rap / app.py
inflaton's picture
added QA code/dataset
cb7c21b
import json
import os
import sys
import evaluate
import gradio as gr
from dotenv import find_dotenv, load_dotenv
from huggingface_hub import InferenceClient, login
found_dotenv = find_dotenv(".env")
if len(found_dotenv) == 0:
found_dotenv = find_dotenv(".env.example")
print(f"loading env vars from: {found_dotenv}")
load_dotenv(found_dotenv, override=False)
path = os.path.dirname(found_dotenv) + "/src"
print(f"Adding {path} to sys.path")
sys.path.append(path)
from eval_modules.utils import calc_perf_scores, detect_repetitions
model_name = os.getenv("MODEL_NAME") or "microsoft/Phi-3.5-mini-instruct"
hf_token = os.getenv("HF_TOKEN")
login(token=hf_token, add_to_git_credential=True)
questions_file_path = os.getenv("QUESTIONS_FILE_PATH") or "./data/datasets/ms_macro.json"
questions = json.loads(open(questions_file_path).read())
examples = [[question["question"].strip()] for question in questions]
print(f"Loaded {len(examples)} examples")
qa_system_prompt = "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer."
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# client = InferenceClient("HuggingFaceH4/zephyr-7b-gemma-v0.1")
# client = InferenceClient("microsoft/Phi-3.5-mini-instruct")
client = InferenceClient(model_name, token=hf_token)
def chat(
message,
history: list[tuple[str, str]],
system_message,
temperature=0,
max_tokens=256,
top_p=0.95,
):
chat = []
for item in history:
chat.append({"role": "user", "content": item[0]})
if item[1] is not None:
chat.append({"role": "assistant", "content": item[1]})
index = -1
if [message] in examples:
index = examples.index([message])
message = f"{qa_system_prompt}\n\n{questions[index]['context']}\n\nQuestion: {message}"
print("RAG prompt:", message)
chat.append({"role": "user", "content": message})
messages = [{"role": "system", "content": system_message}]
messages.append({"role": "user", "content": message})
partial_text = ""
finish_reason = None
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
seed=42,
):
finish_reason = message.choices[0].finish_reason
# print("finish_reason:", finish_reason)
if finish_reason is None:
new_text = message.choices[0].delta.content
partial_text += new_text
yield partial_text
else:
break
answer = partial_text
(whitespace_score, repetition_score, total_repetitions) = detect_repetitions(answer)
partial_text += "\n\nRepetition Metrics:\n"
partial_text += f"1. EWC Repetition Score: {whitespace_score:.3f}\n"
partial_text += f"1. Text Repetition Score: {repetition_score:.3f}\n"
partial_text += f"1. Total Repetitions: {total_repetitions:.3f}\n"
rr = total_repetitions / len(answer) if len(answer) > 0 else 0
partial_text += f"1. Repetition Ratio: {rr:.3f}\n"
if index >= 0: # RAG
key = (
"wellFormedAnswers"
if "wellFormedAnswers" in questions[index]
else "answers"
)
scores = calc_perf_scores([answer], [questions[index][key]], debug=True)
partial_text += "\n\n Performance Metrics:\n"
partial_text += f'1. BLEU-1: {scores["bleu_scores"]["bleu"]:.3f}\n'
partial_text += f'1. RougeL: {scores["rouge_scores"]["rougeL"]:.3f}\n'
perf = scores["bert_scores"]["f1"][0]
partial_text += f"1. BERT-F1: {perf:.3f}\n"
nrr = 1 - rr
partial_text += f"1. RAP-BERT-F1: {perf * nrr * nrr * nrr:.3f}\n"
partial_text += f"\n\nGround truth: {questions[index][key][0]}\n"
partial_text += f"\n\nThe text generation has ended because: {finish_reason}\n"
yield partial_text
demo = gr.ChatInterface(
fn=chat,
examples=examples,
cache_examples=False,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(
minimum=0, maximum=2, step=0.1, value=0, label="Temperature", render=False
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
demo.launch()