Spaces:
Sleeping
Sleeping
import json | |
import os | |
import sys | |
import evaluate | |
import gradio as gr | |
from dotenv import find_dotenv, load_dotenv | |
from huggingface_hub import InferenceClient, login | |
found_dotenv = find_dotenv(".env") | |
if len(found_dotenv) == 0: | |
found_dotenv = find_dotenv(".env.example") | |
print(f"loading env vars from: {found_dotenv}") | |
load_dotenv(found_dotenv, override=False) | |
path = os.path.dirname(found_dotenv) + "/src" | |
print(f"Adding {path} to sys.path") | |
sys.path.append(path) | |
from eval_modules.utils import calc_perf_scores, detect_repetitions | |
model_name = os.getenv("MODEL_NAME") or "microsoft/Phi-3.5-mini-instruct" | |
hf_token = os.getenv("HF_TOKEN") | |
login(token=hf_token, add_to_git_credential=True) | |
questions_file_path = os.getenv("QUESTIONS_FILE_PATH") or "./data/datasets/ms_macro.json" | |
questions = json.loads(open(questions_file_path).read()) | |
examples = [[question["question"].strip()] for question in questions] | |
print(f"Loaded {len(examples)} examples") | |
qa_system_prompt = "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer." | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-gemma-v0.1") | |
# client = InferenceClient("microsoft/Phi-3.5-mini-instruct") | |
client = InferenceClient(model_name, token=hf_token) | |
def chat( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
temperature=0, | |
max_tokens=256, | |
top_p=0.95, | |
): | |
chat = [] | |
for item in history: | |
chat.append({"role": "user", "content": item[0]}) | |
if item[1] is not None: | |
chat.append({"role": "assistant", "content": item[1]}) | |
index = -1 | |
if [message] in examples: | |
index = examples.index([message]) | |
message = f"{qa_system_prompt}\n\n{questions[index]['context']}\n\nQuestion: {message}" | |
print("RAG prompt:", message) | |
chat.append({"role": "user", "content": message}) | |
messages = [{"role": "system", "content": system_message}] | |
messages.append({"role": "user", "content": message}) | |
partial_text = "" | |
finish_reason = None | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
seed=42, | |
): | |
finish_reason = message.choices[0].finish_reason | |
# print("finish_reason:", finish_reason) | |
if finish_reason is None: | |
new_text = message.choices[0].delta.content | |
partial_text += new_text | |
yield partial_text | |
else: | |
break | |
answer = partial_text | |
(whitespace_score, repetition_score, total_repetitions) = detect_repetitions(answer) | |
partial_text += "\n\nRepetition Metrics:\n" | |
partial_text += f"1. EWC Repetition Score: {whitespace_score:.3f}\n" | |
partial_text += f"1. Text Repetition Score: {repetition_score:.3f}\n" | |
partial_text += f"1. Total Repetitions: {total_repetitions:.3f}\n" | |
rr = total_repetitions / len(answer) if len(answer) > 0 else 0 | |
partial_text += f"1. Repetition Ratio: {rr:.3f}\n" | |
if index >= 0: # RAG | |
key = ( | |
"wellFormedAnswers" | |
if "wellFormedAnswers" in questions[index] | |
else "answers" | |
) | |
scores = calc_perf_scores([answer], [questions[index][key]], debug=True) | |
partial_text += "\n\n Performance Metrics:\n" | |
partial_text += f'1. BLEU-1: {scores["bleu_scores"]["bleu"]:.3f}\n' | |
partial_text += f'1. RougeL: {scores["rouge_scores"]["rougeL"]:.3f}\n' | |
perf = scores["bert_scores"]["f1"][0] | |
partial_text += f"1. BERT-F1: {perf:.3f}\n" | |
nrr = 1 - rr | |
partial_text += f"1. RAP-BERT-F1: {perf * nrr * nrr * nrr:.3f}\n" | |
partial_text += f"\n\nGround truth: {questions[index][key][0]}\n" | |
partial_text += f"\n\nThe text generation has ended because: {finish_reason}\n" | |
yield partial_text | |
demo = gr.ChatInterface( | |
fn=chat, | |
examples=examples, | |
cache_examples=False, | |
additional_inputs_accordion=gr.Accordion( | |
label="⚙️ Parameters", open=False, render=False | |
), | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider( | |
minimum=0, maximum=2, step=0.1, value=0, label="Temperature", render=False | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=4096, | |
step=1, | |
value=512, | |
label="Max new tokens", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
demo.launch() | |