWK1WvfTSS+rYsaM8PDzUtm1bvfDCC5Kkm2++WcnJyXb1R44ckbu7u3Jyci7pfBGaAAAAAADQSJSXlyslJUWbN29WTk6OXFxcdPfdd8tqterkyZPq37+/Dh06pBUrVuibb77RU089JavVKklauXKl7r77bg0cOFBbt25VTk6O+vTp43APkyZN0rhx41RQUKC4uDidPn1akZGRWrlypbZv365HHnlEw4cP18aNG23rpKamatasWZo6dap27Nihd955RwEBAZKkhx9+WO+8844qKips9W+//baCg4N18803X9L5Yk4TAAAAAAAaiSFDhti9z8rK0lVXXaUdO3Zo3bp1OnLkiDZt2qRWrVpJkjp27GirfeGFF3T//ffrmWeesY2Fh4c73MP48eN1zz332I098cQTtj+PHTtWq1ev1nvvvac+ffro559/1quvvqq5c+cqISFBktShQwfdcMMNkqR77rlHycnJ+uSTT3TfffdJkhYvXqyRI0de8mOhudIEAAAAAIBGYvfu3Ro6dKjat28vHx8fhYaGSpKKioqUn5+vXr162QKT/5Wfn69bbrnlknuIioqye19VVaXnnntOPXr0UKtWrdSsWTOtXr1aRUVFkqSCggJVVFTUuG9PT08NHz5cWVlZkqS8vDxt375dI0eOvOReudIEAAAAAIBGYtCgQWrXrp0WLlyoNm3ayGq1qnv37qqsrFTTpk3Pue75llssFhmGYTdmNtGrt7e33fvZs2fr1VdfVUZGhnr06CFvb2+NHz9elZWVF7Rf6ewtOhEREfrhhx/05ptv6uabb1a7du3Ou975cKUJAAAAAACNwE8//aTCwkJNmTJFt9xyi8LCwvSf//zHtrxnz57Kz89XWVmZ6fo9e/Y858SqV111lQ4fPmx7v3v3bp06deq8fa1du1Z33XWXHnjgAYWHh6t9+/batWuXbXmnTp3UtGnTc+67R48eioqK0sKFC/XOO+/owQcfPO9+LwShCQAAAAAAjUDLli3VunVrLViwQHv27NHnn3+ulJQU2/KhQ4cqMDBQgwcP1tq1a7Vv3z59+OGHys3NlSRNnz5d7777rqZPn66CggJt27ZNL774om39m2++WXPnztXWrVu1efNmPfroo3JzcztvX506ddJnn32mdevWqaCgQH/+859VUlJiW+7p6amJEyfqqaee0t/+9jft3btX69ev16JFi+y28/DDD2vWrFkyDMPuqT6XgtAEAAAAAIBGwMXFRUuXLtWWLVvUvXt3TZgwQbNnz7Ytd3d316effip/f38NHDhQPXr00KxZs+Tq6ipJGjBggN5//32tWLFCERERuvnmm+2ecPPKK68oJCREv/vd7/SnP/1JTzzxhLy8vM7b15QpU3TdddcpLi5OAwYMsAU3/9fUqVP1+OOPa9q0aQoLC1N8fLxKS0vtaoYOHaomTZpo6NCh8vT0vIQz9RvmNAEAAAAAoBYcmHWHs1s4r9jYWO3YscNu7P/OQ9KuXTt98MEHNa5/zz33VHvyza/atGmj1atX240dO3bM9ufQ0NBqc55IUqtWrfTxxx+fs28XFxdNnjxZkydPrrHm6NGjOn36tB566KFzbssRhCYAAAAAAKDBOnPmjH766SdNmTJF119/va677rpa2za35wAAAAAAgAZr7dq1CgoK0qZNm5SZmVmr2+ZKEwAAAAAA0GANGDDA9Laf2sCVJgAAAAAAACYITQAAAAAAAExcVGgyb948hYaGytPTU9HR0XaPGDqXpUuXymKxVHt0EAAAAAAAwOXG4dBk2bJlSklJ0fTp05WXl6fw8HDFxcVVez7y/zpw4ICeeOIJ/e53v7voZgEAAAAAAOqLw6FJenq6Ro0apcTERHXr1k2ZmZny8vJSVlZWjetUVVVp2LBheuaZZ9S+fftLahgAAAAAAKA+OBSaVFZWasuWLYqNjf1tAy4uio2NVW5ubo3rPfvss/L399dDDz10QfupqKjQiRMn7F4AAAAAAAD1yaHQ5OjRo6qqqlJAQIDdeEBAgIqLi03X+frrr7Vo0SItXLjwgveTlpYmX19f2yskJMSRNgEAAAAAwGVgzZo1slgsOnbsWK3W1pcmdbnxn3/+WcOHD9fChQvl5+d3weulpqYqJSXF9v7EiRMEJwAAAACAy9sM33re3/H63d9F6Nu3rw4fPixf3/OfG0dq64tDoYmfn59cXV1VUlJiN15SUqLAwMBq9Xv37tWBAwc0aNAg25jVaj274yZNVFhYqA4dOlRbz8PDQx4eHo60BgAAAAAAalFlZaXc3d0vaRvu7u6mecGl1tYXh27PcXd3V2RkpHJycmxjVqtVOTk5iomJqVbftWtXbdu2Tfn5+bbXnXfeqZtuukn5+flcPQIAAAAAQD0ZMGCAkpOTlZycLF9fX/n5+Wnq1KkyDEOSFBoaqueee04jRoyQj4+PHnnkEUlnp9343e9+p6ZNmyokJESPPfaYysvLbdutqKjQxIkTFRISIg8PD3Xs2FGLFi2SVP2Wm4MHD2rQoEFq2bKlvL29de2112rVqlWmtZL04Ycf6tprr5WHh4dCQ0P1yiuv2B1TaGioZs6cqQcffFDNmzdX27ZttWDBglo7Zw4/PSclJUULFy7UW2+9pYKCAo0ePVrl5eVKTEyUJI0YMUKpqamSJE9PT3Xv3t3u1aJFCzVv3lzdu3e/5MQKAAAAAABcuLfeektNmjTRxo0b9eqrryo9PV1//etfbctffvllhYeHa+vWrZo6dar27t2r2267TUOGDNG3336rZcuW6euvv1ZycrJtnREjRujdd9/Va6+9poKCAr3xxhtq1qyZ6f6TkpJUUVGhr776Stu2bdOLL75YY+2WLVt033336f7779e2bds0Y8YMTZ06VYsXL7are+WVVxQVFaWtW7dqzJgxGj16tAoLCy/9ZOki5jSJj4/XkSNHNG3aNBUXFysiIkLZ2dm2yWGLiork4uJwFgMAAAAAAOpYSEiI5syZI4vFoi5dumjbtm2aM2eORo0aJUm6+eab9fjjj9vqH374YQ0bNkzjx4+XJHXq1Emvvfaa+vfvr/nz56uoqEjvvfeePvvsM9uTdtu3b1/j/ouKijRkyBD16NHjvLXp6em65ZZbNHXqVElS586dtWPHDs2ePVsjR4601Q0cOFBjxoyRJE2cOFFz5szRF198oS5dujh+gv7HRU0E++vlPGbWrFlzznX/NxECAAAAAAD14/rrr5fFYrG9j4mJ0SuvvKKqqipJUlRUlF39N998o2+//VZLliyxjRmGIavVqv3792vbtm1ydXVV//79L2j/jz32mEaPHq1PP/1UsbGxGjJkiHr27GlaW1BQoLvuusturF+/fsrIyFBVVZVcXV0lyW59i8WiwMBAlZaWXlA/58MlIQAAAAAAQJLk7e1t9/7kyZP685//bDdX6TfffKPdu3erQ4cOatq0qUPbf/jhh7Vv3z4NHz5c27ZtU1RUlF5//fVL6tnNzc3uvcVisT2E5lIRmgAAAAAA0Ehs2LDB7v369evVqVMn21Ub/+u6667Tjh071LFjx2ovd3d39ejRQ1arVV9++eUF9xASEqJHH31Uy5cv1+OPP66FCxea1oWFhWnt2rV2Y2vXrlXnzp1r7Le2EZoAAAAAANBIFBUVKSUlRYWFhXr33Xf1+uuva9y4cTXWT5w4UevWrVNycrLy8/O1e/duffLJJ7YpO0JDQ5WQkKAHH3xQH3/8sfbv3681a9bovffeM93e+PHjtXr1au3fv195eXn64osvFBYWZlr7+OOPKycnR88995x27dqlt956S3PnztUTTzxx6SfiAl3UnCYAAAAAAKDhGTFihH755Rf16dNHrq6uGjdunO3RwmZ69uypL7/8UpMnT9bvfvc7GYahDh06KD4+3lYzf/58Pf300xozZox++ukntW3bVk8//bTp9qqqqpSUlKQffvhBPj4+uu222zRnzhzT2uuuu07vvfeepk2bpueee05BQUF69tln7SaBrWuEJgAAAAAA1IYZx53dwXm5ubkpIyND8+fPr7bswIEDpuv07t1bn376aY3b9PT0VHp6utLT06stGzBggAzDsL0/1/wl/1srSUOGDNGQIUNqXMes5/z8/BrrHcXtOQAAAAAAACYITQAAAAAAAExwew4AAAAAAI3AmjVrnN1Cg8OVJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAKgTM2bMUEREhO39yJEjNXjwYKf146gmzm4AAAAAAIArQY+3etTr/rYlbKvX/TVGXGkCAAAAAEAjVFlZ6ewWLnuEJgAAAAAANAIDBgxQcnKyxo8fLz8/P8XFxWn79u26/fbb1axZMwUEBGj48OE6evSobR2r1aqXXnpJHTt2lIeHh9q2basXXnjBtnzixInq3LmzvLy81L59e02dOlVnzpxxxuHVCUITAAAAAAAaibfeekvu7u5au3atZs2apZtvvlm9evXS5s2blZ2drZKSEt133322+tTUVM2aNUtTp07Vjh079M477yggIMC2vHnz5lq8eLF27NihV199VQsXLtScOXOccWh1gjlNAAAAAABoJDp16qSXXnpJkvT888+rV69emjlzpm15VlaWQkJCtGvXLgUFBenVV1/V3LlzlZCQIEnq0KGDbrjhBlv9lClTbH8ODQ3VE088oaVLl+qpp56qpyOqW4QmAAAAAAA0EpGRkbY/f/PNN/riiy/UrFmzanV79+7VsWPHVFFRoVtuuaXG7S1btkyvvfaa9u7dq5MnT+q///2vfHx86qR3ZyA0AQAAAACgkfD29rb9+eTJkxo0aJBefPHFanVBQUHat2/fObeVm5urYcOG6ZlnnlFcXJx8fX21dOlSvfLKK7Xet7MQmgAAAAAA0Ahdd911+vDDDxUaGqomTarHA506dVLTpk2Vk5Ojhx9+uNrydevWqV27dpo8ebJt7ODBg3Xac31jIlgAAAAAABqhpKQklZWVaejQodq0aZP27t2r1atXKzExUVVVVfL09NTEiRP11FNP6W9/+5v27t2r9evXa9GiRZLOhipFRUVaunSp9u7dq9dee00fffSRk4+qdhGaAAAAAADQCLVp00Zr165VVVWVfv/736tHjx4aP368WrRoIReXs3HB1KlT9fjjj2vatGkKCwtTfHy8SktLJUl33nmnJkyYoOTkZEVERGjdunWaOnWqMw+p1lkMwzCc3cT5nDhxQr6+vjp+/PgVNaFMXQudtNLZLdTogOefnN1CjXpc09bZLZh6L+2/zm6hRmE7C5zdAhoJPtcuDp9rjuNzDfWFz7WLw+ea4/hcc9y5fg49ffq09u/fr2uuuUaenp5O6hCX4kL/G3KlCQAAAAAAgAlCEwAAAAAAABOEJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAABoBwzD0yCOPqFWrVrJYLMrPz3d2S5e9Js5uAAAAAACAK0FB17B63V/YzgKH6rOzs7V48WKtWbNG7du3165duzRo0CBt2bJFhw8f1kcffaTBgwfXTbMNFFeaAAAAAADQCOzdu1dBQUHq27evAgMDVV5ervDwcM2bN8/ZrV22uNIEAAAAAIAr3MiRI/XWW29JkiwWi9q1a6cDBw7o9ttvd3JnlzdCEwAAAAAArnCvvvqqOnTooAULFmjTpk1ydXV1dksNAqEJAAAAAABXOF9fXzVv3lyurq4KDAx0djsNxkXNaTJv3jyFhobK09NT0dHR2rhxY421y5cvV1RUlFq0aCFvb29FRETo73//+0U3DAAAAAAAUB8cDk2WLVumlJQUTZ8+XXl5eQoPD1dcXJxKS0tN61u1aqXJkycrNzdX3377rRITE5WYmKjVq1dfcvMAAAAAAAB1xeHQJD09XaNGjVJiYqK6deumzMxMeXl5KSsry7R+wIABuvvuuxUWFqYOHTpo3Lhx6tmzp77++utLbh4AAAAAAKCuOBSaVFZWasuWLYqNjf1tAy4uio2NVW5u7nnXNwxDOTk5Kiws1I033uh4twAAAAAAoFacPHlS+fn5ys/PlyTt379f+fn5Kioqcm5jlxGHJoI9evSoqqqqFBAQYDceEBCgnTt31rje8ePHFRwcrIqKCrm6uuovf/mLbr311hrrKyoqVFFRYXt/4sQJR9oEAAAAAADnsXnzZt1000229ykpKZKkhIQELV682EldXV7q5ek5zZs3V35+vk6ePKmcnBylpKSoffv2GjBggGl9WlqannnmmfpoDQAAAACAWhG2s8DZLZzT+PHjNX78eNv7AQMGyDAM5zXUADgUmvj5+cnV1VUlJSV24yUlJed8ZJGLi4s6duwoSYqIiFBBQYHS0tJqDE1SU1NtCZd09kqTkJAQR1oFAAAAAAC4JA7NaeLu7q7IyEjl5OTYxqxWq3JychQTE3PB27FarXa33/wvDw8P+fj42L0AAAAAAADqk8O356SkpCghIUFRUVHq06ePMjIyVF5ersTEREnSiBEjFBwcrLS0NElnb7WJiopShw4dVFFRoVWrVunvf/+75s+fX7tHAgAAAAAAUIscDk3i4+N15MgRTZs2TcXFxYqIiFB2drZtctiioiK5uPx2AUt5ebnGjBmjH374QU2bNlXXrl319ttvKz4+vvaOAgAAAAAAoJZd1ESwycnJSk5ONl22Zs0au/fPP/+8nn/++YvZDQAAAAAAly0mUW24LvS/nUNzmgAAAAAA0Ni5urpKkiorK53cCS7WqVOnJElubm7nrKuXRw4DAAAAAHClaNKkiby8vHTkyBG5ubnZTVGBy5thGDp16pRKS0vVokULWwBWE0ITAAAAAAAcYLFYFBQUpP379+vgwYPObgcXoUWLFgoMDDxvHaEJAAAAAAAOcnd3V6dOnbhFpwFyc3M77xUmvyI0AQAAAADgIri4uMjT09PZbaAOceMVAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYILQBAAAAAAAwAShCQAAAAAAgAlCEwAAAAAAABOEJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAAThCYAAAAAAAAmCE0AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwQWgCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYILQBAAAAAAAwAShCQAAAAAAgAlCEwAAAAAAABOEJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJi4qNBk3rx5Cg0Nlaenp6Kjo7Vx48YaaxcuXKjf/e53atmypVq2bKnY2Nhz1gMAAAAAAFwOHA5Nli1bppSUFE2fPl15eXkKDw9XXFycSktLTevXrFmjoUOH6osvvlBubq5CQkL0+9//XocOHbrk5gEAAAAAAOqKw6FJenq6Ro0apcTERHXr1k2ZmZny8vJSVlaWaf2SJUs0ZswYRUREqGvXrvrrX/8qq9WqnJycS24eAAAAAACgrjgUmlRWVmrLli2KjY39bQMuLoqNjVVubu4FbePUqVM6c+aMWrVqVWNNRUWFTpw4YfcCAAAAAACoTw6FJkePHlVVVZUCAgLsxgMCAlRcXHxB25g4caLatGljF7z8r7S0NPn6+tpeISEhjrQJAAAAAABwyer16TmzZs3S0qVL9dFHH8nT07PGutTUVB0/ftz2+v777+uxSwAAAAAAAKmJI8V+fn5ydXVVSUmJ3XhJSYkCAwPPue7LL7+sWbNm6d///rd69ux5zloPDw95eHg40hoAAAAAAECtcuhKE3d3d0VGRtpN4vrrpK4xMTE1rvfSSy/pueeeU3Z2tqKioi6+WwAAAAAAgHri0JUmkpSSkqKEhARFRUWpT58+ysjIUHl5uRITEyVJI0aMUHBwsNLS0iRJL774oqZNm6Z33nlHoaGhtrlPmjVrpmbNmtXioQAAAAAAANQeh0OT+Ph4HTlyRNOmTVNxcbEiIiKUnZ1tmxy2qKhILi6/XcAyf/58VVZW6t5777XbzvTp0zVjxoxL6x4AAAAAAKCOOByaSFJycrKSk5NNl61Zs8bu/YEDBy5mFwAAAAAAAE5Vr0/PAQAAAAAAaCgITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAAThCYAAAAAAAAmCE0AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwQWgCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYILQBAAAAAAAwAShCQAAAAAAgAlCEwAAAAAAABOEJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAAThCYAAAAAAAAmCE0AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwQWgCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJi4qNJk3b55CQ0Pl6emp6Ohobdy4scba7777TkOGDFFoaKgsFosyMjIutlcAAAAAAIB643BosmzZMqWkpGj69OnKy8tTeHi44uLiVFpaalp/6tQptW/fXrNmzVJgYOAlNwwAAAAAAFAfHA5N0tPTNWrUKCUmJqpbt27KzMyUl5eXsrKyTOt79+6t2bNn6/7775eHh8clNwwAAAAAAFAfHApNKisrtWXLFsXGxv62ARcXxcbGKjc3t9aaqqio0IkTJ+xeAAAAAAAA9cmh0OTo0aOqqqpSQECA3XhAQICKi4trram0tDT5+vraXiEhIbW2bQAAAAAAgAtxWT49JzU1VcePH7e9vv/+e2e3BAAAAAAAGpkmjhT7+fnJ1dVVJSUlduMlJSW1Osmrh4cH858AAAAAAACncuhKE3d3d0VGRionJ8c2ZrValZOTo5iYmFpvDgAAAAAAwFkcutJEklJSUpSQkKCoqCj16dNHGRkZKi8vV2JioiRpxIgRCg4OVlpamqSzk8fu2LHD9udDhw4pPz9fzZo1U8eOHWvxUAAAAAAAAGqPw6FJfHy8jhw5omnTpqm4uFgRERHKzs62TQ5bVFQkF5ffLmD58ccf1atXL9v7l19+WS+//LL69++vNWvWXPoRAAAAAAAA1AGHQxNJSk5OVnJysumy/w1CQkNDZRjGxewGAAAAAADAaS7Lp+cAAAAAAAA4G6EJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYILQBAAAAAAAwAShCQAAAAAAgAlCEwAAAAAAABOEJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAAThCYAAAAAAAAmCE0AAAAAAABMEJoAAAAAAACYIDQBAAAAAAAwQWgCAAAAAABggtAEAAAAAADABKEJAAAAAACACUITAAAAAAAAE4QmAAAAAAAAJghNAAAAAAAATBCaAAAAAAAAmCA0AQAAAAAAMEFoAgAAAAAAYILQBAAAAAAAwAShCQAAAAAAgAlCEwAAAAAAABOEJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMDERYUm8+bNU2hoqDw9PRUdHa2NGzees/79999X165d5enpqR49emjVqlUX1SwAAAAAAEB9cTg0WbZsmVJSUjR9+nTl5eUpPDxccXFxKi0tNa1ft26dhg4dqoceekhbt27V4MGDNXjwYG3fvv2SmwcAAAAAAKgrDocm6enpGjVqlBITE9WtWzdlZmbKy8tLWVlZpvWvvvqqbrvtNj355JMKCwvTc889p+uuu05z58695OYBAAAAAADqikOhSWVlpbZs2aLY2NjfNuDiotjYWOXm5pquk5uba1cvSXFxcTXWAwAAAAAAXA6aOFJ89OhRVVVVKSAgwG48ICBAO3fuNF2nuLjYtL64uLjG/VRUVKiiosL2/vjx45KkEydOONJuo2etOOXsFmp0wmI4u4UaVf1S5ewWTJ2sujz7kvi7ifrD59rF4XPNcXyuob7wuXZx+FxzHJ9rjvv1nBnG5ft3AXXPodCkvqSlpemZZ56pNh4SEuKEblAXfJ3dwDkVOLsBU32c3cC5+F7e/0WB+nB5/y3gc81hfK4BfK5dBD7Xrkw///yzfDl/jZZDoYmfn59cXV1VUlJiN15SUqLAwEDTdQIDAx2ql6TU1FSlpKTY3lutVpWVlal169ayWCyOtAw45MSJEwoJCdH3338vHx8fZ7cDAJeMzzUAVxo+11BfDMPQzz//rDZt2ji7FTiRQ6GJu7u7IiMjlZOTo8GDB0s6G2jk5OQoOTnZdJ2YmBjl5ORo/PjxtrHPPvtMMTExNe7Hw8NDHh4edmMtWrRwpFXgkvj4+PCPMIArCp9rAK40fK6hPnCFCRy+PSclJUUJCQmKiopSnz59lJGRofLyciUmJkqSRowYoeDgYKWlpUmSxo0bp/79++uVV17RHXfcoaVLl2rz5s1asGBB7R4JAAAAAABALXI4NImPj9eRI0c0bdo0FRcXKyIiQtnZ2bbJXouKiuTi8ttDefr27at33nlHU6ZM0dNPP61OnTrp448/Vvfu3WvvKAAAAAAAAGqZxWAqYMCmoqJCaWlpSk1NrXaLGAA0RHyuAbjS8LkGoD4RmgAAAAAAAJhwOX8JAAAAAABA40NoAgAAAAAAYILQBAAAAAAAwAShCQAAAAAAgAlCk0Zk3rx5Cg0Nlaenp6Kjo7Vx48Yaa5cvX66oqCi1aNFC3t7eioiI0N///ne7mhkzZqhr167y9vZWy5YtFRsbqw0bNtjV3HnnnWrbtq08PT0VFBSk4cOH68cff7QtLyws1E033aSAgAB5enqqffv2mjJlis6cOUMvDagXwBkc+UyTpGPHjikpKUlBQUHy8PBQ586dtWrVKruaQ4cO6YEHHlDr1q3VtGlT9ejRQ5s3b7arKSgo0J133ilfX195e3urd+/eKioqsqvJzc3VzTffLG9vb/n4+OjGG2/UL7/8YlezcuVKRUdHq2nTpmrZsqUGDx5crefFixerZ8+e8vT0lL+/v5KSkuyWG4ahl19+WZ07d5aHh4eCg4P1wgsv2NVUVFRo8uTJateunTw8PBQaGqqsrCzOzQWeGwD166uvvtKgQYPUpk0bWSwWffzxx+ddZ82aNbruuuvk4eGhjh07avHixXXeJ4BGxECjsHTpUsPd3d3IysoyvvvuO2PUqFFGixYtjJKSEtP6L774wli+fLmxY8cOY8+ePUZGRobh6upqZGdn22qWLFlifPbZZ8bevXuN7du3Gw899JDh4+NjlJaW2mrS09ON3Nxc48CBA8batWuNmJgYIyYmxrZ87969RlZWlpGfn28cOHDA+OSTTwx/f38jNTWVXhpQL0B9c/QzraKiwoiKijIGDhxofP3118b+/fuNNWvWGPn5+baasrIyo127dsbIkSONDRs2GPv27TNWr15t7Nmzx1azZ88eo1WrVsaTTz5p5OXlGXv27DE++eQTu/2uW7fO8PHxMdLS0ozt27cbO3fuNJYtW2acPn3aVvPBBx8YLVu2NObPn28UFhYa3333nbFs2TK7nl955RWjTZs2xpIlS4w9e/YY33zzjfHJJ5/Y1YwdO9bo0qWL8cknnxj79u0zNm/ebHz66ad2NXfeeacRHR1tfPbZZ8b+/fuNdevWGV9//TXn5gLODYD6t2rVKmPy5MnG8uXLDUnGRx99dM76ffv2GV5eXkZKSoqxY8cO4/XXX6/2fQgALgWhSSPRp08fIykpyfa+qqrKaNOmjZGWlnbB2+jVq5cxZcqUGpcfP37ckGT8+9//rrHmk08+MSwWi1FZWVljzYQJE4wbbriBXhp4L0BdcvQzbf78+Ub79u3P+f/1xIkTz/v/dXx8vPHAAw+csyY6Ovqcfw/PnDljBAcHG3/9619rrCkrKzOaNm16zr+rO3bsMJo0aWLs3Lmzxpp//etfhq+vr/HTTz/VWMO5qfncAHCuCwlNnnrqKePaa6+1G4uPjzfi4uLqsDMAjQm35zQClZWV2rJli2JjY21jLi4uio2NVW5u7nnXNwxDOTk5Kiws1I033ljjPhYsWCBfX1+Fh4eb1pSVlWnJkiXq27ev3NzcTGv27Nmj7Oxs9e/fn14aaC9AXbuYz7QVK1YoJiZGSUlJCggIUPfu3TVz5kxVVVXZ1URFRemPf/yj/P391atXLy1cuNC23Gq1auXKlercubPi4uLk7++v6Ohou0vHS0tLtWHDBvn7+6tv374KCAhQ//799fXXX9tq8vLydOjQIbm4uKhXr14KCgrS7bffru3bt9tqPvvsM1mtVh06dEhhYWG6+uqrdd999+n777+31fzjH/9Q+/bt9c9//lPXXHONQkND9fDDD6usrKzaMb300ksKDg5W586d9cQTT9jdDsO5qfncALj85ebm2v17IElxcXEX9B0XAC6IczMb1IdDhw4Zkox169bZjT/55JNGnz59alzv2LFjhre3t9GkSRPDw8PDWLRoUbWaf/zjH4a3t7dhsViMNm3aGBs3bqxW89RTTxleXl6GJOP66683jh49Wq0mJibG8PDwMCQZjzzyiFFVVUUvDawXoL5czGdaly5dDA8PD+PBBx80Nm/ebCxdutRo1aqVMWPGDFuNh4eH4eHhYaSmphp5eXnGG2+8YXh6ehqLFy82DMMwDh8+bEgyvLy8jPT0dGPr1q1GWlqaYbFYjDVr1hiGYRi5ubmGJKNVq1ZGVlaWkZeXZ4wfP95wd3c3du3aZRiGYbz77ruGJKNt27bGBx98YGzevNkYOnSo0bp1a9tVD2lpaYabm5vRpUsXIzs728jNzTVuueUWo0uXLkZFRYVhGIbx5z//2fDw8DCio6ONr776yvjiiy+MiIgI46abbrIdU1xcnOHh4WHccccdxoYNG4yVK1fabrPh3Jz/3ABwLl3AlSadOnUyZs6caTe2cuVKQ5Jx6tSpOuwOQGNBaNIIXGxoUlVVZezevdvYunWr8fLLLxu+vr7GF198YVdz8uRJY/fu3UZubq7x4IMPGqGhodXmFDhy5IhRWFhofPrpp0a/fv2MgQMHGlar1a6mqKjI+O6774x33nnHCA4ONl588UV6aWC9APXlYj7TOnXqZISEhBj//e9/bWOvvPKKERgYaHvv5uZmN5+PYZydF+P666+32+/QoUPtagYNGmTcf//9hmEYxtq1aw1J1eb86dGjhzFp0iTDMM7ONSTJeOONN2zLT58+bfj5+RmZmZmGYRjGCy+8YEgyVq9ebaspLS01XFxcbPfpjxo1ypBkFBYW2mq2bNliSLLdlnLrrbcanp6exrFjx2w1H374oWGxWGw/THBuaj43AJyL0ATA5aBJXV/JAufz8/OTq6urSkpK7MZLSkoUGBhY43ouLi7q2LGjJCkiIkIFBQVKS0vTgAEDbDXe3t7q2LGjOnbsqOuvv16dOnXSokWLlJqaard/Pz8/de7cWWFhYQoJCdH69esVExNjqwkJCZEkdevWTVVVVXrkkUf0+OOPy9XVlV4aSC9AfbmYz7SgoCC5ubnZ/f8aFham4uJiVVZWyt3dXUFBQerWrZvdemFhYfrwww9t+23SpIlpza+3mAQFBUmSac2vT5Exq/Hw8FD79u3PWXPVVVfJz8/PrqZJkybq3Lmz3X4kqaioSF26dFFQUJCCg4Pl6+trV2MYhn744Qd16tSJc3OOcwPg8hcYGGj674GPj4+aNm3qpK4AXEmY06QRcHd3V2RkpHJycmxjVqtVOTk5dj8Un4/ValVFRcUl1VitVkk6b82ZM2dstfTSMHsB6srFfKb169dPe/bssft/dteuXQoKCpK7u7utprCw0G69Xbt2qV27drb99u7d+5w1oaGhatOmzTlrIiMj5eHhYVdz5swZHThwwFbTr18/SbKrKSsr09GjR+1q/vvf/2rv3r12+5FkV/Pjjz/q5MmTdjUuLi66+uqrOTfnOTcALn8xMTF2/x5IZ+c+cuQ7LgCck7MvdUH9WLp0qeHh4WEsXrzY2LFjh/HII48YLVq0MIqLiw3DMIzhw4fbLo82DMOYOXOm8emnnxp79+41duzYYbz88stGkyZNjIULFxqGcfaWj9TUVNujajdv3mwkJiYaHh4exvbt2w3DMIz169cbr7/+urF161bjwIEDRk5OjtG3b1+jQ4cOtsdLvv3228ayZcuMHTt2GHv37jWWLVtmtGnTxhg2bBi9NKBegPrm6GdaUVGR0bx5cyM5OdkoLCw0/vnPfxr+/v7G888/b6vZuHGj0aRJE+OFF14wdu/ebSxZssTw8vIy3n77bVvN8uXLDTc3N2PBggXG7t27bY+2/H//7//ZaubMmWP4+PgY77//vrF7925jypQphqenp93jeceNG2cEBwcbq1evNnbu3Gk89NBDhr+/v1FWVmarueuuu4xrr73WWLt2rbFt2zbjD3/4g9GtWzfbU26qqqqM6667zrjxxhuNvLw8Y/PmzUZ0dLRx66232rbx888/G1dffbVx7733Gt99953x5ZdfGp06dTIefvhhzs0FnBsA9e/nn382tm7damzdutWQZJsn6eDBg4ZhGMakSZOM4cOH2+p/feTwk08+aRQUFBjz5s3jkcMAahWhSSPy+uuvG23btjXc3d2NPn36GOvXr7ct69+/v5GQkGB7P3nyZKNjx46Gp6en0bJlSyMmJsZYunSpbfkvv/xi3H333UabNm0Md3d3IygoyLjzzjvtJhn99ttvjZtuuslo1aqV4eHhYYSGhhqPPvqo8cMPP9hqli5dalx33XVGs2bNDG9vb6Nbt27GzJkzjV9++YVeGlAvgDM48plmGIaxbt06Izo62vDw8DDat29vvPDCC3bzeBjG2YmTu3fvbnh4eBhdu3Y1FixYUG2/ixYtsv3dCw8PNz7++ONqNWlpacbVV19teHl5GTExMXbBgWEYRmVlpfH4448b/v7+RvPmzY3Y2FhbmPmr48ePGw8++KDRokULo1WrVsbdd99tFBUV2dUcOnTIuOeee4xmzZoZAQEBxsiRI6s9QregoMCIjY01mjZtalx99dVGSkpKtfv8OTc1nxsA9euLL74wJFV7/fqZnpCQYPTv37/aOhEREYa7u7vRvn17480336z3vgFcuSyGYRjOvNIFAAAAAADgcsScJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAFCNxWLRxx9/7Ow2AAAAnIrQBACAy8zIkSNlsViqvW677TZntwYAANCoNHF2AwAAoLrbbrtNb775pt2Yh4eHk7oBAABonLjSBACAy5CHh4cCAwPtXi1btpR09taZ+fPn6/bbb1fTpk3Vvn17ffDBB3brb9u2TTfffLOaNm2q1q1b65FHHtHJkyftarKysnTttdfKw8NDQUFBSk5Otlt+9OhR3X333fLy8lKnTp20YsWKuj1oAACAywyhCQAADdDUqVM1ZMgQffPNNxo2bJjuv/9+FRQUSJLKy8sVFxenli1batOmTXr//ff173//2y4UmT9/vpKSkvTII49o27ZtWrFihTp27Gi3j2eeeUb33Xefvv32Ww0cOFDDhg1TWVlZvR4nAACAM1kMwzCc3QQAAPjNyJEj9fbbb8vT09Nu/Omnn9bTTz8ti8WiRx99VPPnz7ctu/7663XdddfpL3/5ixYuXKiJEyfq+++/l7e3tyRp1apVGjRokH788UcFBAQoODhYiYmJev755017sFgsmjJlip577jlJZ4OYZs2a6V//+hdzqwAAgEaDOU0AALgM3XTTTXahiCS1atXK9ueYmBi7ZTExMcrPz5ckFRQUKDw83BaYSFK/fv1ktVpVWFgoi8WiH3/8Ubfccss5e+jZs6ftz97e3vLx8VFpaenFHhIAAECDQ2gCAMBlyNvbu9rtMrWladOmF1Tn5uZm995ischqtdZFSwAAAJcl5jQBAKABWr9+fbX3YWFhkqSwsDB98803Ki8vty1fu3atXFxc1KVLFzVv3lyhoaHKycmp154BAAAaGq40AQDgMlRRUaHi4mK7sSZNmsjPz0+S9P777ysqKko33HCDlixZoo0bN2rRokWSpGHDhmn69OlKSEjQjBkzdOTIEY0dO1bDhw9XQECAJGnGjBl69NFH5e/vr9tvv10///yz1q5dq7Fjx9bvgQIAAFzGCE0AALgMZWdnKygoyG6sS5cu2rlzp6SzT7ZZunSpxowZo6CgIL377rvq1q2bJMnLy0urV6/WuHHj1Lt3b3l5eWnIkCFKT0+3bSshIUGnT5/WnDlz9MQTT8jPz0/33ntv/R0gAABAA8DTcwAAaGAsFos++ugjDR482NmtAAAAXNGY0wQAAAAAAMAEoQkAAAAAAIAJ5jQBAKCB4c5aAACA+sGVJgAAAAAAACYITQAAAAAAAEwQmgAAAAAAAJggNAEAAAAAADBBaAIAAAAAAGCC0AQAAAAAAMAEoQkAAAAAAIAJQhMAAAAAAAAThCYAAAAAAAAm/j9sCZlXln7cmAAAAABJRU5ErkJggg==","text/plain":["