### model # model_name_or_path: gradientai/Llama-3-8B-Instruct-Gradient-1048k model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct ### method stage: sft do_train: true finetuning_type: lora lora_target: all quantization_bit: 4 # use 4-bit QLoRA loraplus_lr_ratio: 16.0 # use LoRA+ with lambda=16.0 # use_unsloth: true # use UnslothAI's LoRA optimization for 2x faster training upcast_layernorm: true ### dataset dataset: alpaca_mac template: llama3 cutoff_len: 1024 max_samples: 500 overwrite_cache: true preprocessing_num_workers: 16 ### output # output_dir: saves/llama3-8b/lora/sft output_dir: /content/llama3-8b/ logging_steps: 10 save_steps: 100 plot_loss: true overwrite_output_dir: true # resume_from_checkpoint: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 1.0e-4 num_train_epochs: 6.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true ddp_timeout: 180000000 ### eval val_size: 0.01 per_device_eval_batch_size: 1 eval_strategy: steps eval_steps: 560 report_to: none