{ "cells": [ { "cell_type": "code", "execution_count": 0, "metadata": { "application/vnd.databricks.v1+cell": { "cellMetadata": { "byteLimit": 2048000, "rowLimit": 10000 }, "inputWidgets": {}, "nuid": "eb33b19f-1206-41ee-84e2-e6258a12eef7", "showTitle": false, "title": "" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "output_type": "stream", "text": [ "Python 3.11.0rc1\r\n" ] } ], "source": [ "if 'dbutils' in locals():\n", " dbutils.library.restartPython()\n", "\n", "!python --version" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "application/vnd.databricks.v1+cell": { "cellMetadata": { "byteLimit": 2048000, "rowLimit": 10000 }, "inputWidgets": {}, "nuid": "0ea8b46b-839b-445b-8043-ccdf4e920ace", "showTitle": false, "title": "" } }, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "application/vnd.databricks.v1+cell": { "cellMetadata": { "byteLimit": 2048000, "rowLimit": 10000 }, "inputWidgets": {}, "nuid": "6d394937-6c99-4a7c-9d32-7600a280032f", "showTitle": false, "title": "" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "output_type": "stream", "text": [ "workding dir: /Workspace/Users/donghao.huang@mastercard.com/llm-finetuning\n" ] } ], "source": [ "import os\n", "import sys\n", "from pathlib import Path\n", "\n", "workding_dir = str(Path.cwd().parent)\n", "os.chdir(workding_dir)\n", "sys.path.append(workding_dir)\n", "print(\"workding dir:\", workding_dir)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "application/vnd.databricks.v1+cell": { "cellMetadata": { "byteLimit": 2048000, "rowLimit": 10000 }, "inputWidgets": {}, "nuid": "ac667aba-076e-4de6-9984-8f6a67cb09cd", "showTitle": false, "title": "" } }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "True" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "need_to_setup_env = True\n", "need_to_setup_env" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "application/vnd.databricks.v1+cell": { "cellMetadata": { "byteLimit": 2048000, "rowLimit": 10000 }, "inputWidgets": {}, "nuid": "72f9cf79-7b0d-4d9e-90a0-1fa5251b947f", "showTitle": false, "title": "" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "output_type": "stream", "text": [ "Writing to /root/.config/pip/pip.conf\n\u001B[43mNote: you may need to restart the kernel using %restart_python or dbutils.library.restartPython() to use updated packages.\u001B[0m\nLooking in indexes: https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/simple\nCollecting tf-keras\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/75/aa/cf09f8956d4f276f655b13674e15d8d6015fd832f9689aa9ff2a515781ab/tf_keras-2.16.0-py3-none-any.whl (1.7 MB)\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/1.7 MB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\n\u001B[2K \u001B[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[90m╺\u001B[0m\u001B[90m━\u001B[0m \u001B[32m1.6/1.7 MB\u001B[0m \u001B[31m49.3 MB/s\u001B[0m eta \u001B[36m0:00:01\u001B[0m\n\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m1.7/1.7 MB\u001B[0m \u001B[31m37.1 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n\u001B[?25hRequirement already satisfied: tensorflow<2.17,>=2.16 in /databricks/python3/lib/python3.11/site-packages (from tf-keras) (2.16.1)\nRequirement already satisfied: flatbuffers>=23.5.26 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (24.3.25)\nRequirement already satisfied: opt-einsum>=2.3.2 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (3.3.0)\nRequirement already satisfied: astunparse>=1.6.0 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (1.6.3)\nRequirement already satisfied: wrapt>=1.11.0 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (1.14.1)\nRequirement already satisfied: six>=1.12.0 in /usr/lib/python3/dist-packages (from tensorflow<2.17,>=2.16->tf-keras) (1.16.0)\nRequirement already satisfied: google-pasta>=0.1.1 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (0.2.0)\nRequirement already satisfied: termcolor>=1.1.0 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (2.4.0)\nRequirement already satisfied: numpy<2.0.0,>=1.23.5 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (1.23.5)\nRequirement already satisfied: absl-py>=1.0.0 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (1.0.0)\nRequirement already satisfied: libclang>=13.0.0 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (15.0.6.1)\nRequirement already satisfied: tensorboard<2.17,>=2.16 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (2.16.2)\nRequirement already satisfied: ml-dtypes~=0.3.1 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (0.3.2)\nRequirement already satisfied: h5py>=3.10.0 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (3.10.0)\nRequirement already satisfied: keras>=3.0.0 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (3.1.1)\nRequirement already satisfied: setuptools in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (68.0.0)\nRequirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (4.24.1)\nRequirement already satisfied: typing-extensions>=3.6.6 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (4.10.0)\nRequirement already satisfied: grpcio<2.0,>=1.24.3 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (1.60.0)\nRequirement already satisfied: packaging in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (23.2)\nRequirement already satisfied: requests<3,>=2.21.0 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (2.31.0)\nRequirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (0.4.0)\nRequirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /databricks/python3/lib/python3.11/site-packages (from tensorflow<2.17,>=2.16->tf-keras) (0.36.0)\nRequirement already satisfied: wheel<1.0,>=0.23.0 in /databricks/python3/lib/python3.11/site-packages (from astunparse>=1.6.0->tensorflow<2.17,>=2.16->tf-keras) (0.38.4)\nRequirement already satisfied: optree in /databricks/python3/lib/python3.11/site-packages (from keras>=3.0.0->tensorflow<2.17,>=2.16->tf-keras) (0.11.0)\nRequirement already satisfied: namex in /databricks/python3/lib/python3.11/site-packages (from keras>=3.0.0->tensorflow<2.17,>=2.16->tf-keras) (0.0.8)\nRequirement already satisfied: rich in /databricks/python3/lib/python3.11/site-packages (from keras>=3.0.0->tensorflow<2.17,>=2.16->tf-keras) (13.7.1)\nRequirement already satisfied: idna<4,>=2.5 in /databricks/python3/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow<2.17,>=2.16->tf-keras) (3.4)\nRequirement already satisfied: certifi>=2017.4.17 in /databricks/python3/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow<2.17,>=2.16->tf-keras) (2023.7.22)\nRequirement already satisfied: charset-normalizer<4,>=2 in /databricks/python3/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow<2.17,>=2.16->tf-keras) (2.0.4)\nRequirement already satisfied: urllib3<3,>=1.21.1 in /databricks/python3/lib/python3.11/site-packages (from requests<3,>=2.21.0->tensorflow<2.17,>=2.16->tf-keras) (1.26.16)\nRequirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /databricks/python3/lib/python3.11/site-packages (from tensorboard<2.17,>=2.16->tensorflow<2.17,>=2.16->tf-keras) (0.7.2)\nRequirement already satisfied: markdown>=2.6.8 in /databricks/python3/lib/python3.11/site-packages (from tensorboard<2.17,>=2.16->tensorflow<2.17,>=2.16->tf-keras) (3.4.1)\nRequirement already satisfied: werkzeug>=1.0.1 in /databricks/python3/lib/python3.11/site-packages (from tensorboard<2.17,>=2.16->tensorflow<2.17,>=2.16->tf-keras) (2.2.3)\nRequirement already satisfied: MarkupSafe>=2.1.1 in /databricks/python3/lib/python3.11/site-packages (from werkzeug>=1.0.1->tensorboard<2.17,>=2.16->tensorflow<2.17,>=2.16->tf-keras) (2.1.1)\nRequirement already satisfied: pygments<3.0.0,>=2.13.0 in /databricks/python3/lib/python3.11/site-packages (from rich->keras>=3.0.0->tensorflow<2.17,>=2.16->tf-keras) (2.15.1)\nRequirement already satisfied: markdown-it-py>=2.2.0 in /databricks/python3/lib/python3.11/site-packages (from rich->keras>=3.0.0->tensorflow<2.17,>=2.16->tf-keras) (2.2.0)\nRequirement already satisfied: mdurl~=0.1 in /databricks/python3/lib/python3.11/site-packages (from markdown-it-py>=2.2.0->rich->keras>=3.0.0->tensorflow<2.17,>=2.16->tf-keras) (0.1.0)\nInstalling collected packages: tf-keras\nSuccessfully installed tf-keras-2.16.0\n\u001B[43mNote: you may need to restart the kernel using %restart_python or dbutils.library.restartPython() to use updated packages.\u001B[0m\n\u001B[43mNote: you may need to restart the kernel using %restart_python or dbutils.library.restartPython() to use updated packages.\u001B[0m\n\u001B[43mNote: you may need to restart the kernel using %restart_python or dbutils.library.restartPython() to use updated packages.\u001B[0m\n\u001B[43mNote: you may need to restart the kernel using %restart_python or dbutils.library.restartPython() to use updated packages.\u001B[0m\nLooking in indexes: https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/simple\nRequirement already satisfied: nltk==3.8.1 in /databricks/python3/lib/python3.11/site-packages (from -r requirements.txt (line 1)) (3.8.1)\nCollecting python-dotenv==1.0.1\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/6a/3e/b68c118422ec867fa7ab88444e1274aa40681c606d59ac27de5a5588f082/python_dotenv-1.0.1-py3-none-any.whl (19 kB)\nCollecting black==24.4.0\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/0a/ef/37666bae20ba77d9a8420867077879fc0fd26e60e734ba5ee5ebc46f72fb/black-24.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB)\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/1.7 MB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\n\u001B[2K \u001B[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[91m╸\u001B[0m \u001B[32m1.7/1.7 MB\u001B[0m \u001B[31m65.8 MB/s\u001B[0m eta \u001B[36m0:00:01\u001B[0m\n\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m1.7/1.7 MB\u001B[0m \u001B[31m44.9 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n\u001B[?25hCollecting evaluate==0.4.2\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/c2/d6/ff9baefc8fc679dcd9eb21b29da3ef10c81aa36be630a7ae78e4611588e1/evaluate-0.4.2-py3-none-any.whl (84 kB)\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/84.1 kB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\n\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m84.1/84.1 kB\u001B[0m \u001B[31m11.7 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n\u001B[?25hCollecting rouge_score==0.1.2\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/e2/c5/9136736c37022a6ad27fea38f3111eb8f02fe75d067f9a985cc358653102/rouge_score-0.1.2.tar.gz (17 kB)\n Preparing metadata (setup.py): started\n Preparing metadata (setup.py): finished with status 'done'\nCollecting pytest==8.2.1\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/b4/c1/27a1274b73712232328cb5115030057b7dec377f36a518c83f2e01d4f305/pytest-8.2.1-py3-none-any.whl (339 kB)\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/339.6 kB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\n\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m339.6/339.6 kB\u001B[0m \u001B[31m21.3 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n\u001B[?25hCollecting seaborn==0.13.2\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/83/11/00d3c3dfc25ad54e731d91449895a79e4bf2384dc3ac01809010ba88f6d5/seaborn-0.13.2-py3-none-any.whl (294 kB)\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/294.9 kB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\n\u001B[2K \u001B[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[91m╸\u001B[0m\u001B[90m━\u001B[0m \u001B[32m286.7/294.9 kB\u001B[0m \u001B[31m9.8 MB/s\u001B[0m eta \u001B[36m0:00:01\u001B[0m\n\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m294.9/294.9 kB\u001B[0m \u001B[31m7.6 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n\u001B[?25hCollecting scikit-learn==1.5.0\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/46/c0/63d3a8da39a2ee051df229111aa93f6dca2b56f8080abd34993938166455/scikit_learn-1.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB)\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/13.3 MB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\n\u001B[2K \u001B[91m━━━━━━━━\u001B[0m\u001B[91m╸\u001B[0m\u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m2.8/13.3 MB\u001B[0m \u001B[31m85.3 MB/s\u001B[0m eta \u001B[36m0:00:01\u001B[0m\n\u001B[2K \u001B[91m━━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[90m╺\u001B[0m\u001B[90m━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m7.1/13.3 MB\u001B[0m \u001B[31m105.1 MB/s\u001B[0m eta \u001B[36m0:00:01\u001B[0m\n\u001B[2K \u001B[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[91m╸\u001B[0m \u001B[32m13.3/13.3 MB\u001B[0m \u001B[31m155.2 MB/s\u001B[0m eta \u001B[36m0:00:01\u001B[0m\n\u001B[2K \u001B[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[91m╸\u001B[0m \u001B[32m13.3/13.3 MB\u001B[0m \u001B[31m155.2 MB/s\u001B[0m eta \u001B[36m0:00:01\u001B[0m\n\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m13.3/13.3 MB\u001B[0m \u001B[31m81.2 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n\u001B[?25hCollecting jupyter\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/83/df/0f5dd132200728a86190397e1ea87cd76244e42d39ec5e88efd25b2abd7e/jupyter-1.0.0-py2.py3-none-any.whl (2.7 kB)\nRequirement already satisfied: ipywidgets in /databricks/python3/lib/python3.11/site-packages (from -r requirements.txt (line 10)) (7.7.2)\nRequirement already satisfied: packaging in /databricks/python3/lib/python3.11/site-packages (from -r requirements.txt (line 11)) (23.2)\nRequirement already satisfied: triton in /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc/lib/python3.11/site-packages (from -r requirements.txt (line 12)) (2.3.0)\nRequirement already satisfied: xformers in /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc/lib/python3.11/site-packages (from -r requirements.txt (line 13)) (0.0.26.post1)\nCollecting langchain_openai==0.1.13\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/5f/40/e904800a5bb989ed9790373455ba0776b67d9900ea3ae64e10f2b667ffe6/langchain_openai-0.1.13-py3-none-any.whl (45 kB)\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/45.9 kB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\n\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m45.9/45.9 kB\u001B[0m \u001B[31m5.3 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n\u001B[?25hCollecting wandb==0.17.4\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/98/08/fbd9f14b414c08a0b8376490f9877ce12e2bfe7a5b3cde3ba3e5a86d7f9d/wandb-0.17.4-py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB)\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/6.9 MB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\n\u001B[2K \u001B[91m━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[90m╺\u001B[0m\u001B[90m━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m3.3/6.9 MB\u001B[0m \u001B[31m100.7 MB/s\u001B[0m eta \u001B[36m0:00:01\u001B[0m\n\u001B[2K \u001B[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[91m╸\u001B[0m \u001B[32m6.9/6.9 MB\u001B[0m \u001B[31m126.8 MB/s\u001B[0m eta \u001B[36m0:00:01\u001B[0m\n\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m6.9/6.9 MB\u001B[0m \u001B[31m83.3 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n\u001B[?25hRequirement already satisfied: regex>=2021.8.3 in /databricks/python3/lib/python3.11/site-packages (from nltk==3.8.1->-r requirements.txt (line 1)) (2022.7.9)\nRequirement already satisfied: click in /databricks/python3/lib/python3.11/site-packages (from nltk==3.8.1->-r requirements.txt (line 1)) (8.0.4)\nRequirement already satisfied: joblib in /databricks/python3/lib/python3.11/site-packages (from nltk==3.8.1->-r requirements.txt (line 1)) (1.2.0)\nRequirement already satisfied: tqdm in /databricks/python3/lib/python3.11/site-packages (from nltk==3.8.1->-r requirements.txt (line 1)) (4.65.0)\nRequirement already satisfied: mypy-extensions>=0.4.3 in /databricks/python3/lib/python3.11/site-packages (from black==24.4.0->-r requirements.txt (line 3)) (0.4.3)\nRequirement already satisfied: pathspec>=0.9.0 in /databricks/python3/lib/python3.11/site-packages (from black==24.4.0->-r requirements.txt (line 3)) (0.10.3)\nRequirement already satisfied: platformdirs>=2 in /databricks/python3/lib/python3.11/site-packages (from black==24.4.0->-r requirements.txt (line 3)) (3.10.0)\nRequirement already satisfied: dill in /databricks/python3/lib/python3.11/site-packages (from evaluate==0.4.2->-r requirements.txt (line 4)) (0.3.6)\nRequirement already satisfied: datasets>=2.0.0 in /databricks/python3/lib/python3.11/site-packages (from evaluate==0.4.2->-r requirements.txt (line 4)) (2.18.0)\nRequirement already satisfied: xxhash in /databricks/python3/lib/python3.11/site-packages (from evaluate==0.4.2->-r requirements.txt (line 4)) (3.4.1)\nRequirement already satisfied: pandas in /databricks/python3/lib/python3.11/site-packages (from evaluate==0.4.2->-r requirements.txt (line 4)) (1.5.3)\nRequirement already satisfied: multiprocess in /databricks/python3/lib/python3.11/site-packages (from evaluate==0.4.2->-r requirements.txt (line 4)) (0.70.14)\nRequirement already satisfied: fsspec[http]>=2021.05.0 in /databricks/python3/lib/python3.11/site-packages (from evaluate==0.4.2->-r requirements.txt (line 4)) (2023.5.0)\nRequirement already satisfied: numpy>=1.17 in /databricks/python3/lib/python3.11/site-packages (from evaluate==0.4.2->-r requirements.txt (line 4)) (1.23.5)\nRequirement already satisfied: requests>=2.19.0 in /databricks/python3/lib/python3.11/site-packages (from evaluate==0.4.2->-r requirements.txt (line 4)) (2.31.0)\nRequirement already satisfied: huggingface-hub>=0.7.0 in /databricks/python3/lib/python3.11/site-packages (from evaluate==0.4.2->-r requirements.txt (line 4)) (0.20.2)\nRequirement already satisfied: absl-py in /databricks/python3/lib/python3.11/site-packages (from rouge_score==0.1.2->-r requirements.txt (line 5)) (1.0.0)\nRequirement already satisfied: six>=1.14.0 in /usr/lib/python3/dist-packages (from rouge_score==0.1.2->-r requirements.txt (line 5)) (1.16.0)\nCollecting iniconfig\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl (5.9 kB)\nCollecting pluggy<2.0,>=1.5\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl (20 kB)\nRequirement already satisfied: matplotlib!=3.6.1,>=3.4 in /databricks/python3/lib/python3.11/site-packages (from seaborn==0.13.2->-r requirements.txt (line 7)) (3.7.2)\nCollecting threadpoolctl>=3.1.0\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/4b/2c/ffbf7a134b9ab11a67b0cf0726453cedd9c5043a4fe7a35d1cefa9a1bcfb/threadpoolctl-3.5.0-py3-none-any.whl (18 kB)\nRequirement already satisfied: scipy>=1.6.0 in /databricks/python3/lib/python3.11/site-packages (from scikit-learn==1.5.0->-r requirements.txt (line 8)) (1.11.1)\nCollecting langchain-core<0.3,>=0.2.2\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/00/eb/4c320b83d05533f09f9c9d79cdcaea362b05974f3393f74077673cbd16b2/langchain_core-0.2.11-py3-none-any.whl (337 kB)\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/337.4 kB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\n\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m337.4/337.4 kB\u001B[0m \u001B[31m24.1 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n\u001B[?25hCollecting tiktoken<1,>=0.7\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/61/b4/b80d1fe33015e782074e96bbbf4108ccd283b8deea86fb43c15d18b7c351/tiktoken-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB)\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/1.1 MB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\n\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m1.1/1.1 MB\u001B[0m \u001B[31m41.1 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n\u001B[?25hCollecting openai<2.0.0,>=1.32.0\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/82/60/2ab971a017357bab653035df8ff6e6e625e1d70a8e2e03faed34741750f1/openai-1.35.10-py3-none-any.whl (328 kB)\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/328.3 kB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\n\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m328.3/328.3 kB\u001B[0m \u001B[31m20.7 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n\u001B[?25hCollecting sentry-sdk>=1.0.0\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/90/6a/a7d19d776ba9899c97acb223ceba4080ef9f5de9d7599203ae64b56ed597/sentry_sdk-2.7.1-py2.py3-none-any.whl (300 kB)\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/300.2 kB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\n\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m300.2/300.2 kB\u001B[0m \u001B[31m23.4 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n\u001B[?25hRequirement already satisfied: setuptools in /databricks/python3/lib/python3.11/site-packages (from wandb==0.17.4->-r requirements.txt (line 15)) (68.0.0)\nRequirement already satisfied: psutil>=5.0.0 in /databricks/python3/lib/python3.11/site-packages (from wandb==0.17.4->-r requirements.txt (line 15)) (5.9.0)\nRequirement already satisfied: gitpython!=3.1.29,>=1.0.0 in /databricks/python3/lib/python3.11/site-packages (from wandb==0.17.4->-r requirements.txt (line 15)) (3.1.27)\nRequirement already satisfied: pyyaml in /databricks/python3/lib/python3.11/site-packages (from wandb==0.17.4->-r requirements.txt (line 15)) (6.0)\nCollecting setproctitle\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/fd/df/44b267cb8f073a4ae77e120f0705ab3a07165ad90cecd4881b34c7e1e37b/setproctitle-1.3.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (31 kB)\nCollecting docker-pycreds>=0.4.0\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/f5/e8/f6bd1eee09314e7e6dee49cbe2c5e22314ccdb38db16c9fc72d2fa80d054/docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB)\nRequirement already satisfied: protobuf!=4.21.0,<6,>=3.19.0 in /databricks/python3/lib/python3.11/site-packages (from wandb==0.17.4->-r requirements.txt (line 15)) (4.24.1)\nRequirement already satisfied: notebook in /databricks/python3/lib/python3.11/site-packages (from jupyter->-r requirements.txt (line 9)) (6.5.4)\nRequirement already satisfied: nbconvert in /databricks/python3/lib/python3.11/site-packages (from jupyter->-r requirements.txt (line 9)) (6.5.4)\nCollecting jupyter-console\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/ca/77/71d78d58f15c22db16328a476426f7ac4a60d3a5a7ba3b9627ee2f7903d4/jupyter_console-6.6.3-py3-none-any.whl (24 kB)\nCollecting qtconsole\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/f2/3f/de5e5eb44900c1ed1c1567bc505e3b6e6f4c01cf29e558bf2f8cee29af5b/qtconsole-5.5.2-py3-none-any.whl (123 kB)\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/123.4 kB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\n\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m123.4/123.4 kB\u001B[0m \u001B[31m9.8 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n\u001B[?25hRequirement already satisfied: ipykernel in /databricks/python3/lib/python3.11/site-packages (from jupyter->-r requirements.txt (line 9)) (6.25.1)\nRequirement already satisfied: ipython-genutils~=0.2.0 in /databricks/python3/lib/python3.11/site-packages (from ipywidgets->-r requirements.txt (line 10)) (0.2.0)\nRequirement already satisfied: ipython>=4.0.0 in /databricks/python3/lib/python3.11/site-packages (from ipywidgets->-r requirements.txt (line 10)) (8.15.0)\nRequirement already satisfied: traitlets>=4.3.1 in /databricks/python3/lib/python3.11/site-packages (from ipywidgets->-r requirements.txt (line 10)) (5.7.1)\nRequirement already satisfied: filelock in /databricks/python3/lib/python3.11/site-packages (from triton->-r requirements.txt (line 12)) (3.9.0)\nRequirement already satisfied: torch==2.3.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc/lib/python3.11/site-packages (from xformers->-r requirements.txt (line 13)) (2.3.0)\nRequirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /databricks/python3/lib/python3.11/site-packages (from torch==2.3.0->xformers->-r requirements.txt (line 13)) (12.1.105)\nRequirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /databricks/python3/lib/python3.11/site-packages (from torch==2.3.0->xformers->-r requirements.txt (line 13)) (12.1.105)\nRequirement already satisfied: nvidia-nccl-cu12==2.20.5 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc/lib/python3.11/site-packages (from torch==2.3.0->xformers->-r requirements.txt (line 13)) (2.20.5)\nRequirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /databricks/python3/lib/python3.11/site-packages (from torch==2.3.0->xformers->-r requirements.txt (line 13)) (11.0.2.54)\nRequirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /databricks/python3/lib/python3.11/site-packages (from torch==2.3.0->xformers->-r requirements.txt (line 13)) (8.9.2.26)\nRequirement already satisfied: typing-extensions>=4.8.0 in /databricks/python3/lib/python3.11/site-packages (from torch==2.3.0->xformers->-r requirements.txt (line 13)) (4.10.0)\nRequirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /databricks/python3/lib/python3.11/site-packages (from torch==2.3.0->xformers->-r requirements.txt (line 13)) (12.1.105)\nRequirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /databricks/python3/lib/python3.11/site-packages (from torch==2.3.0->xformers->-r requirements.txt (line 13)) (10.3.2.106)\nRequirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /databricks/python3/lib/python3.11/site-packages (from torch==2.3.0->xformers->-r requirements.txt (line 13)) (12.1.105)\nRequirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /databricks/python3/lib/python3.11/site-packages (from torch==2.3.0->xformers->-r requirements.txt (line 13)) (12.1.3.1)\nRequirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /databricks/python3/lib/python3.11/site-packag\n\n*** WARNING: max output size exceeded, skipping output. ***\n\nh>=1.13.1->llamafactory==0.8.3.dev0) (2.20.5)\r\nRequirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /databricks/python3/lib/python3.11/site-packages (from torch>=1.13.1->llamafactory==0.8.3.dev0) (11.0.2.54)\r\nRequirement already satisfied: triton==2.3.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc/lib/python3.11/site-packages (from torch>=1.13.1->llamafactory==0.8.3.dev0) (2.3.0)\r\nRequirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /databricks/python3/lib/python3.11/site-packages (from torch>=1.13.1->llamafactory==0.8.3.dev0) (8.9.2.26)\r\nRequirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /databricks/python3/lib/python3.11/site-packages (from torch>=1.13.1->llamafactory==0.8.3.dev0) (12.1.105)\r\nRequirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /databricks/python3/lib/python3.11/site-packages (from torch>=1.13.1->llamafactory==0.8.3.dev0) (10.3.2.106)\r\nRequirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /databricks/python3/lib/python3.11/site-packages (from torch>=1.13.1->llamafactory==0.8.3.dev0) (12.1.105)\r\nRequirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /databricks/python3/lib/python3.11/site-packages (from torch>=1.13.1->llamafactory==0.8.3.dev0) (12.1.3.1)\r\nRequirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /databricks/python3/lib/python3.11/site-packages (from torch>=1.13.1->llamafactory==0.8.3.dev0) (11.4.5.107)\r\nRequirement already satisfied: sympy in /databricks/python3/lib/python3.11/site-packages (from torch>=1.13.1->llamafactory==0.8.3.dev0) (1.11.1)\r\nRequirement already satisfied: networkx in /databricks/python3/lib/python3.11/site-packages (from torch>=1.13.1->llamafactory==0.8.3.dev0) (3.1)\r\nRequirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /databricks/python3/lib/python3.11/site-packages (from torch>=1.13.1->llamafactory==0.8.3.dev0) (12.1.0.106)\r\nRequirement already satisfied: nvidia-nvjitlink-cu12 in /databricks/python3/lib/python3.11/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.13.1->llamafactory==0.8.3.dev0) (12.4.127)\r\nRequirement already satisfied: regex!=2019.12.17 in /databricks/python3/lib/python3.11/site-packages (from transformers>=4.41.2->llamafactory==0.8.3.dev0) (2022.7.9)\r\nCollecting tokenizers<0.20,>=0.19\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/a7/03/fb50fc03f86016b227a967c8d474f90230c885c0d18f78acdfda7a96ce56/tokenizers-0.19.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)\r\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/3.6 MB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\r\u001B[2K \u001B[91m━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[90m╺\u001B[0m\u001B[90m━━━━━━━━━━━━━\u001B[0m \u001B[32m2.4/3.6 MB\u001B[0m \u001B[31m70.7 MB/s\u001B[0m eta \u001B[36m0:00:01\u001B[0m\r\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m3.6/3.6 MB\u001B[0m \u001B[31m54.4 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\r\n\u001B[?25hCollecting huggingface-hub\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/69/d6/73f9d1b7c4da5f0544bc17680d0fa9932445423b90cd38e1ee77d001a4f5/huggingface_hub-0.23.4-py3-none-any.whl (402 kB)\r\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/402.6 kB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\r\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m402.6/402.6 kB\u001B[0m \u001B[31m22.2 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\r\n\u001B[?25hCollecting tyro>=0.5.11\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/f7/ea/c8967a64769ec465a2d49bf81e1e135999741704a36993b6b51465ce8503/tyro-0.8.5-py3-none-any.whl (103 kB)\r\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/103.4 kB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\r\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m103.4/103.4 kB\u001B[0m \u001B[31m13.8 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\r\n\u001B[?25hRequirement already satisfied: click>=7.0 in /databricks/python3/lib/python3.11/site-packages (from uvicorn->llamafactory==0.8.3.dev0) (8.0.4)\r\nRequirement already satisfied: h11>=0.8 in /databricks/python3/lib/python3.11/site-packages (from uvicorn->llamafactory==0.8.3.dev0) (0.14.0)\r\nCollecting starlette<0.38.0,>=0.37.2\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/fd/18/31fa32ed6c68ba66220204ef0be798c349d0a20c1901f9d4a794e08c76d8/starlette-0.37.2-py3-none-any.whl (71 kB)\r\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/71.9 kB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\r\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m71.9/71.9 kB\u001B[0m \u001B[31m8.3 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\r\n\u001B[?25hCollecting email_validator>=2.0.0\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/d7/ee/bf0adb559ad3c786f12bcbc9296b3f5675f529199bef03e2df281fa1fadb/email_validator-2.2.0-py3-none-any.whl (33 kB)\r\nCollecting fastapi-cli>=0.0.2\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/a1/03/89bf615052aa5453c04d952225ded0b88aab6487b9c5f0c268939d13b860/fastapi_cli-0.0.4-py3-none-any.whl (9.5 kB)\r\nRequirement already satisfied: ujson!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0,>=4.0.1 in /databricks/python3/lib/python3.11/site-packages (from fastapi->llamafactory==0.8.3.dev0) (5.4.0)\r\nRequirement already satisfied: six in /usr/lib/python3/dist-packages (from fire->llamafactory==0.8.3.dev0) (1.16.0)\r\nRequirement already satisfied: termcolor in /databricks/python3/lib/python3.11/site-packages (from fire->llamafactory==0.8.3.dev0) (2.4.0)\r\nRequirement already satisfied: anyio in /databricks/python3/lib/python3.11/site-packages (from sse-starlette->llamafactory==0.8.3.dev0) (3.5.0)\r\nRequirement already satisfied: jsonschema>=3.0 in /databricks/python3/lib/python3.11/site-packages (from altair<6.0,>=4.2.0->gradio>=4.0.0->llamafactory==0.8.3.dev0) (4.17.3)\r\nCollecting toolz\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/b7/8a/d82202c9f89eab30f9fc05380daae87d617e2ad11571ab23d7c13a29bb54/toolz-0.12.1-py3-none-any.whl (56 kB)\r\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/56.1 kB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\r\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m56.1/56.1 kB\u001B[0m \u001B[31m8.2 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\r\n\u001B[?25hCollecting dnspython>=2.0.0\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/87/a1/8c5287991ddb8d3e4662f71356d9656d91ab3a36618c3dd11b280df0d255/dnspython-2.6.1-py3-none-any.whl (307 kB)\r\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/307.7 kB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\r\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m307.7/307.7 kB\u001B[0m \u001B[31m20.9 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\r\n\u001B[?25hRequirement already satisfied: idna>=2.0.0 in /databricks/python3/lib/python3.11/site-packages (from email_validator>=2.0.0->fastapi->llamafactory==0.8.3.dev0) (3.4)\r\nRequirement already satisfied: multidict<7.0,>=4.5 in /databricks/python3/lib/python3.11/site-packages (from aiohttp->datasets>=2.16.0->llamafactory==0.8.3.dev0) (6.0.2)\r\nRequirement already satisfied: frozenlist>=1.1.1 in /databricks/python3/lib/python3.11/site-packages (from aiohttp->datasets>=2.16.0->llamafactory==0.8.3.dev0) (1.3.3)\r\nRequirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /databricks/python3/lib/python3.11/site-packages (from aiohttp->datasets>=2.16.0->llamafactory==0.8.3.dev0) (4.0.2)\r\nRequirement already satisfied: yarl<2.0,>=1.0 in /databricks/python3/lib/python3.11/site-packages (from aiohttp->datasets>=2.16.0->llamafactory==0.8.3.dev0) (1.8.1)\r\nRequirement already satisfied: attrs>=17.3.0 in /databricks/python3/lib/python3.11/site-packages (from aiohttp->datasets>=2.16.0->llamafactory==0.8.3.dev0) (22.1.0)\r\nRequirement already satisfied: aiosignal>=1.1.2 in /databricks/python3/lib/python3.11/site-packages (from aiohttp->datasets>=2.16.0->llamafactory==0.8.3.dev0) (1.2.0)\r\nRequirement already satisfied: charset-normalizer<4.0,>=2.0 in /databricks/python3/lib/python3.11/site-packages (from aiohttp->datasets>=2.16.0->llamafactory==0.8.3.dev0) (2.0.4)\r\nRequirement already satisfied: sniffio in /databricks/python3/lib/python3.11/site-packages (from httpx>=0.24.1->gradio>=4.0.0->llamafactory==0.8.3.dev0) (1.2.0)\r\nRequirement already satisfied: httpcore==1.* in /databricks/python3/lib/python3.11/site-packages (from httpx>=0.24.1->gradio>=4.0.0->llamafactory==0.8.3.dev0) (1.0.5)\r\nRequirement already satisfied: certifi in /databricks/python3/lib/python3.11/site-packages (from httpx>=0.24.1->gradio>=4.0.0->llamafactory==0.8.3.dev0) (2023.7.22)\r\nRequirement already satisfied: rich>=10.11.0 in /databricks/python3/lib/python3.11/site-packages (from typer<1.0,>=0.12->gradio>=4.0.0->llamafactory==0.8.3.dev0) (13.7.1)\r\nCollecting shellingham>=1.3.0\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/e0/f9/0595336914c5619e5f28a1fb793285925a8cd4b432c9da0a987836c7f822/shellingham-1.5.4-py2.py3-none-any.whl (9.8 kB)\r\nCollecting shtab>=1.5.6\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/e2/d1/a1d3189e7873408b9dc396aef0d7926c198b0df2aa3ddb5b539d3e89a70f/shtab-1.7.1-py3-none-any.whl (14 kB)\r\nCollecting docstring-parser>=0.16\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/d5/7c/e9fcff7623954d86bdc17782036cbf715ecab1bec4847c008557affe1ca8/docstring_parser-0.16-py3-none-any.whl (36 kB)\r\nCollecting watchfiles>=0.13\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/9e/eb/a11634f2ac58e609ac1150c45897ec29361b2bcbfdae388f3f4fc709104b/watchfiles-0.22.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\r\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/1.2 MB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\r\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m1.2/1.2 MB\u001B[0m \u001B[31m41.7 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\r\n\u001B[?25hRequirement already satisfied: python-dotenv>=0.13 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc/lib/python3.11/site-packages (from uvicorn->llamafactory==0.8.3.dev0) (1.0.1)\r\nCollecting httptools>=0.5.0\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/59/23/047a89e66045232fb82c50ae57699e40f70e073ae5ccd53f54e532fbd2a2/httptools-0.6.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (318 kB)\r\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/318.5 kB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\r\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m318.5/318.5 kB\u001B[0m \u001B[31m21.8 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\r\n\u001B[?25hCollecting uvloop!=0.15.0,!=0.15.1,>=0.14.0\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/86/cc/1829b3f740e4cb1baefff8240a1c6fc8db9e3caac7b93169aec7d4386069/uvloop-0.19.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.5 MB)\r\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/3.5 MB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\r\u001B[2K \u001B[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[91m╸\u001B[0m\u001B[90m━━━━━━\u001B[0m \u001B[32m2.9/3.5 MB\u001B[0m \u001B[31m87.7 MB/s\u001B[0m eta \u001B[36m0:00:01\u001B[0m\r\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m3.5/3.5 MB\u001B[0m \u001B[31m64.7 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\r\n\u001B[?25hRequirement already satisfied: mpmath>=0.19 in /databricks/python3/lib/python3.11/site-packages (from sympy->torch>=1.13.1->llamafactory==0.8.3.dev0) (1.3.0)\r\nRequirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /databricks/python3/lib/python3.11/site-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio>=4.0.0->llamafactory==0.8.3.dev0) (0.18.0)\r\nRequirement already satisfied: pygments<3.0.0,>=2.13.0 in /databricks/python3/lib/python3.11/site-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio>=4.0.0->llamafactory==0.8.3.dev0) (2.15.1)\r\nRequirement already satisfied: markdown-it-py>=2.2.0 in /databricks/python3/lib/python3.11/site-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio>=4.0.0->llamafactory==0.8.3.dev0) (2.2.0)\r\nRequirement already satisfied: mdurl~=0.1 in /databricks/python3/lib/python3.11/site-packages (from markdown-it-py>=2.2.0->rich>=10.11.0->typer<1.0,>=0.12->gradio>=4.0.0->llamafactory==0.8.3.dev0) (0.1.0)\r\nBuilding wheels for collected packages: fire, llamafactory, ffmpy\r\n Building wheel for fire (setup.py) ... \u001B[?25l-\b \b\\\b \bdone\r\n\u001B[?25h Created wheel for fire: filename=fire-0.6.0-py2.py3-none-any.whl size=117032 sha256=25c6517507f1d402e8948c6fb56a2700c2a28c654d0cf196088e4e29ab15eb5c\r\n Stored in directory: /root/.cache/pip/wheels/e9/53/a4/a5e6054bebf1bc9cc09d288f02242d118906ec89e9349cbb89\r\n Building editable for llamafactory (pyproject.toml) ... \u001B[?25l-\b \b\\\b \b|\b \b/\b \b-\b \bdone\r\n\u001B[?25h Created wheel for llamafactory: filename=llamafactory-0.8.3.dev0-0.editable-py3-none-any.whl size=20606 sha256=86369c868814853c5caddc693688c8614012a22eee900a2a118ac3729fbca627\r\n Stored in directory: /tmp/pip-ephem-wheel-cache-dxf90sjv/wheels/fd/43/11/15706c0f3370423ac02e35a1ec8d8366771c0d4b983302c272\r\n Building wheel for ffmpy (setup.py) ... \u001B[?25l-\b \b\\\b \bdone\r\n\u001B[?25h Created wheel for ffmpy: filename=ffmpy-0.3.2-py3-none-any.whl size=5583 sha256=9920ffb5547ad3559ce7783441e83263c159384c4a8499db8e4350f1559f4d47\r\n Stored in directory: /root/.cache/pip/wheels/ed/55/90/17b538ceab811732884e7b3d395db681473c4c623433bdc6a4\r\nSuccessfully built fire llamafactory ffmpy\r\nInstalling collected packages: pydub, ffmpy, websockets, uvloop, uvicorn, urllib3, tzdata, toolz, tomlkit, shtab, shellingham, semantic-version, ruff, python-multipart, pydantic-core, httptools, fire, docstring-parser, dnspython, annotated-types, aiofiles, watchfiles, starlette, pydantic, pandas, email_validator, tyro, typer, sse-starlette, huggingface-hub, altair, tokenizers, gradio-client, fastapi-cli, bitsandbytes, transformers, fastapi, trl, peft, gradio, llamafactory\r\n Attempting uninstall: urllib3\r\n Found existing installation: urllib3 1.26.16\r\n Not uninstalling urllib3 at /databricks/python3/lib/python3.11/site-packages, outside environment /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc\r\n Can't uninstall 'urllib3'. No files were found to uninstall.\r\n Attempting uninstall: tzdata\r\n Found existing installation: tzdata 2022.1\r\n Not uninstalling tzdata at /databricks/python3/lib/python3.11/site-packages, outside environment /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc\r\n Can't uninstall 'tzdata'. No files were found to uninstall.\r\n Attempting uninstall: pydantic\r\n Found existing installation: pydantic 1.10.6\r\n Not uninstalling pydantic at /databricks/python3/lib/python3.11/site-packages, outside environment /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc\r\n Can't uninstall 'pydantic'. No files were found to uninstall.\r\n Attempting uninstall: pandas\r\n Found existing installation: pandas 1.5.3\r\n Not uninstalling pandas at /databricks/python3/lib/python3.11/site-packages, outside environment /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc\r\n Can't uninstall 'pandas'. No files were found to uninstall.\r\n Attempting uninstall: typer\r\n Found existing installation: typer 0.9.4\r\n Not uninstalling typer at /databricks/python3/lib/python3.11/site-packages, outside environment /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc\r\n Can't uninstall 'typer'. No files were found to uninstall.\r\n Attempting uninstall: huggingface-hub\r\n Found existing installation: huggingface-hub 0.20.2\r\n Not uninstalling huggingface-hub at /databricks/python3/lib/python3.11/site-packages, outside environment /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc\r\n Can't uninstall 'huggingface-hub'. No files were found to uninstall.\r\n Attempting uninstall: tokenizers\r\n Found existing installation: tokenizers 0.15.0\r\n Not uninstalling tokenizers at /databricks/python3/lib/python3.11/site-packages, outside environment /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc\r\n Can't uninstall 'tokenizers'. No files were found to uninstall.\r\n Attempting uninstall: transformers\r\n Found existing installation: transformers 4.39.2\r\n Not uninstalling transformers at /databricks/python3/lib/python3.11/site-packages, outside environment /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc\r\n Can't uninstall 'transformers'. No files were found to uninstall.\r\n\u001B[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\npetastorm 0.12.1 requires pyspark>=2.1.0, which is not installed.\r\nydata-profiling 4.5.1 requires pandas!=1.4.0,<2.1,>1.1, but you have pandas 2.2.2 which is incompatible.\r\nydata-profiling 4.5.1 requires pydantic<2,>=1.8.1, but you have pydantic 2.8.2 which is incompatible.\r\nydata-profiling 4.5.1 requires seaborn<0.13,>=0.10.1, but you have seaborn 0.13.2 which is incompatible.\r\nweasel 0.3.4 requires typer<0.10.0,>=0.3.0, but you have typer 0.12.3 which is incompatible.\r\nspacy 3.7.2 requires typer<0.10.0,>=0.3.0, but you have typer 0.12.3 which is incompatible.\r\nlangchain 0.1.13 requires langchain-core<0.2.0,>=0.1.33, but you have langchain-core 0.2.11 which is incompatible.\r\nlangchain-community 0.0.34 requires langchain-core<0.2.0,>=0.1.45, but you have langchain-core 0.2.11 which is incompatible.\r\ngoogle-auth 2.21.0 requires urllib3<2.0, but you have urllib3 2.2.2 which is incompatible.\r\nbotocore 1.34.39 requires urllib3<2.1,>=1.25.4; python_version >= \"3.10\", but you have urllib3 2.2.2 which is incompatible.\u001B[0m\u001B[31m\r\n\u001B[0mSuccessfully installed aiofiles-23.2.1 altair-5.3.0 annotated-types-0.7.0 bitsandbytes-0.43.1 dnspython-2.6.1 docstring-parser-0.16 email_validator-2.2.0 fastapi-0.111.0 fastapi-cli-0.0.4 ffmpy-0.3.2 fire-0.6.0 gradio-4.37.2 gradio-client-1.0.2 httptools-0.6.1 huggingface-hub-0.23.4 llamafactory-0.8.3.dev0 pandas-2.2.2 peft-0.11.1 pydantic-2.8.2 pydantic-core-2.20.1 pydub-0.25.1 python-multipart-0.0.9 ruff-0.5.1 semantic-version-2.10.0 shellingham-1.5.4 shtab-1.7.1 sse-starlette-2.1.2 starlette-0.37.2 tokenizers-0.19.1 tomlkit-0.12.0 toolz-0.12.1 transformers-4.42.3 trl-0.9.4 typer-0.12.3 tyro-0.8.5 tzdata-2024.1 urllib3-2.2.2 uvicorn-0.30.1 uvloop-0.19.0 watchfiles-0.22.0 websockets-11.0.3\r\n\r\n\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m24.1.1\u001B[0m\r\n\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\r\nLooking in indexes: https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/simple\r\nRequirement already satisfied: flash-attn in /databricks/python3/lib/python3.11/site-packages (2.5.6)\r\nCollecting flash-attn\r\n Downloading https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/packages/packages/14/cd/53cbd9bd45e9bf1002f0c4de488e549501d085f4318c906807a0e50164cd/flash_attn-2.5.9.post1.tar.gz (2.6 MB)\r\n\u001B[?25l \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.0/2.6 MB\u001B[0m \u001B[31m?\u001B[0m eta \u001B[36m-:--:--\u001B[0m\r\u001B[2K \u001B[91m━━━━━━━━━━━━━\u001B[0m\u001B[90m╺\u001B[0m\u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m0.8/2.6 MB\u001B[0m \u001B[31m25.8 MB/s\u001B[0m eta \u001B[36m0:00:01\u001B[0m\r\u001B[2K \u001B[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[90m╺\u001B[0m\u001B[90m━━━━━━\u001B[0m \u001B[32m2.2/2.6 MB\u001B[0m \u001B[31m31.9 MB/s\u001B[0m eta \u001B[36m0:00:01\u001B[0m\r\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m2.6/2.6 MB\u001B[0m \u001B[31m27.6 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\r\n\u001B[?25h Preparing metadata (setup.py) ... \u001B[?25l-\b \b\\\b \b|\b \b/\b \bdone\r\n\u001B[?25hRequirement already satisfied: torch in /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc/lib/python3.11/site-packages (from flash-attn) (2.3.0)\r\nRequirement already satisfied: einops in /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc/lib/python3.11/site-packages (from flash-attn) (0.8.0)\r\nRequirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (12.1.105)\r\nRequirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (12.1.105)\r\nRequirement already satisfied: nvidia-nccl-cu12==2.20.5 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc/lib/python3.11/site-packages (from torch->flash-attn) (2.20.5)\r\nRequirement already satisfied: filelock in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (3.9.0)\r\nRequirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (11.0.2.54)\r\nRequirement already satisfied: triton==2.3.0 in /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc/lib/python3.11/site-packages (from torch->flash-attn) (2.3.0)\r\nRequirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (8.9.2.26)\r\nRequirement already satisfied: typing-extensions>=4.8.0 in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (4.10.0)\r\nRequirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (12.1.105)\r\nRequirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (10.3.2.106)\r\nRequirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (12.1.105)\r\nRequirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (12.1.3.1)\r\nRequirement already satisfied: fsspec in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (2023.5.0)\r\nRequirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (11.4.5.107)\r\nRequirement already satisfied: jinja2 in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (3.1.2)\r\nRequirement already satisfied: sympy in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (1.11.1)\r\nRequirement already satisfied: networkx in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (3.1)\r\nRequirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /databricks/python3/lib/python3.11/site-packages (from torch->flash-attn) (12.1.0.106)\r\nRequirement already satisfied: nvidia-nvjitlink-cu12 in /databricks/python3/lib/python3.11/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch->flash-attn) (12.4.127)\r\nRequirement already satisfied: MarkupSafe>=2.0 in /databricks/python3/lib/python3.11/site-packages (from jinja2->torch->flash-attn) (2.1.1)\r\nRequirement already satisfied: mpmath>=0.19 in /databricks/python3/lib/python3.11/site-packages (from sympy->torch->flash-attn) (1.3.0)\r\nBuilding wheels for collected packages: flash-attn\r\n Building wheel for flash-attn (setup.py) ... \u001B[?25l-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \b-\b \b\\\b \b|\b \b/\b \bdone\r\n\u001B[?25h Created wheel for flash-attn: filename=flash_attn-2.5.9.post1-cp311-cp311-linux_x86_64.whl size=120006504 sha256=1fa47bf3860e5fc91274ed1950319126fbe56455d77d98790d2d5bc4ea7314d8\r\n Stored in directory: /root/.cache/pip/wheels/db/5a/cb/16589a3850b0e8b66ad3b4a53a92533584def3d68c867e27e8\r\nSuccessfully built flash-attn\r\nInstalling collected packages: flash-attn\r\n Attempting uninstall: flash-attn\r\n Found existing installation: flash-attn 2.5.6\r\n Not uninstalling flash-attn at /databricks/python3/lib/python3.11/site-packages, outside environment /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc\r\n Can't uninstall 'flash-attn'. No files were found to uninstall.\r\nSuccessfully installed flash-attn-2.5.9.post1\r\n\r\n\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m A new release of pip is available: \u001B[0m\u001B[31;49m23.0.1\u001B[0m\u001B[39;49m -> \u001B[0m\u001B[32;49m24.1.1\u001B[0m\r\n\u001B[1m[\u001B[0m\u001B[34;49mnotice\u001B[0m\u001B[1;39;49m]\u001B[0m\u001B[39;49m To update, run: \u001B[0m\u001B[32;49mpip install --upgrade pip\u001B[0m\r\n" ] } ], "source": [ "if need_to_setup_env:\n", " %pip config set global.index-url https://artifacts.forge.mastercard.com/artifactory/api/pypi/python/simple\n", " %pip install tf-keras\n", " %pip install -q --upgrade accelerate einops xformers torchvision\n", " %pip install -r requirements.txt\n", " !cd ../LLaMA-Factory && pip install -e .[torch,bitsandbytes] && FLASH_ATTENTION_FORCE_BUILD=TRUE pip install --upgrade flash-attn" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "application/vnd.databricks.v1+cell": { "cellMetadata": { "byteLimit": 2048000, "rowLimit": 10000 }, "inputWidgets": {}, "nuid": "c06c61fd-4c6f-4099-bd3b-46188ab835d7", "showTitle": false, "title": "" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "output_type": "stream", "text": [ "workding dir: /Workspace/Users/donghao.huang@mastercard.com/llm-finetuning\n" ] } ], "source": [ "os.chdir(workding_dir)\n", "sys.path.append(workding_dir)\n", "print(\"workding dir:\", workding_dir)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "application/vnd.databricks.v1+cell": { "cellMetadata": { "byteLimit": 2048000, "rowLimit": 10000 }, "inputWidgets": {}, "nuid": "9f67ec60-2f24-411c-84eb-0dd664b44775", "showTitle": false, "title": "" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "output_type": "stream", "text": [ "loading env vars from: /Workspace/Users/donghao.huang@mastercard.com/llm-finetuning/.env\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "True" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from dotenv import find_dotenv, load_dotenv\n", "\n", "found_dotenv = find_dotenv(\".env\")\n", "\n", "if len(found_dotenv) == 0:\n", " found_dotenv = find_dotenv(\".env.example\")\n", "print(f\"loading env vars from: {found_dotenv}\")\n", "load_dotenv(found_dotenv, override=True)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "application/vnd.databricks.v1+cell": { "cellMetadata": { "byteLimit": 2048000, "rowLimit": 10000 }, "inputWidgets": {}, "nuid": "f1597656-8042-4878-9d3b-9ebfb8dd86dc", "showTitle": false, "title": "" } }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "('unsloth/Qwen2-1.5B-Instruct',\n", " True,\n", " None,\n", " None,\n", " 2048,\n", " 10,\n", " None,\n", " 'datasets/mgtv/',\n", " 'results/mgtv-results_bf16_original_prompt.csv',\n", " 'TRUE',\n", " 'true')" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import os\n", "\n", "model_name = os.getenv(\"MODEL_NAME\")\n", "token = os.getenv(\"HF_TOKEN\") or None\n", "load_in_4bit = os.getenv(\"LOAD_IN_4BIT\") == \"true\"\n", "local_model = os.getenv(\"LOCAL_MODEL\")\n", "hub_model = os.getenv(\"HUB_MODEL\")\n", "num_train_epochs = int(os.getenv(\"NUM_TRAIN_EPOCHS\") or 0)\n", "data_path = os.getenv(\"LOGICAL_REASONING_DATA_PATH\")\n", "results_path = os.getenv(\"LOGICAL_REASONING_RESULTS_PATH\")\n", "\n", "max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\n", "dtype = (\n", " None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+\n", ")\n", "\n", "model_name, load_in_4bit, local_model, hub_model, max_seq_length, num_train_epochs, dtype, data_path, results_path, os.getenv(\"DISABLE_MLFLOW_INTEGRATION\"), os.getenv(\"WANDB_DISABLED\")" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "application/vnd.databricks.v1+cell": { "cellMetadata": { "byteLimit": 2048000, "rowLimit": 10000 }, "inputWidgets": {}, "nuid": "e3ab54ba-7b6d-4817-bf2e-c5d711508b58", "showTitle": false, "title": "" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "output_type": "stream", "text": [ "Sun Jul 7 00:36:17 2024 \r\n+---------------------------------------------------------------------------------------+\r\n| NVIDIA-SMI 535.54.03 Driver Version: 535.54.03 CUDA Version: 12.2 |\r\n|-----------------------------------------+----------------------+----------------------+\r\n| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\r\n| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\r\n| | | MIG M. |\r\n|=========================================+======================+======================|\r\n| 0 Tesla T4 Off | 00000001:00:00.0 Off | 0 |\r\n| N/A 31C P8 9W / 70W | 2MiB / 15360MiB | 0% Default |\r\n| | | N/A |\r\n+-----------------------------------------+----------------------+----------------------+\r\n \r\n+---------------------------------------------------------------------------------------+\r\n| Processes: |\r\n| GPU GI CI PID Type Process name GPU Memory |\r\n| ID ID Usage |\r\n|=======================================================================================|\r\n| No running processes found |\r\n+---------------------------------------------------------------------------------------+\r\n" ] } ], "source": [ "!nvidia-smi" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "application/vnd.databricks.v1+cell": { "cellMetadata": { "byteLimit": 2048000, "rowLimit": 10000 }, "inputWidgets": {}, "nuid": "b2a43943-9324-4839-9a47-cfa72de2244b", "showTitle": false, "title": "" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "output_type": "stream", "text": [ "Python 3.11.0rc1\r\nName: flash-attn\nVersion: 2.5.9.post1\nSummary: Flash Attention: Fast and Memory-Efficient Exact Attention\nHome-page: https://github.com/Dao-AILab/flash-attention\nAuthor: Tri Dao\nAuthor-email: trid@cs.stanford.edu\nLicense: \nLocation: /local_disk0/.ephemeral_nfs/envs/pythonEnv-4f12d295-94c6-4b4f-aa70-006a091913dc/lib/python3.11/site-packages\nRequires: einops, torch\nRequired-by: \nCPU times: user 11.2 ms, sys: 5.22 ms, total: 16.4 ms\nWall time: 4.34 s\n" ] } ], "source": [ "%%time\n", "!python --version\n", "!pip show flash-attn" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "application/vnd.databricks.v1+cell": { "cellMetadata": { "byteLimit": 2048000, "rowLimit": 10000 }, "inputWidgets": {}, "nuid": "4f51fafe-5527-49a2-8ccf-a0192e69493a", "showTitle": false, "title": "" } }, "outputs": [], "source": [ "def evaluate_model_all_epochs(model_name, num_train_epochs, adapter_path_base, load_in_4bit=True, num_of_entries=-1):\n", " os.environ[\"MODEL_NAME\"] = model_name \n", " os.environ[\"LOAD_IN_4BIT\"] = \"true\" if load_in_4bit else \"false\"\n", " for i in range(num_train_epochs + 1):\n", " print(f\"Epoch {i}\")\n", " if i == 0:\n", " os.unsetenv(\"ADAPTER_NAME_OR_PATH\")\n", " else:\n", " adapter_path = f\"{adapter_path_base}/checkpoint-{560 * i}\"\n", " os.environ[\"ADAPTER_NAME_OR_PATH\"] = adapter_path\n", " \n", " !python llm_toolkit/eval_logical_reasoning.py {num_of_entries}" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "application/vnd.databricks.v1+cell": { "cellMetadata": { "byteLimit": 2048000, "rowLimit": 10000 }, "inputWidgets": {}, "nuid": "0894c329-05c5-4fe8-85ff-404defe8528a", "showTitle": false, "title": "" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "output_type": "stream", "text": [ "Epoch 0\nloading env vars from: /Workspace/Users/donghao.huang@mastercard.com/llm-finetuning/.env\r\nAdding /Workspace/Users/donghao.huang@mastercard.com/llm-finetuning to sys.path\r\n2024-07-07 07:12:02.313350: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\r\nTo enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n[2024-07-07 07:12:10,863] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect)\r\nloading /Workspace/Users/donghao.huang@mastercard.com/llm-finetuning/llm_toolkit/logical_reasoning_utils.py\r\ninternlm/internlm2_5-7b-chat-1m None False datasets/mgtv/ results/mgtv-results_bf16_original_prompt.csv\r\n(1) GPU = Tesla T4. Max memory = 14.581 GB.\r\n0.002 GB of memory reserved.\r\nloading model: internlm/internlm2_5-7b-chat-1m\r\n\rLoading checkpoint shards: 0%| | 0/8 [00:00<|im_start|>system\\nYou are an expert in lo...\r\n\r\n[1 rows x 8 columns]\r\nEvaluating model: internlm/internlm2_5-7b-chat-1m\r\n\r 0%| | 0/3000 [00:00\r\n--------\r\nstep 2: 不是\r\n--------\r\nstep 3: 不是\r\n\r 0%| | 1/3000 [00:05<4:28:38, 5.37s/it]\r 0%| | 2/3000 [00:09<4:05:22, 4.91s/it]\r 0%| | 3/3000 [00:14<3:58:15, 4.77s/it]\r 0%| | 4/3000 [00:19<3:55:23, 4.71s/it]\r 0%| | 5/3000 [00:23<3:54:20, 4.69s/it]\r 0%| | 6/3000 [00:28<3:53:26, 4.68s/it]\r 0%| | 7/3000 [00:33<3:53:53, 4.69s/it]\r 0%| | 8/3000 [00:37<3:54:10, 4.70s/it]\r 0%| | 9/3000 [00:42<3:54:27, 4.70s/it]\r 0%|▏ | 10/3000 [00:47<3:54:48, 4.71s/it]\r 0%|▏ | 11/3000 [00:52<3:55:09, 4.72s/it]\r 0%|▏ | 12/3000 [00:56<3:55:47, 4.73s/it]\r 0%|▏ | 13/3000 [01:01<3:56:42, 4.75s/it]\r 0%|▏ | 14/3000 [01:06<3:57:24, 4.77s/it]\r 0%|▏ | 15/3000 [01:11<3:57:58, 4.78s/it]\r 1%|▏ | 16/3000 [01:16<3:59:05, 4.81s/it]\r 1%|▏ | 17/3000 [01:21<3:59:54, 4.83s/it]\r 1%|▏ | 18/3000 [01:25<4:00:10, 4.83s/it]\r 1%|▏ | 19/3000 [01:30<4:00:38, 4.84s/it]\r 1%|▎ | 20/3000 [01:35<4:01:19, 4.86s/it]\r 1%|▎ | 21/3000 [01:40<4:01:57, 4.87s/it]\r 1%|▎ | 22/3000 [01:45<4:02:38, 4.89s/it]\r 1%|▎ | 23/3000 [01:50<4:03:15, 4.90s/it]\r 1%|▎ | 24/3000 [01:55<4:03:41, 4.91s/it]\r 1%|▎ | 25/3000 [02:00<4:04:26, 4.93s/it]\r 1%|▎ | 26/3000 [02:05<4:04:34, 4.93s/it]\r 1%|▎ | 27/3000 [02:10<4:06:26, 4.97s/it]\r 1%|▎ | 28/3000 [02:15<4:06:43, 4.98s/it]\r 1%|▍ | 29/3000 [02:20<4:07:29, 5.00s/it]\r 1%|▍ | 30/3000 [02:25<4:07:49, 5.01s/it]\r 1%|▍ | 31/3000 [02:30<4:08:06, 5.01s/it]\r 1%|▍ | 32/3000 [02:35<4:08:16, 5.02s/it]\r 1%|▍ | 33/3000 [02:40<4:08:55, 5.03s/it]\r 1%|▍ | 34/3000 [02:45<4:09:28, 5.05s/it]\r 1%|▍ | 35/3000 [02:50<4:09:46, 5.05s/it]\r 1%|▍ | 36/3000 [02:55<4:10:15, 5.07s/it]\r 1%|▍ | 37/3000 [03:00<4:10:31, 5.07s/it]\r 1%|▍ | 38/3000 [03:05<4:11:00, 5.08s/it]\r 1%|▌ | 39/3000 [03:11<4:11:23, 5.09s/it]\r 1%|▌ | 40/3000 [03:16<4:11:42, 5.10s/it]\r 1%|▌ | 41/3000 [03:21<4:12:10, 5.11s/it]\r 1%|▌ | 42/3000 [03:26<4:12:44, 5.13s/it]\r 1%|▌ | 43/3000 [03:31<4:13:21, 5.14s/it]\r 1%|▌ | 44/3000 [03:36<4:13:45, 5.15s/it]\r 2%|▌ | 45/3000 [03:42<4:13:58, 5.16s/it]\r 2%|▌ | 46/3000 [03:47<4:14:07, 5.16s/it]\r 2%|▌ | 47/3000 [03:52<4:13:54, 5.16s/it]\r 2%|▌ | 48/3000 [03:57<4:14:31, 5.17s/it]\r 2%|▋ | 49/3000 [04:03<4:19:06, 5.27s/it]\r 2%|▋ | 50/3000 [04:08<4:15:36, 5.20s/it]\r 2%|▋ | 51/3000 [04:13<4:13:13, 5.15s/it]\r 2%|▋ | 52/3000 [04:18<4:11:41, 5.12s/it]\r 2%|▋ | 53/3000 [04:23<4:10:23, 5.10s/it]\r 2%|▋ | 54/3000 [04:28<4:09:23, 5.08s/it]\r 2%|▋ | 55/3000 [04:33<4:08:50, 5.07s/it]\r 2%|▋ | 56/3000 [04:38<4:08:17, 5.06s/it]\r 2%|▋ | 57/3000 [04:43<4:08:04, 5.06s/it]\r 2%|▊ | 58/3000 [04:48<4:07:43, 5.05s/it]\r 2%|▊ | 59/3000 [04:53<4:07:23, 5.05s/it]\r 2%|▊ | 60/3000 [04:58<4:07:20, 5.05s/it]\r 2%|▊ | 61/3000 [05:03<4:07:20, 5.05s/it]\r 2%|▊ | 62/3000 [05:08<4:07:08, 5.05s/it]\r 2%|▊ | 63/3000 [05:13<4:07:24, 5.05s/it]\r 2%|▊ | 64/3000 [05:18<4:07:16, 5.05s/it]\r 2%|▊ | 65/3000 [05:23<4:07:32, 5.06s/it]\r 2%|▊ | 66/3000 [05:28<4:07:31, 5.06s/it]\r 2%|▊ | 67/3000 [05:33<4:07:21, 5.06s/it]\r 2%|▉ | 68/3000 [05:38<4:07:09, 5.06s/it]\r 2%|▉ | 69/3000 [05:44<4:07:12, 5.06s/it]\r 2%|▉ | 70/3000 [05:49<4:07:15, 5.06s/it]\r 2%|▉ | 71/3000 [05:54<4:07:17, 5.07s/it]\r 2%|▉ | 72/3000 [05:59<4:08:48, 5.10s/it]\r 2%|▉ | 73/3000 [06:04<4:10:02, 5.13s/it]\r 2%|▉ | 74/3000 [06:09<4:10:52, 5.14s/it]\r 2%|▉ | 75/3000 [06:14<4:11:24, 5.16s/it]\r 3%|▉ | 76/3000 [06:20<4:11:47, 5.17s/it]\r 3%|█ | 77/3000 [06:25<4:11:58, 5.17s/it]\r 3%|█ | 78/3000 [06:30<4:12:09, 5.18s/it]\r 3%|█ | 79/3000 [06:35<4:12:01, 5.18s/it]\r 3%|█ | 80/3000 [06:40<4:11:54, 5.18s/it]\r 3%|█ | 81/3000 [06:46<4:11:48, 5.18s/it]\r 3%|█ | 82/3000 [06:51<4:12:15, 5.19s/it]\r 3%|█ | 83/3000 [06:56<4:12:09, 5.19s/it]\r 3%|█ | 84/3000 [07:01<4:12:03, 5.19s/it]\r 3%|█ | 85/3000 [07:06<4:11:42, 5.18s/it]\r 3%|█ | 86/3000 [07:11<4:11:59, 5.19s/it]\r 3%|█▏ | 87/3000 [07:17<4:12:13, 5.19s/it]\r 3%|█▏ | 88/3000 [07:22<4:12:12, 5.20s/it]\r 3%|█▏ | 89/3000 [07:27<4:12:06, 5.20s/it]\r 3%|█▏ | 90/3000 [07:32<4:11:54, 5.19s/it]\r 3%|█▏ | 91/3000 [07:37<4:11:45, 5.19s/it]\r 3%|█▏ | 92/3000 [07:43<4:11:47, 5.20s/it]\r 3%|█▏ | 93/3000 [07:48<4:11:24, 5.19s/it]\r 3%|█▏ | 94/3000 [07:53<4:11:19, 5.19s/it]\r 3%|█▏ | 95/3000 [07:58<4:11:34, 5.20s/it]\r 3%|█▏ | 96/3000 [08:03<4:11:40, 5.20s/it]\r 3%|█▎ | 97/3000 [08:09<4:11:27, 5.20s/it]\r 3%|█▎ | 98/3000 [08:14<4:11:29, 5.20s/it]\r 3%|█▎ | 99/3000 [08:19<4:11:16, 5.20s/it]\r 3%|█▎ | 100/3000 [08:24<4:11:05, 5.20s/it]\r 3%|█▎ | 101/3000 [08:29<4:10:55, 5.19s/it]\r 3%|█▎ | 102/3000 [08:35<4:10:42, 5.19s/it]\r 3%|█▎ | 103/3000 [08:40<4:10:36, 5.19s/it]\r 3%|█▎ | 104/3000 [08:45<4:10:45, 5.20s/it]\r 4%|█▎ | 105/3000 [08:50<4:10:21, 5.19s/it]\r 4%|█▎ | 106/3000 [08:55<4:10:24, 5.19s/it]\r 4%|█▎ | 107/3000 [09:01<4:10:20, 5.19s/it]\r 4%|█▎ | 108/3000 [09:06<4:09:58, 5.19s/it]\r 4%|█▍ | 109/3000 [09:11<4:09:55, 5.19s/it]\r 4%|█▍ | 110/3000 [09:16<4:10:09, 5.19s/it]\r 4%|█▍ | 111/3000 [09:21<4:10:00, 5.19s/it]\r 4%|█▍ | 112/3000 [09:27<4:09:51, 5.19s/it]\r 4%|█▍ | 113/3000 [09:32<4:09:44, 5.19s/it]\r 4%|█▍ | 114/3000 [09:37<4:09:45, 5.19s/it]\r 4%|█▍ | 115/3000 [09:42<4:09:49, 5.20s/it]\r 4%|█▍ | 116/3000 [09:47<4:09:35, 5.19s/it]\r 4%|█▍ | 117/3000 [09:52<4:09:24, 5.19s/it]\r 4%|█▍ | 118/3000 [09:58<4:09:36, 5.20s/it]\r 4%|█▌ | 119/3000 [10:03<4:09:27, 5.20s/it]\r 4%|█▌ | 120/3000 [10:08<4:09:22, 5.20s/it]\r 4%|█▌ | 121/3000 [10:13<4:09:25, 5.20s/it]\r 4%|█▌ | 122/3000 [10:18<4:09:01, 5.19s/it]\r 4%|█▌ | 123/3000 [10:24<4:08:52, 5.19s/it]\r 4%|█▌ | 124/3000 [10:29<4:09:01, 5.20s/it]\r 4%|█▌ | 125/3000 [10:34<4:08:50, 5.19s/it]\r 4%|█▌ | 126/3000 [10:39<4:08:57, 5.20s/it]\r 4%|█▌ | 127/3000 [10:45<4:18:25, 5.40s/it]\r 4%|█▌ | 128/3000 [10:50<4:15:15, 5.33s/it]\r 4%|█▋ | 129/3000 [10:55<4:13:23, 5.30s/it]\r 4%|█▋ | 130/3000 [11:01<4:12:03, 5.27s/it]\r 4%|█▋ | 131/3000 [11:06<4:10:55, 5.25s/it]\r 4%|█▋ | 132/3000 [11:11<4:10:02, 5.23s/it]\r 4%|█▋ | 133/3000 [11:16<4:09:23, 5.22s/it]\r 4%|█▋ | 134/3000 [11:21<4:09:08, 5.22s/it]\r 4%|█▋ | 135/3000 [11:27<4:08:55, 5.21s/it]\r 5%|█▋ | 136/3000 [11:32<4:08:42, 5.21s/it]\r 5%|█▋ | 137/3000 [11:37<4:08:33, 5.21s/it]\r 5%|█▋ | 138/3000 [11:42<4:08:28, 5.21s/it]\r 5%|█▊ | 139/3000 [11:48<4:08:21, 5.21s/it]\r 5%|█▊ | 140/3000 [11:53<4:07:56, 5.20s/it]\r 5%|█▊ | 141/3000 [11:58<4:07:58, 5.20s/it]\r 5%|█▊ | 142/3000 [12:04<4:17:43, 5.41s/it]\r 5%|█▊ | 143/3000 [12:09<4:14:31, 5.35s/it]\r 5%|█▊ | 144/3000 [12:14<4:12:19, 5.30s/it]\r 5%|█▊ | 145/3000 [12:19<4:10:41, 5.27s/it]\r 5%|█▊ | 146/3000 [12:25<4:09:41, 5.25s/it]\r 5%|█▊ | 147/3000 [12:30<4:08:51, 5.23s/it]\r 5%|█▊ | 148/3000 [12:35<4:08:24, 5.23s/it]\r 5%|█▉ | 149/3000 [12:40<4:08:04, 5.22s/it]\r 5%|█▉ | 150/3000 [12:45<4:07:49, 5.22s/it]\r 5%|█▉ | 151/3000 [12:51<4:07:36, 5.21s/it]\r 5%|█▉ | 152/3000 [12:56<4:07:11, 5.21s/it]\r 5%|█▉ | 153/3000 [13:01<4:07:06, 5.21s/it]\r 5%|█▉ | 154/3000 [13:06<4:07:00, 5.21s/it]\r 5%|█▉ | 155/3000 [13:11<4:06:58, 5.21s/it]\r 5%|█▉ | 156/3000 [13:17<4:06:53, 5.21s/it]\r 5%|█▉ | 157/3000 [13:22<4:06:50, 5.21s/it]\r 5%|██ | 158/3000 [13:27<4:06:39, 5.21s/it]\r 5%|██ | 159/3000 [13:32<4:06:22, 5.20s/it]\r 5%|██ | 160/3000 [13:37<4:06:05, 5.20s/it]\r 5%|██ | 161/3000 [13:43<4:06:10, 5.20s/it]\r 5%|██ | 162/3000 [13:48<4:06:08, 5.20s/it]\r 5%|██ | 163/3000 [13:53<4:06:04, 5.20s/it]\r 5%|██ | 164/3000 [13:58<4:06:04, 5.21s/it]\r 6%|██ | 165/3000 [14:03<4:05:44, 5.20s/it]\r 6%|██ | 166/3000 [14:09<4:05:29, 5.20s/it]\r 6%|██ | 167/3000 [14:14<4:05:14, 5.19s/it]\r 6%|██▏ | 168/3000 [14:19<4:05:06, 5.19s/it]\r 6%|██▏ | 169/3000 [14:24<4:05:01, 5.19s/it]\r 6%|██▏ | 170/3000 [14:29<4:05:12, 5.20s/it]\r 6%|██▏ | 171/3000 [14:35<4:05:16, 5.20s/it]\r 6%|██▏ | 172/3000 [14:40<4:05:07, 5.20s/it]\r 6%|██▏ | 173/3000 [14:45<4:04:52, 5.20s/it]\r 6%|██▏ | 174/3000 [14:50<4:04:40, 5.19s/it]\r 6%|██▏ | 175/3000 [14:55<4:04:43, 5.20s/it]\r 6%|██▏ | 176/3000 [15:01<4:04:33, 5.20s/it]\r 6%|██▏ | 177/3000 [15:06<4:04:41, 5.20s/it]\r 6%|██▎ | 178/3000 [15:11<4:04:25, 5.20s/it]\r 6%|██▎ | 179/3000 [15:16<4:04:25, 5.20s/it]\r 6%|██▎ | 180/3000 [15:21<4:04:25, 5.20s/it]\r 6%|██▎ | 181/3000 [15:27<4:04:07, 5.20s/it]\r 6%|██▎ | 182/3000 [15:32<4:04:16, 5.20s/it]\r 6%|██▎ | 183/3000 [15:37<4:04:21, 5.20s/it]\r 6%|██▎ | 184/3000 [15:42<4:04:05, 5.20s/it]\r 6%|██▎ | 185/3000 [15:47<4:03:54, 5.20s/it]\r 6%|██▎ | 186/3000 [15:53<4:04:00, 5.20s/it]\r 6%|██▎ | 187/3000 [15:58<4:04:00, 5.20s/it]\r 6%|██▍ | 188/3000 [16:03<4:03:40, 5.20s/it]\r 6%|██▍ | 189/3000 [16:08<4:03:26, 5.20s/it]\r 6%|██▍ | 190/3000 [16:13<4:03:26, 5.20s/it]\r 6%|██▍ | 191/3000 [16:19<4:03:18, 5.20s/it]\r 6%|██▍ | 192/3000 [16:24<4:03:03, 5.19s/it]\r 6%|██▍ | 193/3000 [16:29<4:03:10, 5.20s/it]\r 6%|██▍ | 194/3000 [16:34<4:03:13, 5.20s/it]\r 6%|██▍ | 195/3000 [16:39<4:02:59, 5.20s/it]\r 7%|██▍ | 196/3000 [16:45<4:03:05, 5.20s/it]\r 7%|██▍ | 197/3000 [16:50<4:02:34, 5.19s/it]\r 7%|██▌ | 198/3000 [16:55<4:02:15, 5.19s/it]\r 7%|██▌ | 199/3000 [17:00<4:02:11, 5.19s/it]\r 7%|██▌ | 200/3000 [17:05<4:02:07, 5.19s/it]\r 7%|██▌ | 201/3000 [17:11<4:02:01, 5.19s/it]\r 7%|██▌ | 202/3000 [17:16<4:01:57, 5.19s/it]\r 7%|██▌ | 203/3000 [17:21<4:01:57, 5.19s/it]\r 7%|██▌ | 204/3000 [17:26<4:01:44, 5.19s/it]\r 7%|██▌ | 205/3000 [17:31<4:01:55, 5.19s/it]\r 7%|██▌ | 206/3000 [17:37<4:02:02, 5.20s/it]\r 7%|██▌ | 207/3000 [17:42<4:02:05, 5.20s/it]\r 7%|██▋ | 208/3000 [17:47<4:02:08, 5.20s/it]\r 7%|██▋ | 209/3000 [17:52<4:01:56, 5.20s/it]\r 7%|██▋ | 210/3000 [17:57<4:02:03, 5.21s/it]\r 7%|██▋ | 211/3000 [18:03<4:01:47, 5.20s/it]\r 7%|██▋ | 212/3000 [18:08<4:01:33, 5.20s/it]\r 7%|██▋ | 213/3000 [18:13<4:01:21, 5.20s/it]\r 7%|██▋ | 214/3000 [18:18<4:01:06, 5.19s/it]\r 7%|██▋ | 215/3000 [18:23<4:00:58, 5.19s/it]\r 7%|██▋ | 216/3000 [18:28<4:01:03, 5.20s/it]\r 7%|██▋ | 217/3000 [18:34<4:01:08, 5.20s/it]\r 7%|██▊ | 218/3000 [18:39<4:00:53, 5.20s/it]\r 7%|██▊ | 219/3000 [18:44<4:00:57, 5.20s/it]\r 7%|██▊ | 220/3000 [18:49<4:00:42, 5.20s/it]\r 7%|██▊ | 221/3000 [18:54<4:00:36, 5.19s/it]\r 7%|██▊ | 222/3000 [19:00<4:00:44, 5.20s/it]\r 7%|██▊ | 223/3000 [19:05<4:00:50, 5.20s/it]\r 7%|██▊ | 224/3000 [19:10<4:00:51, 5.21s/it]\r 8%|██▊ | 225/3000 [19:15<4:00:47, 5.21s/it]\r 8%|██▊ | 226/3000 [19:21<4:00:45, 5.21s/it]\r 8%|██▉ | 227/3000 [19:26<4:00:40, 5.21s/it]\r 8%|██▉ | 228/3000 [19:31<4:00:37, 5.21s/it]\r 8%|██▉ | 229/3000 [19:36<4:00:36, 5.21s/it]\r 8%|██▉ | 230/3000 [19:41<4:00:29, 5.21s/it]\r 8%|██▉ | 231/3000 [19:47<4:00:22, 5.21s/it]\r 8%|██▉ | 232/3000 [19:52<3:59:59, 5.20s/it]\r 8%|██▉ | 233/3000 [19:57<3:59:43, 5.20s/it]\r 8%|██▉ | 234/3000 [20:02<3:59:50, 5.20s/it]\r 8%|██▉ | 235/3000 [20:07<3:59:39, 5.20s/it]\r 8%|██▉ | 236/3000 [20:13<3:59:42, 5.20s/it]\r 8%|███ | 237/3000 [20:18<3:59:43, 5.21s/it]\r 8%|███ | 238/3000 [20:23<3:59:40, 5.21s/it]\r 8%|███ | 239/3000 [20:28<3:59:35, 5.21s/it]\r 8%|███ | 240/3000 [20:33<3:59:29, 5.21s/it]\r 8%|███ | 241/3000 [20:39<3:59:24, 5.21s/it]\r 8%|███ | 242/3000 [20:44<3:59:07, 5.20s/it]\r 8%|███ | 243/3000 [20:49<3:59:05, 5.20s/it]\r 8%|███ | 244/3000 [20:54<3:59:06, 5.21s/it]\r 8%|███ | 245/3000 [20:59<3:58:45, 5.20s/it]\r 8%|███ | 246/3000 [21:05<3:58:48, 5.20s/it]\r 8%|███▏ | 247/3000 [21:10<3:58:51, 5.21s/it]\r 8%|███▏ | 248/3000 [21:15<3:58:36, 5.20s/it]\r 8%|███▏ | 249/3000 [21:20<3:58:38, 5.20s/it]\r 8%|███▏ | 250/3000 [21:25<3:58:37, 5.21s/it]\r 8%|███▏ | 251/3000 [21:31<3:58:19, 5.20s/it]\r 8%|███▏ | 252/3000 [21:36<3:58:23, 5.21s/it]\r 8%|███▏ | 253/3000 [21:41<3:58:16, 5.20s/it]\r 8%|███▏ | 254/3000 [21:46<3:58:11, 5.20s/it]\r 8%|███▏ | 255/3000 [21:51<3:58:07, 5.21s/it]\r 9%|███▏ | 256/3000 [21:57<3:58:05, 5.21s/it]\r 9%|███▎ | 257/3000 [22:02<3:57:57, 5.21s/it]\r 9%|███▎ | 258/3000 [22:07<3:57:54, 5.21s/it]\r 9%|███▎ | 259/3000 [22:12<3:57:53, 5.21s/it]\r 9%|███▎ | 260/3000 [22:18<3:57:50, 5.21s/it]\r 9%|███▎ | 261/3000 [22:23<3:57:28, 5.20s/it]\r 9%|███▎ | 262/3000 [22:28<3:57:10, 5.20s/it]\r 9%|███▎ | 263/3000 [22:33<3:57:16, 5.20s/it]\r 9%|███▎ | 264/3000 [22:38<3:57:18, 5.20s/it]\r 9%|███▎ | 265/3000 [22:44<3:57:14, 5.20s/it]\r 9%|███▎ | 266/3000 [22:49<3:56:53, 5.20s/it]\r 9%|███▍ | 267/3000 [22:54<3:56:38, 5.20s/it]\r 9%|███▍ | 268/3000 [22:59<3:56:28, 5.19s/it]\r 9%|███▍ | 269/3000 [23:04<3:56:18, 5.19s/it]\r 9%|███▍ | 270/3000 [23:09<3:56:26, 5.20s/it]\r 9%|███▍ | 271/3000 [23:15<3:56:12, 5.19s/it]\r 9%|███▍ | 272/3000 [23:20<3:56:03, 5.19s/it]\r 9%|███▍ | 273/3000 [23:25<3:56:16, 5.20s/it]\r 9%|███▍ | 274/3000 [23:30<3:56:23, 5.20s/it]\r 9%|███▍ | 275/3000 [23:35<3:55:53, 5.19s/it]\r 9%|███▍ | 276/3000 [23:41<3:55:49, 5\n\n*** WARNING: max output size exceeded, skipping output. ***\n\n█████████████████████████▉ | 2747/3000 [3:56:29<21:39, 5.14s/it]\r 92%|█████████████████████████████████▉ | 2748/3000 [3:56:34<21:34, 5.14s/it]\r 92%|█████████████████████████████████▉ | 2749/3000 [3:56:39<21:29, 5.14s/it]\r 92%|█████████████████████████████████▉ | 2750/3000 [3:56:44<21:24, 5.14s/it]\r 92%|█████████████████████████████████▉ | 2751/3000 [3:56:49<21:18, 5.14s/it]\r 92%|█████████████████████████████████▉ | 2752/3000 [3:56:55<21:14, 5.14s/it]\r 92%|█████████████████████████████████▉ | 2753/3000 [3:57:00<21:08, 5.14s/it]\r 92%|█████████████████████████████████▉ | 2754/3000 [3:57:05<21:03, 5.13s/it]\r 92%|█████████████████████████████████▉ | 2755/3000 [3:57:10<20:57, 5.13s/it]\r 92%|█████████████████████████████████▉ | 2756/3000 [3:57:15<20:52, 5.13s/it]\r 92%|██████████████████████████████████ | 2757/3000 [3:57:20<20:48, 5.14s/it]\r 92%|██████████████████████████████████ | 2758/3000 [3:57:25<20:43, 5.14s/it]\r 92%|██████████████████████████████████ | 2759/3000 [3:57:31<20:38, 5.14s/it]\r 92%|██████████████████████████████████ | 2760/3000 [3:57:36<20:33, 5.14s/it]\r 92%|██████████████████████████████████ | 2761/3000 [3:57:41<20:27, 5.13s/it]\r 92%|██████████████████████████████████ | 2762/3000 [3:57:46<20:21, 5.13s/it]\r 92%|██████████████████████████████████ | 2763/3000 [3:57:51<20:16, 5.13s/it]\r 92%|██████████████████████████████████ | 2764/3000 [3:57:56<20:11, 5.13s/it]\r 92%|██████████████████████████████████ | 2765/3000 [3:58:01<20:06, 5.13s/it]\r 92%|██████████████████████████████████ | 2766/3000 [3:58:06<20:01, 5.13s/it]\r 92%|██████████████████████████████████▏ | 2767/3000 [3:58:12<19:55, 5.13s/it]\r 92%|██████████████████████████████████▏ | 2768/3000 [3:58:17<19:51, 5.14s/it]\r 92%|██████████████████████████████████▏ | 2769/3000 [3:58:22<19:46, 5.14s/it]\r 92%|██████████████████████████████████▏ | 2770/3000 [3:58:27<19:41, 5.14s/it]\r 92%|██████████████████████████████████▏ | 2771/3000 [3:58:32<19:36, 5.14s/it]\r 92%|██████████████████████████████████▏ | 2772/3000 [3:58:37<19:30, 5.14s/it]\r 92%|██████████████████████████████████▏ | 2773/3000 [3:58:42<19:25, 5.13s/it]\r 92%|██████████████████████████████████▏ | 2774/3000 [3:58:48<19:20, 5.13s/it]\r 92%|██████████████████████████████████▏ | 2775/3000 [3:58:53<19:14, 5.13s/it]\r 93%|██████████████████████████████████▏ | 2776/3000 [3:58:58<19:10, 5.13s/it]\r 93%|██████████████████████████████████▏ | 2777/3000 [3:59:03<19:04, 5.13s/it]\r 93%|██████████████████████████████████▎ | 2778/3000 [3:59:08<18:59, 5.13s/it]\r 93%|██████████████████████████████████▎ | 2779/3000 [3:59:13<18:54, 5.14s/it]\r 93%|██████████████████████████████████▎ | 2780/3000 [3:59:18<18:49, 5.13s/it]\r 93%|██████████████████████████████████▎ | 2781/3000 [3:59:23<18:44, 5.14s/it]\r 93%|██████████████████████████████████▎ | 2782/3000 [3:59:29<18:38, 5.13s/it]\r 93%|██████████████████████████████████▎ | 2783/3000 [3:59:34<18:33, 5.13s/it]\r 93%|██████████████████████████████████▎ | 2784/3000 [3:59:39<18:28, 5.13s/it]\r 93%|██████████████████████████████████▎ | 2785/3000 [3:59:44<18:22, 5.13s/it]\r 93%|██████████████████████████████████▎ | 2786/3000 [3:59:49<18:17, 5.13s/it]\r 93%|██████████████████████████████████▎ | 2787/3000 [3:59:54<18:13, 5.13s/it]\r 93%|██████████████████████████████████▍ | 2788/3000 [3:59:59<18:07, 5.13s/it]\r 93%|██████████████████████████████████▍ | 2789/3000 [4:00:05<18:02, 5.13s/it]\r 93%|██████████████████████████████████▍ | 2790/3000 [4:00:10<17:57, 5.13s/it]\r 93%|██████████████████████████████████▍ | 2791/3000 [4:00:15<17:54, 5.14s/it]\r 93%|██████████████████████████████████▍ | 2792/3000 [4:00:20<17:48, 5.14s/it]\r 93%|██████████████████████████████████▍ | 2793/3000 [4:00:25<17:43, 5.14s/it]\r 93%|██████████████████████████████████▍ | 2794/3000 [4:00:30<17:38, 5.14s/it]\r 93%|██████████████████████████████████▍ | 2795/3000 [4:00:35<17:32, 5.13s/it]\r 93%|██████████████████████████████████▍ | 2796/3000 [4:00:40<17:27, 5.13s/it]\r 93%|██████████████████████████████████▍ | 2797/3000 [4:00:46<17:21, 5.13s/it]\r 93%|██████████████████████████████████▌ | 2798/3000 [4:00:51<17:16, 5.13s/it]\r 93%|██████████████████████████████████▌ | 2799/3000 [4:00:56<17:11, 5.13s/it]\r 93%|██████████████████████████████████▌ | 2800/3000 [4:01:01<17:06, 5.13s/it]\r 93%|██████████████████████████████████▌ | 2801/3000 [4:01:06<17:01, 5.13s/it]\r 93%|██████████████████████████████████▌ | 2802/3000 [4:01:11<16:55, 5.13s/it]\r 93%|██████████████████████████████████▌ | 2803/3000 [4:01:16<16:51, 5.13s/it]\r 93%|██████████████████████████████████▌ | 2804/3000 [4:01:22<16:46, 5.13s/it]\r 94%|██████████████████████████████████▌ | 2805/3000 [4:01:27<16:41, 5.14s/it]\r 94%|██████████████████████████████████▌ | 2806/3000 [4:01:32<16:36, 5.14s/it]\r 94%|██████████████████████████████████▌ | 2807/3000 [4:01:37<16:32, 5.14s/it]\r 94%|██████████████████████████████████▋ | 2808/3000 [4:01:42<16:26, 5.14s/it]\r 94%|██████████████████████████████████▋ | 2809/3000 [4:01:47<16:21, 5.14s/it]\r 94%|██████████████████████████████████▋ | 2810/3000 [4:01:52<16:15, 5.14s/it]\r 94%|██████████████████████████████████▋ | 2811/3000 [4:01:58<16:10, 5.13s/it]\r 94%|██████████████████████████████████▋ | 2812/3000 [4:02:03<16:05, 5.13s/it]\r 94%|██████████████████████████████████▋ | 2813/3000 [4:02:08<16:00, 5.14s/it]\r 94%|██████████████████████████████████▋ | 2814/3000 [4:02:13<15:55, 5.14s/it]\r 94%|██████████████████████████████████▋ | 2815/3000 [4:02:18<15:49, 5.13s/it]\r 94%|██████████████████████████████████▋ | 2816/3000 [4:02:23<15:44, 5.14s/it]\r 94%|██████████████████████████████████▋ | 2817/3000 [4:02:28<15:39, 5.13s/it]\r 94%|██████████████████████████████████▊ | 2818/3000 [4:02:33<15:35, 5.14s/it]\r 94%|██████████████████████████████████▊ | 2819/3000 [4:02:39<15:30, 5.14s/it]\r 94%|██████████████████████████████████▊ | 2820/3000 [4:02:44<15:24, 5.14s/it]\r 94%|██████████████████████████████████▊ | 2821/3000 [4:02:49<15:19, 5.14s/it]\r 94%|██████████████████████████████████▊ | 2822/3000 [4:02:54<15:14, 5.14s/it]\r 94%|██████████████████████████████████▊ | 2823/3000 [4:02:59<15:09, 5.14s/it]\r 94%|██████████████████████████████████▊ | 2824/3000 [4:03:04<15:03, 5.13s/it]\r 94%|██████████████████████████████████▊ | 2825/3000 [4:03:09<14:58, 5.13s/it]\r 94%|██████████████████████████████████▊ | 2826/3000 [4:03:15<14:53, 5.13s/it]\r 94%|██████████████████████████████████▊ | 2827/3000 [4:03:20<14:48, 5.13s/it]\r 94%|██████████████████████████████████▉ | 2828/3000 [4:03:25<14:43, 5.13s/it]\r 94%|██████████████████████████████████▉ | 2829/3000 [4:03:30<14:37, 5.13s/it]\r 94%|██████████████████████████████████▉ | 2830/3000 [4:03:35<14:32, 5.13s/it]\r 94%|██████████████████████████████████▉ | 2831/3000 [4:03:40<14:28, 5.14s/it]\r 94%|██████████████████████████████████▉ | 2832/3000 [4:03:45<14:23, 5.14s/it]\r 94%|██████████████████████████████████▉ | 2833/3000 [4:03:50<14:17, 5.14s/it]\r 94%|██████████████████████████████████▉ | 2834/3000 [4:03:56<14:13, 5.14s/it]\r 94%|██████████████████████████████████▉ | 2835/3000 [4:04:01<14:07, 5.14s/it]\r 95%|██████████████████████████████████▉ | 2836/3000 [4:04:06<14:02, 5.14s/it]\r 95%|██████████████████████████████████▉ | 2837/3000 [4:04:11<13:57, 5.14s/it]\r 95%|███████████████████████████████████ | 2838/3000 [4:04:16<13:52, 5.14s/it]\r 95%|███████████████████████████████████ | 2839/3000 [4:04:21<13:48, 5.15s/it]\r 95%|███████████████████████████████████ | 2840/3000 [4:04:27<13:43, 5.15s/it]\r 95%|███████████████████████████████████ | 2841/3000 [4:04:32<13:38, 5.15s/it]\r 95%|███████████████████████████████████ | 2842/3000 [4:04:37<13:33, 5.15s/it]\r 95%|███████████████████████████████████ | 2843/3000 [4:04:42<13:28, 5.15s/it]\r 95%|███████████████████████████████████ | 2844/3000 [4:04:47<13:22, 5.15s/it]\r 95%|███████████████████████████████████ | 2845/3000 [4:04:52<13:17, 5.14s/it]\r 95%|███████████████████████████████████ | 2846/3000 [4:04:57<13:12, 5.15s/it]\r 95%|███████████████████████████████████ | 2847/3000 [4:05:03<13:07, 5.15s/it]\r 95%|███████████████████████████████████▏ | 2848/3000 [4:05:08<13:01, 5.14s/it]\r 95%|███████████████████████████████████▏ | 2849/3000 [4:05:13<12:56, 5.14s/it]\r 95%|███████████████████████████████████▏ | 2850/3000 [4:05:18<12:51, 5.14s/it]\r 95%|███████████████████████████████████▏ | 2851/3000 [4:05:23<12:46, 5.15s/it]\r 95%|███████████████████████████████████▏ | 2852/3000 [4:05:28<12:41, 5.15s/it]\r 95%|███████████████████████████████████▏ | 2853/3000 [4:05:33<12:35, 5.14s/it]\r 95%|███████████████████████████████████▏ | 2854/3000 [4:05:39<12:31, 5.15s/it]\r 95%|███████████████████████████████████▏ | 2855/3000 [4:05:44<12:26, 5.15s/it]\r 95%|███████████████████████████████████▏ | 2856/3000 [4:05:49<12:21, 5.15s/it]\r 95%|███████████████████████████████████▏ | 2857/3000 [4:05:54<12:16, 5.15s/it]\r 95%|███████████████████████████████████▏ | 2858/3000 [4:05:59<12:10, 5.15s/it]\r 95%|███████████████████████████████████▎ | 2859/3000 [4:06:04<12:05, 5.14s/it]\r 95%|███████████████████████████████████▎ | 2860/3000 [4:06:09<12:00, 5.15s/it]\r 95%|███████████████████████████████████▎ | 2861/3000 [4:06:15<11:55, 5.14s/it]\r 95%|███████████████████████████████████▎ | 2862/3000 [4:06:20<11:49, 5.14s/it]\r 95%|███████████████████████████████████▎ | 2863/3000 [4:06:25<11:43, 5.14s/it]\r 95%|███████████████████████████████████▎ | 2864/3000 [4:06:30<11:38, 5.13s/it]\r 96%|███████████████████████████████████▎ | 2865/3000 [4:06:35<11:33, 5.14s/it]\r 96%|███████████████████████████████████▎ | 2866/3000 [4:06:40<11:28, 5.13s/it]\r 96%|███████████████████████████████████▎ | 2867/3000 [4:06:45<11:22, 5.13s/it]\r 96%|███████████████████████████████████▎ | 2868/3000 [4:06:50<11:17, 5.13s/it]\r 96%|███████████████████████████████████▍ | 2869/3000 [4:06:56<11:13, 5.14s/it]\r 96%|███████████████████████████████████▍ | 2870/3000 [4:07:01<11:08, 5.14s/it]\r 96%|███████████████████████████████████▍ | 2871/3000 [4:07:06<11:03, 5.15s/it]\r 96%|███████████████████████████████████▍ | 2872/3000 [4:07:11<10:58, 5.15s/it]\r 96%|███████████████████████████████████▍ | 2873/3000 [4:07:16<10:53, 5.14s/it]\r 96%|███████████████████████████████████▍ | 2874/3000 [4:07:21<10:48, 5.15s/it]\r 96%|███████████████████████████████████▍ | 2875/3000 [4:07:27<10:43, 5.15s/it]\r 96%|███████████████████████████████████▍ | 2876/3000 [4:07:32<10:38, 5.15s/it]\r 96%|███████████████████████████████████▍ | 2877/3000 [4:07:37<10:33, 5.15s/it]\r 96%|███████████████████████████████████▍ | 2878/3000 [4:07:42<10:28, 5.15s/it]\r 96%|███████████████████████████████████▌ | 2879/3000 [4:07:47<10:22, 5.15s/it]\r 96%|███████████████████████████████████▌ | 2880/3000 [4:07:52<10:17, 5.15s/it]\r 96%|███████████████████████████████████▌ | 2881/3000 [4:07:57<10:11, 5.14s/it]\r 96%|███████████████████████████████████▌ | 2882/3000 [4:08:03<10:06, 5.14s/it]\r 96%|███████████████████████████████████▌ | 2883/3000 [4:08:08<10:01, 5.14s/it]\r 96%|███████████████████████████████████▌ | 2884/3000 [4:08:13<09:56, 5.14s/it]\r 96%|███████████████████████████████████▌ | 2885/3000 [4:08:18<09:51, 5.14s/it]\r 96%|███████████████████████████████████▌ | 2886/3000 [4:08:23<09:45, 5.14s/it]\r 96%|███████████████████████████████████▌ | 2887/3000 [4:08:28<09:40, 5.14s/it]\r 96%|███████████████████████████████████▌ | 2888/3000 [4:08:33<09:35, 5.14s/it]\r 96%|███████████████████████████████████▋ | 2889/3000 [4:08:39<09:30, 5.14s/it]\r 96%|███████████████████████████████████▋ | 2890/3000 [4:08:44<09:25, 5.14s/it]\r 96%|███████████████████████████████████▋ | 2891/3000 [4:08:49<09:20, 5.14s/it]\r 96%|███████████████████████████████████▋ | 2892/3000 [4:08:54<09:15, 5.14s/it]\r 96%|███████████████████████████████████▋ | 2893/3000 [4:08:59<09:10, 5.14s/it]\r 96%|███████████████████████████████████▋ | 2894/3000 [4:09:04<09:05, 5.14s/it]\r 96%|███████████████████████████████████▋ | 2895/3000 [4:09:09<08:59, 5.14s/it]\r 97%|███████████████████████████████████▋ | 2896/3000 [4:09:15<08:54, 5.14s/it]\r 97%|███████████████████████████████████▋ | 2897/3000 [4:09:20<08:49, 5.14s/it]\r 97%|███████████████████████████████████▋ | 2898/3000 [4:09:25<08:44, 5.14s/it]\r 97%|███████████████████████████████████▊ | 2899/3000 [4:09:30<08:39, 5.14s/it]\r 97%|███████████████████████████████████▊ | 2900/3000 [4:09:35<08:34, 5.14s/it]\r 97%|███████████████████████████████████▊ | 2901/3000 [4:09:40<08:29, 5.14s/it]\r 97%|███████████████████████████████████▊ | 2902/3000 [4:09:45<08:24, 5.14s/it]\r 97%|███████████████████████████████████▊ | 2903/3000 [4:09:51<08:19, 5.15s/it]\r 97%|███████████████████████████████████▊ | 2904/3000 [4:09:56<08:14, 5.15s/it]\r 97%|███████████████████████████████████▊ | 2905/3000 [4:10:01<08:08, 5.15s/it]\r 97%|███████████████████████████████████▊ | 2906/3000 [4:10:06<08:04, 5.15s/it]\r 97%|███████████████████████████████████▊ | 2907/3000 [4:10:11<07:58, 5.15s/it]\r 97%|███████████████████████████████████▊ | 2908/3000 [4:10:16<07:53, 5.15s/it]\r 97%|███████████████████████████████████▉ | 2909/3000 [4:10:21<07:48, 5.15s/it]\r 97%|███████████████████████████████████▉ | 2910/3000 [4:10:27<07:43, 5.15s/it]\r 97%|███████████████████████████████████▉ | 2911/3000 [4:10:32<07:38, 5.16s/it]\r 97%|███████████████████████████████████▉ | 2912/3000 [4:10:37<07:33, 5.15s/it]\r 97%|███████████████████████████████████▉ | 2913/3000 [4:10:42<07:28, 5.15s/it]\r 97%|███████████████████████████████████▉ | 2914/3000 [4:10:47<07:23, 5.15s/it]\r 97%|███████████████████████████████████▉ | 2915/3000 [4:10:52<07:17, 5.15s/it]\r 97%|███████████████████████████████████▉ | 2916/3000 [4:10:58<07:13, 5.16s/it]\r 97%|███████████████████████████████████▉ | 2917/3000 [4:11:03<07:07, 5.15s/it]\r 97%|███████████████████████████████████▉ | 2918/3000 [4:11:08<07:03, 5.16s/it]\r 97%|████████████████████████████████████ | 2919/3000 [4:11:13<06:57, 5.16s/it]\r 97%|████████████████████████████████████ | 2920/3000 [4:11:18<06:52, 5.16s/it]\r 97%|████████████████████████████████████ | 2921/3000 [4:11:23<06:47, 5.16s/it]\r 97%|████████████████████████████████████ | 2922/3000 [4:11:28<06:42, 5.16s/it]\r 97%|████████████████████████████████████ | 2923/3000 [4:11:34<06:36, 5.15s/it]\r 97%|████████████████████████████████████ | 2924/3000 [4:11:39<06:31, 5.15s/it]\r 98%|████████████████████████████████████ | 2925/3000 [4:11:44<06:26, 5.15s/it]\r 98%|████████████████████████████████████ | 2926/3000 [4:11:49<06:21, 5.15s/it]\r 98%|████████████████████████████████████ | 2927/3000 [4:11:54<06:15, 5.15s/it]\r 98%|████████████████████████████████████ | 2928/3000 [4:11:59<06:10, 5.15s/it]\r 98%|████████████████████████████████████ | 2929/3000 [4:12:05<06:06, 5.16s/it]\r 98%|████████████████████████████████████▏| 2930/3000 [4:12:10<06:00, 5.15s/it]\r 98%|████████████████████████████████████▏| 2931/3000 [4:12:15<05:55, 5.15s/it]\r 98%|████████████████████████████████████▏| 2932/3000 [4:12:20<05:50, 5.15s/it]\r 98%|████████████████████████████████████▏| 2933/3000 [4:12:25<05:44, 5.15s/it]\r 98%|████████████████████████████████████▏| 2934/3000 [4:12:30<05:39, 5.14s/it]\r 98%|████████████████████████████████████▏| 2935/3000 [4:12:35<05:34, 5.14s/it]\r 98%|████████████████████████████████████▏| 2936/3000 [4:12:41<05:29, 5.15s/it]\r 98%|████████████████████████████████████▏| 2937/3000 [4:12:46<05:23, 5.14s/it]\r 98%|████████████████████████████████████▏| 2938/3000 [4:12:51<05:18, 5.14s/it]\r 98%|████████████████████████████████████▏| 2939/3000 [4:12:56<05:13, 5.15s/it]\r 98%|████████████████████████████████████▎| 2940/3000 [4:13:01<05:08, 5.15s/it]\r 98%|████████████████████████████████████▎| 2941/3000 [4:13:06<05:03, 5.15s/it]\r 98%|████████████████████████████████████▎| 2942/3000 [4:13:11<04:58, 5.15s/it]\r 98%|████████████████████████████████████▎| 2943/3000 [4:13:17<04:53, 5.14s/it]\r 98%|████████████████████████████████████▎| 2944/3000 [4:13:22<04:48, 5.15s/it]\r 98%|████████████████████████████████████▎| 2945/3000 [4:13:27<04:43, 5.15s/it]\r 98%|████████████████████████████████████▎| 2946/3000 [4:13:32<04:37, 5.14s/it]\r 98%|████████████████████████████████████▎| 2947/3000 [4:13:37<04:32, 5.14s/it]\r 98%|████████████████████████████████████▎| 2948/3000 [4:13:42<04:27, 5.15s/it]\r 98%|████████████████████████████████████▎| 2949/3000 [4:13:48<04:23, 5.17s/it]\r 98%|████████████████████████████████████▍| 2950/3000 [4:13:53<04:18, 5.16s/it]\r 98%|████████████████████████████████████▍| 2951/3000 [4:13:58<04:12, 5.16s/it]\r 98%|████████████████████████████████████▍| 2952/3000 [4:14:03<04:07, 5.15s/it]\r 98%|████████████████████████████████████▍| 2953/3000 [4:14:08<04:02, 5.15s/it]\r 98%|████████████████████████████████████▍| 2954/3000 [4:14:13<03:56, 5.14s/it]\r 98%|████████████████████████████████████▍| 2955/3000 [4:14:18<03:51, 5.14s/it]\r 99%|████████████████████████████████████▍| 2956/3000 [4:14:23<03:46, 5.14s/it]\r 99%|████████████████████████████████████▍| 2957/3000 [4:14:29<03:40, 5.14s/it]\r 99%|████████████████████████████████████▍| 2958/3000 [4:14:34<03:35, 5.14s/it]\r 99%|████████████████████████████████████▍| 2959/3000 [4:14:39<03:30, 5.14s/it]\r 99%|████████████████████████████████████▌| 2960/3000 [4:14:44<03:25, 5.13s/it]\r 99%|████████████████████████████████████▌| 2961/3000 [4:14:49<03:20, 5.14s/it]\r 99%|████████████████████████████████████▌| 2962/3000 [4:14:54<03:15, 5.13s/it]\r 99%|████████████████████████████████████▌| 2963/3000 [4:14:59<03:10, 5.14s/it]\r 99%|████████████████████████████████████▌| 2964/3000 [4:15:05<03:04, 5.13s/it]\r 99%|████████████████████████████████████▌| 2965/3000 [4:15:10<02:59, 5.13s/it]\r 99%|████████████████████████████████████▌| 2966/3000 [4:15:15<02:54, 5.13s/it]\r 99%|████████████████████████████████████▌| 2967/3000 [4:15:20<02:49, 5.13s/it]\r 99%|████████████████████████████████████▌| 2968/3000 [4:15:27<02:58, 5.57s/it]\r 99%|████████████████████████████████████▌| 2969/3000 [4:15:32<02:48, 5.43s/it]\r 99%|████████████████████████████████████▋| 2970/3000 [4:15:38<02:50, 5.67s/it]\r 99%|████████████████████████████████████▋| 2971/3000 [4:15:43<02:39, 5.50s/it]\r 99%|████████████████████████████████████▋| 2972/3000 [4:15:48<02:30, 5.39s/it]\r 99%|████████████████████████████████████▋| 2973/3000 [4:15:53<02:23, 5.31s/it]\r 99%|████████████████████████████████████▋| 2974/3000 [4:15:58<02:16, 5.26s/it]\r 99%|████████████████████████████████████▋| 2975/3000 [4:16:04<02:10, 5.22s/it]\r 99%|████████████████████████████████████▋| 2976/3000 [4:16:09<02:04, 5.20s/it]\r 99%|████████████████████████████████████▋| 2977/3000 [4:16:14<01:59, 5.17s/it]\r 99%|████████████████████████████████████▋| 2978/3000 [4:16:19<01:53, 5.16s/it]\r 99%|████████████████████████████████████▋| 2979/3000 [4:16:24<01:48, 5.15s/it]\r 99%|████████████████████████████████████▊| 2980/3000 [4:16:29<01:42, 5.15s/it]\r 99%|████████████████████████████████████▊| 2981/3000 [4:16:34<01:37, 5.14s/it]\r 99%|████████████████████████████████████▊| 2982/3000 [4:16:39<01:32, 5.14s/it]\r 99%|████████████████████████████████████▊| 2983/3000 [4:16:45<01:27, 5.14s/it]\r 99%|████████████████████████████████████▊| 2984/3000 [4:16:50<01:22, 5.13s/it]\r100%|████████████████████████████████████▊| 2985/3000 [4:16:55<01:17, 5.14s/it]\r100%|████████████████████████████████████▊| 2986/3000 [4:17:00<01:11, 5.14s/it]\r100%|████████████████████████████████████▊| 2987/3000 [4:17:05<01:06, 5.13s/it]\r100%|████████████████████████████████████▊| 2988/3000 [4:17:10<01:01, 5.14s/it]\r100%|████████████████████████████████████▊| 2989/3000 [4:17:15<00:56, 5.13s/it]\r100%|████████████████████████████████████▉| 2990/3000 [4:17:21<00:51, 5.13s/it]\r100%|████████████████████████████████████▉| 2991/3000 [4:17:26<00:46, 5.13s/it]\r100%|████████████████████████████████████▉| 2992/3000 [4:17:31<00:41, 5.13s/it]\r100%|████████████████████████████████████▉| 2993/3000 [4:17:36<00:35, 5.13s/it]\r100%|████████████████████████████████████▉| 2994/3000 [4:17:41<00:30, 5.13s/it]\r100%|████████████████████████████████████▉| 2995/3000 [4:17:46<00:25, 5.13s/it]\r100%|████████████████████████████████████▉| 2996/3000 [4:17:51<00:20, 5.13s/it]\r100%|████████████████████████████████████▉| 2997/3000 [4:17:56<00:15, 5.14s/it]\r100%|████████████████████████████████████▉| 2998/3000 [4:18:02<00:10, 5.14s/it]\r100%|████████████████████████████████████▉| 2999/3000 [4:18:07<00:05, 5.14s/it]\r100%|█████████████████████████████████████| 3000/3000 [4:18:12<00:00, 5.14s/it]\r100%|█████████████████████████████████████| 3000/3000 [4:18:12<00:00, 5.16s/it]\r\n(3) GPU = Tesla T4. Max memory = 14.581 GB.\r\n13.1 GB of memory reserved.\r\n text ... internlm/internlm2_5-7b-chat-1m\r\n0 甄加索是自杀吗 ... 不是\r\n\r\n[1 rows x 6 columns]\r\n{'accuracy': 0.759, 'incorrect_ids': [2, 9, 11, 14, 15, 16, 18, 19, 29, 31, 36, 48, 52, 53, 59, 61, 65, 66, 67, 75, 76, 78, 80, 81, 82, 83, 84, 88, 91, 93, 96, 99, 102, 103, 104, 105, 106, 113, 115, 117, 120, 121, 123, 126, 129, 138, 141, 143, 149, 150, 153, 155, 161, 164, 173, 190, 191, 193, 199, 200, 201, 202, 218, 222, 224, 227, 228, 230, 234, 236, 237, 238, 245, 248, 250, 252, 259, 260, 261, 264, 269, 275, 276, 278, 279, 283, 284, 290, 295, 299, 308, 314, 318, 319, 320, 324, 325, 328, 334, 335, 337, 338, 339, 341, 346, 349, 356, 361, 368, 370, 375, 377, 383, 384, 386, 389, 397, 409, 410, 425, 429, 430, 432, 438, 442, 445, 447, 450, 452, 453, 454, 456, 457, 458, 461, 464, 465, 469, 470, 471, 472, 478, 481, 490, 492, 495, 497, 501, 502, 503, 506, 507, 510, 515, 516, 517, 518, 519, 520, 533, 536, 538, 540, 541, 543, 560, 561, 566, 570, 571, 579, 581, 589, 593, 597, 614, 622, 635, 636, 647, 649, 650, 651, 666, 671, 680, 693, 695, 700, 705, 708, 720, 721, 727, 730, 738, 742, 748, 754, 758, 760, 764, 768, 769, 770, 773, 774, 778, 788, 794, 801, 807, 819, 820, 821, 823, 824, 826, 828, 832, 837, 840, 841, 844, 847, 848, 856, 862, 866, 869, 875, 886, 889, 890, 894, 899, 904, 913, 919, 921, 922, 927, 930, 932, 935, 940, 942, 943, 945, 952, 960, 964, 965, 966, 969, 974, 980, 982, 989, 991, 998, 1001, 1003, 1005, 1006, 1011, 1012, 1014, 1016, 1018, 1019, 1023, 1024, 1027, 1029, 1030, 1033, 1036, 1038, 1040, 1043, 1051, 1052, 1053, 1056, 1057, 1061, 1062, 1076, 1084, 1087, 1089, 1096, 1120, 1121, 1125, 1126, 1129, 1133, 1155, 1161, 1164, 1166, 1170, 1174, 1177, 1180, 1181, 1183, 1184, 1185, 1188, 1198, 1203, 1209, 1212, 1222, 1228, 1232, 1234, 1238, 1239, 1240, 1241, 1246, 1251, 1252, 1254, 1258, 1259, 1266, 1276, 1278, 1279, 1282, 1288, 1289, 1298, 1305, 1308, 1313, 1315, 1317, 1324, 1326, 1331, 1339, 1342, 1345, 1349, 1353, 1357, 1360, 1363, 1364, 1365, 1367, 1370, 1373, 1377, 1386, 1387, 1388, 1390, 1400, 1402, 1405, 1406, 1409, 1412, 1417, 1420, 1422, 1426, 1436, 1438, 1440, 1443, 1446, 1449, 1451, 1453, 1454, 1459, 1462, 1469, 1476, 1478, 1484, 1486, 1490, 1491, 1494, 1496, 1501, 1506, 1510, 1512, 1517, 1519, 1525, 1526, 1543, 1544, 1547, 1550, 1551, 1562, 1572, 1577, 1580, 1593, 1596, 1603, 1604, 1605, 1613, 1614, 1623, 1627, 1633, 1637, 1641, 1643, 1645, 1647, 1648, 1650, 1652, 1653, 1654, 1655, 1659, 1662, 1665, 1672, 1673, 1678, 1679, 1685, 1686, 1691, 1694, 1695, 1698, 1716, 1717, 1718, 1726, 1727, 1734, 1736, 1739, 1751, 1755, 1756, 1757, 1762, 1766, 1769, 1773, 1780, 1785, 1790, 1791, 1798, 1804, 1812, 1816, 1818, 1826, 1827, 1835, 1839, 1841, 1848, 1858, 1869, 1879, 1884, 1888, 1894, 1899, 1902, 1903, 1907, 1914, 1919, 1933, 1941, 1953, 1958, 1963, 1976, 1977, 1978, 1981, 1983, 1984, 1985, 1986, 1989, 1991, 1995, 2002, 2017, 2021, 2024, 2028, 2029, 2031, 2035, 2036, 2039, 2043, 2044, 2049, 2054, 2062, 2067, 2068, 2069, 2076, 2077, 2093, 2099, 2106, 2109, 2110, 2111, 2119, 2120, 2121, 2126, 2133, 2147, 2159, 2161, 2162, 2164, 2174, 2177, 2181, 2185, 2186, 2188, 2189, 2193, 2195, 2196, 2199, 2208, 2212, 2223, 2226, 2237, 2240, 2248, 2257, 2262, 2265, 2274, 2280, 2281, 2285, 2297, 2302, 2304, 2311, 2312, 2320, 2322, 2324, 2330, 2331, 2334, 2339, 2344, 2348, 2354, 2355, 2356, 2358, 2360, 2364, 2366, 2370, 2378, 2380, 2381, 2389, 2396, 2398, 2400, 2406, 2407, 2409, 2410, 2421, 2422, 2423, 2425, 2427, 2429, 2437, 2440, 2442, 2460, 2463, 2471, 2475, 2476, 2495, 2503, 2506, 2512, 2515, 2517, 2522, 2524, 2529, 2530, 2532, 2535, 2539, 2546, 2556, 2559, 2575, 2581, 2589, 2590, 2594, 2600, 2602, 2616, 2629, 2632, 2634, 2644, 2649, 2655, 2658, 2661, 2663, 2664, 2667, 2672, 2676, 2678, 2681, 2692, 2701, 2707, 2708, 2710, 2714, 2716, 2727, 2731, 2736, 2742, 2745, 2749, 2751, 2753, 2757, 2758, 2762, 2766, 2770, 2775, 2777, 2786, 2787, 2788, 2789, 2794, 2797, 2798, 2805, 2806, 2807, 2809, 2814, 2815, 2816, 2820, 2823, 2834, 2837, 2840, 2843, 2854, 2857, 2860, 2861, 2866, 2876, 2877, 2884, 2901, 2905, 2912, 2913, 2916, 2917, 2921, 2922, 2927, 2929, 2933, 2937, 2939, 2942, 2944, 2948, 2949, 2964, 2967, 2977, 2979, 2998]}\r\nCPU times: user 1min 24s, sys: 37.4 s, total: 2min 2s\nWall time: 4h 18min 43s\n" ] } ], "source": [ "%%time\n", "\n", "evaluate_model_all_epochs(\"internlm/internlm2_5-7b-chat-1m\", 0, \"\", load_in_4bit=False)" ] } ], "metadata": { "accelerator": "GPU", "application/vnd.databricks.v1+notebook": { "dashboards": [], "environmentMetadata": null, "language": "python", "notebookMetadata": { "mostRecentlyExecutedCommandWithImplicitDF": { "commandId": -1, "dataframes": [ "_sqldf" ] }, "pythonIndentUnit": 4 }, "notebookName": "10_eval-lf-medium-py3.11", "widgets": {} }, "colab": { "gpuType": "T4", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "036fc5746f43416db18c19ad8fd36677": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "06e806c82c7b4cbea31c5358dd9c3434": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "087b76a8b7514269b1f0ab29b062e444": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a069d2ab23824f29aa320ac256e2cfe9", "placeholder": "​", "style": "IPY_MODEL_06e806c82c7b4cbea31c5358dd9c3434", "value": "Map (num_proc=2): 100%" } }, "09b76013aa9e45efb6deb23a7a0d0925": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_dea41c5260884aa6879b5e1d1697b14f", "placeholder": "​", "style": "IPY_MODEL_89965917796a4f81b899fdc7685f33df", "value": "config.json: 100%" } }, "0a92c56bfa134ef583220d7ef0b13e17": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "0c34be936c8145d3ab41282f30a70713": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0f8b6bfe16894500838793f2491d403f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "177c78fce95d4b4ab33057c5a048d693": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "1f44c9ce1adf470cbb19784493ed209f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0c34be936c8145d3ab41282f30a70713", "placeholder": "​", "style": "IPY_MODEL_0a92c56bfa134ef583220d7ef0b13e17", "value": "model.safetensors: 100%" } }, "201b59ccd9f845e197029b57e424aefc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "2157f01726d748f8a9ae4a00664430da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "21db8a77b00d4a4e82fdfa608657531f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "26e4202cca81496a90d15a0dd4ca9cf1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_ba90fdb8822d47dab7ba203bee297f37", "IPY_MODEL_61560ff6a36b44f4a9dfdae5c52791d4", "IPY_MODEL_95fbe66647904c06a20f640630d6dc0e" ], "layout": "IPY_MODEL_57182a263d324a3dbf1471c74290a0d5" } }, "27155728b6b84cb199c91c940095d0a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_6b91feeed5464877991ac2c207aebe7c", "IPY_MODEL_cca8113c54c0495daedce1327bf9c68b", "IPY_MODEL_2e63a29e2f7247bba5beede9a568c99f" ], "layout": "IPY_MODEL_5c9d781c28944f3eb86e2a6d44efdf18" } }, "271ddaa553a042d09b6db7b450643d8f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "2a58d04b428c46f4b3dbadd3bc6cd529": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2d18ddf6482c4d97829ac0e5a7b9868f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_9f679ad3ec7f4fe8ad0510ffb57bc2ab", "IPY_MODEL_f2df530d22c74977b249dd9fb5f4829b", "IPY_MODEL_89b2ef0dbfea47ab8e6f8d659e3351d1" ], "layout": "IPY_MODEL_3056b148aa9f4e6e8aa3b61d26886255" } }, "2e5087c76f98437cb5dc729230358cba": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2e63a29e2f7247bba5beede9a568c99f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b993eaec6b224440bf80c0958c6fb536", "placeholder": "​", "style": "IPY_MODEL_de868e26e7154f62aa86223a539ad421", "value": " 464/464 [00:00<00:00, 27.1kB/s]" } }, "2f6c70dd266c4816bfad3fd3d192929a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "30307300bc4e4baf96560e30969a82b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e36a3f9eff0e4cf68834d66b0213ae96", "placeholder": "​", "style": "IPY_MODEL_a0037bdccf254159becde630bee3d1db", "value": "generation_config.json: 100%" } }, "3056b148aa9f4e6e8aa3b61d26886255": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "30cdc32298134cb0be4d41615b9e5774": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3572201bd4d74a58b7a665f9bdfdcdba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "35b0e8c26d6640e9bd0ed7b242a423d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_2e5087c76f98437cb5dc729230358cba", "max": 51760, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_036fc5746f43416db18c19ad8fd36677", "value": 51760 } }, "36166c7bcb854b34aca1f41a5d6ea50b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "370692d819df41828b48c4ad446f977b": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "39b29a75374b45c0a22506010be2b84e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_30cdc32298134cb0be4d41615b9e5774", "max": 1179, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_47928317548c454bba6358ab132e8dee", "value": 1179 } }, "3cf2dd993b5e4d3daecf61e4bab5a404": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_087b76a8b7514269b1f0ab29b062e444", "IPY_MODEL_35b0e8c26d6640e9bd0ed7b242a423d8", "IPY_MODEL_54ad89e05fd74576b9b8b5b5a10eaf8d" ], "layout": "IPY_MODEL_a41dc44766444a998bec2d777f249d23" } }, "43dec2ede91341f5af60eb522e18e984": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4463edd481c1467f914c7dcd6c6e6ffc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "47928317548c454bba6358ab132e8dee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "49277aeeac16434a865a4d12308b1abc": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4ae7e449e4ea4c729b5f34607c18ebae": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4b2061b8a73c43ffb0c2f83daf0d0183": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4c4c88d4c701450692fa0f6b0c5764b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4c666f4ace3943f8b80ecd20e7503236": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "4ccedf0d93094e63b57a0f8a434fba06": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4463edd481c1467f914c7dcd6c6e6ffc", "max": 44307561, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_6d3b9a05db0b4dadb638c686faa0c40a", "value": 44307561 } }, "4dcf6ff672d24983a1877a8431709aa9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_5807d5fb827d490fb3bc698f801ffff5", "placeholder": "​", "style": "IPY_MODEL_c4f2b06a82fd4987b8b659524a7b503b", "value": "Generating train split: 100%" } }, "4ea63adfce694725bdba878aef709dd3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5234566b1bfc4655b8d582ea5b46ed9f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "54ad89e05fd74576b9b8b5b5a10eaf8d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_fdb1941405ed4e4aa06019933892deb3", "placeholder": "​", "style": "IPY_MODEL_668d5377ca56426a99753867e6e24862", "value": " 51760/51760 [01:02<00:00, 1131.51 examples/s]" } }, "56aee4853b7740e6a977254f5d1fa66d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "57182a263d324a3dbf1471c74290a0d5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5807d5fb827d490fb3bc698f801ffff5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5c9d781c28944f3eb86e2a6d44efdf18": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5f40db8173dd4d76b6ef5ed6d9ec8b6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "61560ff6a36b44f4a9dfdae5c52791d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_db19fc8d37db4e45a5790a876836d8c4", "max": 11610, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_36166c7bcb854b34aca1f41a5d6ea50b", "value": 11610 } }, "6578fd7acdb54c4c93528ea431fd0144": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_370692d819df41828b48c4ad446f977b", "placeholder": "​", "style": "IPY_MODEL_a0bf9160eb2647409b3200270914b90f", "value": " 50.6k/50.6k [00:00<00:00, 2.71MB/s]" } }, "668d5377ca56426a99753867e6e24862": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "697f027529b54ee9956bae78a11e0611": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "69ac12aec0714318bf2c83d4f4e745f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "6b2012c3f88547af8884a9ea90e3164b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_938f45f1b3e24118b815d96ae34ba86a", "placeholder": "​", "style": "IPY_MODEL_9367047a800747f79c6b225d92397846", "value": " 44.3M/44.3M [00:01<00:00, 31.0MB/s]" } }, "6b91feeed5464877991ac2c207aebe7c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4b2061b8a73c43ffb0c2f83daf0d0183", "placeholder": "​", "style": "IPY_MODEL_69ac12aec0714318bf2c83d4f4e745f5", "value": "special_tokens_map.json: 100%" } }, "6d3b9a05db0b4dadb638c686faa0c40a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "6dbbedeca9314e66ae50e44ffa31a414": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "6e34619b45934040b6092e6fb01ea7fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "71ce208e20d6483abb9ed923510c86d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d69dc491b3ab44d7852b21873ed7bb7f", "placeholder": "​", "style": "IPY_MODEL_f401d53bf28e44eb906bce6c05412662", "value": " 51760/51760 [00:01<00:00, 45512.81 examples/s]" } }, "7358cdad832342c983e31efb8754ab78": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "73e352a3404f4c7dad0737f57d29e92f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_988a0e8c1f89446086858da0a891a79c", "IPY_MODEL_4ccedf0d93094e63b57a0f8a434fba06", "IPY_MODEL_6b2012c3f88547af8884a9ea90e3164b" ], "layout": "IPY_MODEL_7e29cb8dd4df4d5b94407cd8fd3f2011" } }, "74501720ac7e4dbb911a4a99b3633bc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "78e5400bff924a92a4cc61c4ff18b182": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b9b313fd861948f5aba25b24b1518d30", "placeholder": "​", "style": "IPY_MODEL_4c666f4ace3943f8b80ecd20e7503236", "value": " 1.18k/1.18k [00:00<00:00, 31.3kB/s]" } }, "7975adbc2ec5489ea7fa0167e620d85c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_6e34619b45934040b6092e6fb01ea7fe", "max": 51760, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_271ddaa553a042d09b6db7b450643d8f", "value": 51760 } }, "7e29cb8dd4df4d5b94407cd8fd3f2011": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "810ff6c0e17d4fa09a30fef27eacff90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "89965917796a4f81b899fdc7685f33df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "89b2ef0dbfea47ab8e6f8d659e3351d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b8908fa0df3743ecb9d12983a739104f", "placeholder": "​", "style": "IPY_MODEL_177c78fce95d4b4ab33057c5a048d693", "value": " 9.09M/9.09M [00:00<00:00, 32.6MB/s]" } }, "8b3505352a5a42bf910428c40ce40465": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_49277aeeac16434a865a4d12308b1abc", "placeholder": "​", "style": "IPY_MODEL_2157f01726d748f8a9ae4a00664430da", "value": " 5.70G/5.70G [01:02<00:00, 30.1MB/s]" } }, "8fc142b628fb40568730234de1cafde2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4ae7e449e4ea4c729b5f34607c18ebae", "max": 172, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_3572201bd4d74a58b7a665f9bdfdcdba", "value": 172 } }, "9367047a800747f79c6b225d92397846": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "938f45f1b3e24118b815d96ae34ba86a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "95fbe66647904c06a20f640630d6dc0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b0a370dc20654b279b9680692e34418e", "placeholder": "​", "style": "IPY_MODEL_cfeb365ddf7548d58b2557f22737fcf5", "value": " 11.6k/11.6k [00:00<00:00, 716kB/s]" } }, "988a0e8c1f89446086858da0a891a79c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_ad2be500fc164c0f86f33e914ef8e6a0", "placeholder": "​", "style": "IPY_MODEL_5234566b1bfc4655b8d582ea5b46ed9f", "value": "Downloading data: 100%" } }, "98c58f23f4d549518832cb2d18f796e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_09b76013aa9e45efb6deb23a7a0d0925", "IPY_MODEL_39b29a75374b45c0a22506010be2b84e", "IPY_MODEL_78e5400bff924a92a4cc61c4ff18b182" ], "layout": "IPY_MODEL_2a58d04b428c46f4b3dbadd3bc6cd529" } }, "99fdbb0300c14c139d1937c646f0cfe7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7358cdad832342c983e31efb8754ab78", "placeholder": "​", "style": "IPY_MODEL_e9adf418296e436fb48bb9f78885598b", "value": " 51760/51760 [00:01<00:00, 38665.95 examples/s]" } }, "9f679ad3ec7f4fe8ad0510ffb57bc2ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4ea63adfce694725bdba878aef709dd3", "placeholder": "​", "style": "IPY_MODEL_74501720ac7e4dbb911a4a99b3633bc6", "value": "tokenizer.json: 100%" } }, "a0037bdccf254159becde630bee3d1db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "a069d2ab23824f29aa320ac256e2cfe9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a0bf9160eb2647409b3200270914b90f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "a41dc44766444a998bec2d777f249d23": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a8464a4c711e4e00aafdfc919b60d07e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_fb995c740590427b882572c81d4e848c", "placeholder": "​", "style": "IPY_MODEL_201b59ccd9f845e197029b57e424aefc", "value": " 172/172 [00:00<00:00, 12.0kB/s]" } }, "a9f0cc51fc3d4d7b874c32dcf1c5bdf2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ad2be500fc164c0f86f33e914ef8e6a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b0240cd9a4554b29ae11f8051984a1c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_edaf890370314a218f138015faa0b05d", "placeholder": "​", "style": "IPY_MODEL_697f027529b54ee9956bae78a11e0611", "value": "Map: 100%" } }, "b0a370dc20654b279b9680692e34418e": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b518dcee69074b87be73957cd810e7ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d891f8d0b1fc462f8008d02bb2a15692", "placeholder": "​", "style": "IPY_MODEL_cced8fd7e998472794f3f3e3018956a5", "value": "tokenizer_config.json: 100%" } }, "b8908fa0df3743ecb9d12983a739104f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b993eaec6b224440bf80c0958c6fb536": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b9b313fd861948f5aba25b24b1518d30": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ba90fdb8822d47dab7ba203bee297f37": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_0f8b6bfe16894500838793f2491d403f", "placeholder": "​", "style": "IPY_MODEL_bb19f6c747754682a514373a3a0535ba", "value": "Downloading readme: 100%" } }, "bb19f6c747754682a514373a3a0535ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "bc883d4cf13e4f8b8a4fe5f410cb6efd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e9159e03e61f4f56978ece9c3bca49b2", "max": 51760, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_810ff6c0e17d4fa09a30fef27eacff90", "value": 51760 } }, "c161d94df0f04feba9542237e0856c22": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c22f71b1f85843209d7e5321506b9cb9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_1f44c9ce1adf470cbb19784493ed209f", "IPY_MODEL_f1addc4479d849879e743cf9089e6540", "IPY_MODEL_8b3505352a5a42bf910428c40ce40465" ], "layout": "IPY_MODEL_4c4c88d4c701450692fa0f6b0c5764b0" } }, "c4f2b06a82fd4987b8b659524a7b503b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "cca8113c54c0495daedce1327bf9c68b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e02f9b7849c64531835eb77b860d1c93", "max": 464, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_56aee4853b7740e6a977254f5d1fa66d", "value": 464 } }, "cced8fd7e998472794f3f3e3018956a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "cf245afeb1c04f29a24d291608c3d157": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_b518dcee69074b87be73957cd810e7ed", "IPY_MODEL_e29104486d594b2992d7285e0ef77371", "IPY_MODEL_6578fd7acdb54c4c93528ea431fd0144" ], "layout": "IPY_MODEL_d35db8148a354c56aaac56dbae22536f" } }, "cfe8cae0e22b495bafa221a63d13b283": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cfeb365ddf7548d58b2557f22737fcf5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "d1b47d39450d4019ae85c9b2f943eeaf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_4dcf6ff672d24983a1877a8431709aa9", "IPY_MODEL_7975adbc2ec5489ea7fa0167e620d85c", "IPY_MODEL_71ce208e20d6483abb9ed923510c86d7" ], "layout": "IPY_MODEL_cfe8cae0e22b495bafa221a63d13b283" } }, "d35db8148a354c56aaac56dbae22536f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d69dc491b3ab44d7852b21873ed7bb7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d891f8d0b1fc462f8008d02bb2a15692": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d8e5318cead340c4adbeaccc05d39225": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "daf4cd890b35422683d22fd30bc71e83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_b0240cd9a4554b29ae11f8051984a1c6", "IPY_MODEL_bc883d4cf13e4f8b8a4fe5f410cb6efd", "IPY_MODEL_99fdbb0300c14c139d1937c646f0cfe7" ], "layout": "IPY_MODEL_c161d94df0f04feba9542237e0856c22" } }, "db19fc8d37db4e45a5790a876836d8c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "de868e26e7154f62aa86223a539ad421": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "dea41c5260884aa6879b5e1d1697b14f": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e02f9b7849c64531835eb77b860d1c93": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e29104486d594b2992d7285e0ef77371": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_a9f0cc51fc3d4d7b874c32dcf1c5bdf2", "max": 50641, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_2f6c70dd266c4816bfad3fd3d192929a", "value": 50641 } }, "e36a3f9eff0e4cf68834d66b0213ae96": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e9159e03e61f4f56978ece9c3bca49b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e9adf418296e436fb48bb9f78885598b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "edaf890370314a218f138015faa0b05d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f1addc4479d849879e743cf9089e6540": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_43dec2ede91341f5af60eb522e18e984", "max": 5702746405, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_d8e5318cead340c4adbeaccc05d39225", "value": 5702746405 } }, "f2df530d22c74977b249dd9fb5f4829b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_21db8a77b00d4a4e82fdfa608657531f", "max": 9085698, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_6dbbedeca9314e66ae50e44ffa31a414", "value": 9085698 } }, "f401d53bf28e44eb906bce6c05412662": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "fb995c740590427b882572c81d4e848c": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fce7a61c25ec4390af43d92b7c473a45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_30307300bc4e4baf96560e30969a82b6", "IPY_MODEL_8fc142b628fb40568730234de1cafde2", "IPY_MODEL_a8464a4c711e4e00aafdfc919b60d07e" ], "layout": "IPY_MODEL_5f40db8173dd4d76b6ef5ed6d9ec8b6e" } }, "fdb1941405ed4e4aa06019933892deb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } } } }, "nbformat": 4, "nbformat_minor": 0 }