File size: 4,968 Bytes
251efe4 5b4cc8a 3f36a31 5b4cc8a cb7c21b 5b4cc8a b6836c3 251efe4 5b4cc8a cb7c21b 251efe4 3f36a31 251efe4 5b4cc8a 3f36a31 251efe4 3f36a31 251efe4 3f36a31 251efe4 3f36a31 251efe4 3f36a31 251efe4 3f36a31 251efe4 3f36a31 251efe4 3f36a31 251efe4 3f36a31 251efe4 3f36a31 251efe4 5b4cc8a 251efe4 522e057 ab3d55c 251efe4 5b4cc8a 251efe4 522e057 ab3d55c 522e057 ab3d55c 251efe4 3f36a31 251efe4 3f36a31 251efe4 3f36a31 251efe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import json
import os
import sys
import evaluate
import gradio as gr
from dotenv import find_dotenv, load_dotenv
from huggingface_hub import InferenceClient, login
found_dotenv = find_dotenv(".env")
if len(found_dotenv) == 0:
found_dotenv = find_dotenv(".env.example")
print(f"loading env vars from: {found_dotenv}")
load_dotenv(found_dotenv, override=False)
path = os.path.dirname(found_dotenv) + "/src"
print(f"Adding {path} to sys.path")
sys.path.append(path)
from eval_modules.utils import calc_perf_scores, detect_repetitions
model_name = os.getenv("MODEL_NAME") or "microsoft/Phi-3.5-mini-instruct"
hf_token = os.getenv("HF_TOKEN")
login(token=hf_token, add_to_git_credential=True)
questions_file_path = os.getenv("QUESTIONS_FILE_PATH") or "./data/datasets/ms_macro.json"
questions = json.loads(open(questions_file_path).read())
examples = [[question["question"].strip()] for question in questions]
print(f"Loaded {len(examples)} examples")
qa_system_prompt = "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer."
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# client = InferenceClient("HuggingFaceH4/zephyr-7b-gemma-v0.1")
# client = InferenceClient("microsoft/Phi-3.5-mini-instruct")
client = InferenceClient(model_name, token=hf_token)
def chat(
message,
history: list[tuple[str, str]],
system_message,
temperature=0,
max_tokens=256,
top_p=0.95,
):
chat = []
for item in history:
chat.append({"role": "user", "content": item[0]})
if item[1] is not None:
chat.append({"role": "assistant", "content": item[1]})
index = -1
if [message] in examples:
index = examples.index([message])
message = f"{qa_system_prompt}\n\n{questions[index]['context']}\n\nQuestion: {message}"
print("RAG prompt:", message)
chat.append({"role": "user", "content": message})
messages = [{"role": "system", "content": system_message}]
messages.append({"role": "user", "content": message})
partial_text = ""
finish_reason = None
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
seed=42,
):
finish_reason = message.choices[0].finish_reason
# print("finish_reason:", finish_reason)
if finish_reason is None:
new_text = message.choices[0].delta.content
partial_text += new_text
yield partial_text
else:
break
answer = partial_text
(whitespace_score, repetition_score, total_repetitions) = detect_repetitions(answer)
partial_text += "\n\nRepetition Metrics:\n"
partial_text += f"1. EWC Repetition Score: {whitespace_score:.3f}\n"
partial_text += f"1. Text Repetition Score: {repetition_score:.3f}\n"
partial_text += f"1. Total Repetitions: {total_repetitions:.3f}\n"
rr = total_repetitions / len(answer) if len(answer) > 0 else 0
partial_text += f"1. Repetition Ratio: {rr:.3f}\n"
if index >= 0: # RAG
key = (
"wellFormedAnswers"
if "wellFormedAnswers" in questions[index]
else "answers"
)
scores = calc_perf_scores([answer], [questions[index][key]], debug=True)
partial_text += "\n\n Performance Metrics:\n"
partial_text += f'1. BLEU-1: {scores["bleu_scores"]["bleu"]:.3f}\n'
partial_text += f'1. RougeL: {scores["rouge_scores"]["rougeL"]:.3f}\n'
perf = scores["bert_scores"]["f1"][0]
partial_text += f"1. BERT-F1: {perf:.3f}\n"
nrr = 1 - rr
partial_text += f"1. RAP-BERT-F1: {perf * nrr * nrr * nrr:.3f}\n"
partial_text += f"\n\nGround truth: {questions[index][key][0]}\n"
partial_text += f"\n\nThe text generation has ended because: {finish_reason}\n"
yield partial_text
demo = gr.ChatInterface(
fn=chat,
examples=examples,
cache_examples=False,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(
minimum=0, maximum=2, step=0.1, value=0, label="Temperature", render=False
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
demo.launch()
|