### model model_name_or_path: ORG_NAME/MODEL_NAME quantization_bit: 4 ### method stage: sft do_train: true finetuning_type: lora lora_target: all ### dataset dataset: alpaca_mgtv_p2 template: CHAT_TEMPLATE cutoff_len: 8192 max_samples: 25000 overwrite_cache: true preprocessing_num_workers: 16 ### output output_dir: saves/MODEL_NAME logging_steps: 5 save_steps: 35 plot_loss: true # overwrite_output_dir: true ### train per_device_train_batch_size: 16 gradient_accumulation_steps: 8 learning_rate: 1.0e-4 num_train_epochs: 2.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true ddp_timeout: 180000000 ### eval val_size: 0.1 per_device_eval_batch_size: 1 eval_strategy: steps eval_steps: 35 report_to: wandb run_name: MODEL_NAME_lora_sft