### model model_name_or_path: shenzhi-wang/Llama3-8B-Chinese-Chat #model_name_or_path: FlagAlpha/Llama3-Chinese-8B-Instruct ### method stage: sft do_train: true finetuning_type: lora lora_target: all # quantization_bit: 4 # use 4-bit QLoRA loraplus_lr_ratio: 16.0 # use LoRA+ with lambda=16.0 # use_unsloth: true # use UnslothAI's LoRA optimization for 2x faster training upcast_layernorm: true ### dataset dataset: alpaca_mgtv_p2 template: llama3 cutoff_len: 8192 max_samples: 25000 overwrite_cache: true preprocessing_num_workers: 16 ### output output_dir: saves/llama3-8b/lora/sft_bf16_p2_full_r2 logging_steps: 10 save_steps: 175 plot_loss: true #overwrite_output_dir: true ### train per_device_train_batch_size: 16 gradient_accumulation_steps: 8 learning_rate: 1.0e-4 num_train_epochs: 4.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true ddp_timeout: 180000000 ### eval val_size: 0.1 per_device_eval_batch_size: 1 eval_strategy: epoch eval_steps: 1 report_to: wandb run_name: llama3_8b_p2_full_r2 # optional