Spaces:
Build error
Build error
nv4090 results
Browse files
competition/10e_InternLM_NV4090_eval.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llm_toolkit/eval_logical_reasoning.py
CHANGED
@@ -94,7 +94,7 @@ if adapter_name_or_path is not None:
|
|
94 |
model_name += "/" + adapter_name_or_path.split("/")[-1]
|
95 |
|
96 |
save_results(
|
97 |
-
f"{model_name}_{dtype}{'_4bit' if load_in_4bit else ''}",
|
98 |
results_path,
|
99 |
datasets["test"],
|
100 |
predictions,
|
|
|
94 |
model_name += "/" + adapter_name_or_path.split("/")[-1]
|
95 |
|
96 |
save_results(
|
97 |
+
f"{model_name}_{dtype}{'_4bit' if load_in_4bit else ''}{'_lf' if using_llama_factory else ''}",
|
98 |
results_path,
|
99 |
datasets["test"],
|
100 |
predictions,
|
llm_toolkit/llm_utils.py
CHANGED
@@ -88,7 +88,9 @@ def check_gpu():
|
|
88 |
# If we have a GPU available, we'll set our device to GPU. We'll use this device variable later in our code.
|
89 |
if is_cuda:
|
90 |
device = torch.device("cuda")
|
91 |
-
print("
|
|
|
|
|
92 |
elif torch.backends.mps.is_available():
|
93 |
device = torch.device("mps")
|
94 |
print("MPS is available")
|
|
|
88 |
# If we have a GPU available, we'll set our device to GPU. We'll use this device variable later in our code.
|
89 |
if is_cuda:
|
90 |
device = torch.device("cuda")
|
91 |
+
print("CUDA is available, we have found ", torch.cuda.device_count(), " GPU(s)")
|
92 |
+
print(torch.cuda.get_device_name(0))
|
93 |
+
print("CUDA version: " + torch.version.cuda)
|
94 |
elif torch.backends.mps.is_available():
|
95 |
device = torch.device("mps")
|
96 |
print("MPS is available")
|
results/mgtv-results_internlm_nv4090.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
scripts/eval-mgtv-nv4090.sh
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
|
3 |
+
BASEDIR=$(dirname "$0")
|
4 |
+
cd $BASEDIR/..
|
5 |
+
echo Current Directory:
|
6 |
+
pwd
|
7 |
+
|
8 |
+
BASEDIR=`pwd`
|
9 |
+
|
10 |
+
nvidia-smi
|
11 |
+
uname -a
|
12 |
+
cat /etc/os-release
|
13 |
+
lscpu
|
14 |
+
grep MemTotal /proc/meminfo
|
15 |
+
|
16 |
+
export LOAD_IN_4BIT=false
|
17 |
+
|
18 |
+
export MODEL_NAME=internlm/internlm2_5-7b-chat-1m
|
19 |
+
export ADAPTER_NAME_OR_PATH=inflaton-ai/InternLM_2_5-7b_LoRA-Adapter
|
20 |
+
export LOGICAL_REASONING_DATA_PATH=datasets/mgtv
|
21 |
+
export LOGICAL_REASONING_RESULTS_PATH=results/mgtv-results_internlm_best.csv
|
22 |
+
|
23 |
+
export USE_FLOAT32_FOR_INFERENCE=false
|
24 |
+
|
25 |
+
export USE_BF16_FOR_INFERENCE=false
|
26 |
+
echo "Eval $MODEL_NAME with $ADAPTER_NAME_OR_PATH"
|
27 |
+
python llm_toolkit/eval_logical_reasoning.py
|
28 |
+
|
29 |
+
export USE_BF16_FOR_INFERENCE=true
|
30 |
+
echo "Eval $MODEL_NAME with $ADAPTER_NAME_OR_PATH"
|
31 |
+
python llm_toolkit/eval_logical_reasoning.py
|
32 |
+
|
33 |
+
export LOAD_IN_4BIT=true
|
34 |
+
echo "Eval $MODEL_NAME with $ADAPTER_NAME_OR_PATH"
|
35 |
+
python llm_toolkit/eval_logical_reasoning.py
|