import os import sys import subprocess from dotenv import find_dotenv, load_dotenv def evaluate_model_all_epochs_v2( model_name, adapter_path_base=None, start_epoch=0, load_in_4bit=True, num_of_entries=-1, result_file=None, batch_size=2, ): new_env = os.environ.copy() new_env["MODEL_NAME"] = model_name model = model_name.split("/")[-1] new_env["LOAD_IN_4BIT"] = "true" if load_in_4bit else "false" new_env["BATCH_SIZE"] = str(batch_size) if result_file is not None: new_env["LOGICAL_REASONING_RESULTS_PATH"] = result_file if adapter_path_base is None: num_train_epochs = 0 print(f"No adapter path provided. Running with base model:{model_name}") else: # find subdirectories in adapter_path_base # and sort them by epoch number subdirs = [ d for d in os.listdir(adapter_path_base) if os.path.isdir(os.path.join(adapter_path_base, d)) ] subdirs = sorted(subdirs, key=lambda x: int(x.split("-")[-1])) num_train_epochs = len(subdirs) print(f"found {num_train_epochs} checkpoints: {subdirs}") end_epoch = os.getenv("END_EPOCH") if end_epoch: num_train_epochs = int(end_epoch) for i in range(start_epoch, num_train_epochs + 1): print(f"Epoch {i}") if i == 0: os.unsetenv("ADAPTER_NAME_OR_PATH") else: adapter_path = adapter_path_base + "/" + subdirs[i - 1] new_env["ADAPTER_NAME_OR_PATH"] = adapter_path print(f"adapter path: {new_env.get('ADAPTER_NAME_OR_PATH')}") log_file = "./logs/{}_epoch_{}.txt".format(model, i) with open(log_file, "w") as f_obj: subprocess.run( f"python llm_toolkit/eval_logical_reasoning.py {num_of_entries}", shell=True, env=new_env, stdout=f_obj, text=True, ) if __name__ == "__main__": found_dotenv = find_dotenv(".env") if len(found_dotenv) == 0: found_dotenv = find_dotenv(".env.example") print(f"loading env vars from: {found_dotenv}") load_dotenv(found_dotenv, override=False) workding_dir = os.path.dirname(found_dotenv) os.chdir(workding_dir) sys.path.append(workding_dir) print("workding dir:", workding_dir) print(f"adding {workding_dir} to sys.path") sys.path.append(workding_dir) model_name = os.getenv("MODEL_NAME") adapter_path_base = os.getenv("ADAPTER_PATH_BASE") start_epoch = int(os.getenv("START_EPOCH", 0)) load_in_4bit = os.getenv("LOAD_IN_4BIT", "true").lower() == "true" result_file = os.getenv("LOGICAL_REASONING_RESULTS_PATH", None) batch_size = int(os.getenv("BATCH_SIZE", 2)) num_of_entries = int(sys.argv[1]) if len(sys.argv) > 1 else -1 evaluate_model_all_epochs_v2( model_name, adapter_path_base=adapter_path_base, start_epoch=start_epoch, load_in_4bit=load_in_4bit, num_of_entries=num_of_entries, result_file=result_file, batch_size=batch_size, )