import json import os import sys import evaluate import gradio as gr from dotenv import find_dotenv, load_dotenv from huggingface_hub import InferenceClient, login found_dotenv = find_dotenv(".env") if len(found_dotenv) == 0: found_dotenv = find_dotenv(".env.example") print(f"loading env vars from: {found_dotenv}") load_dotenv(found_dotenv, override=False) path = os.path.dirname(found_dotenv) print(f"Adding {path} to sys.path") sys.path.append(path) from eval_modules.utils import calc_perf_scores, detect_repetitions model_name = os.getenv("MODEL_NAME") or "microsoft/Phi-3.5-mini-instruct" hf_token = os.getenv("HF_TOKEN") login(token=hf_token, add_to_git_credential=True) questions_file_path = os.getenv("QUESTIONS_FILE_PATH") or "./ms_macro.json" questions = json.loads(open(questions_file_path).read()) examples = [[question["question"].strip()] for question in questions] print(f"Loaded {len(examples)} examples") qa_system_prompt = "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer." """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # client = InferenceClient("HuggingFaceH4/zephyr-7b-gemma-v0.1") # client = InferenceClient("microsoft/Phi-3.5-mini-instruct") client = InferenceClient(model_name, token=hf_token) def chat( message, history: list[tuple[str, str]], system_message, temperature=0, frequency_penalty=0, presence_penalty=0, max_tokens=256, top_p=0.95, ): chat = [] for item in history: chat.append({"role": "user", "content": item[0]}) if item[1] is not None: chat.append({"role": "assistant", "content": item[1]}) index = -1 if [message] in examples: index = examples.index([message]) message = f"{qa_system_prompt}\n\n{questions[index]['context']}\n\nQuestion: {message}" print("RAG prompt:", message) chat.append({"role": "user", "content": message}) messages = [{"role": "system", "content": system_message}] messages.append({"role": "user", "content": message}) partial_text = "" finish_reason = None for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, frequency_penalty=None, # frequency_penalty, presence_penalty=None, # presence_penalty, top_p=top_p, seed=42, ): finish_reason = message.choices[0].finish_reason # print("finish_reason:", finish_reason) if finish_reason is None: new_text = message.choices[0].delta.content partial_text += new_text yield partial_text else: break answer = partial_text (whitespace_score, repetition_score, total_repetitions) = detect_repetitions(answer) partial_text += "\n\nRepetition Metrics:\n" partial_text += f"1. EWC Repetition Score: {whitespace_score:.3f}\n" partial_text += f"1. Text Repetition Score: {repetition_score:.3f}\n" partial_text += f"1. Total Repetitions: {total_repetitions:.3f}\n" rr = total_repetitions / len(answer) if len(answer) > 0 else 0 partial_text += f"1. Repetition Ratio: {rr:.3f}\n" if index >= 0: # RAG key = ( "wellFormedAnswers" if "wellFormedAnswers" in questions[index] else "answers" ) scores = calc_perf_scores([answer], [questions[index][key]], debug=True) partial_text += "\n\n Performance Metrics:\n" partial_text += f'1. BLEU-1: {scores["bleu_scores"]["bleu"]:.3f}\n' partial_text += f'1. RougeL: {scores["rouge_scores"]["rougeL"]:.3f}\n' perf = scores["bert_scores"]["f1"][0] partial_text += f"1. BERT-F1: {perf:.3f}\n" nrr = 1 - rr partial_text += f"1. RAP-BERT-F1: {perf * nrr * nrr * nrr:.3f}\n" partial_text += f"\n\nGround truth: {questions[index][key][0]}\n" partial_text += f"\n\nThe text generation has ended because: {finish_reason}\n" yield partial_text demo = gr.ChatInterface( fn=chat, examples=examples, cache_examples=False, additional_inputs_accordion=gr.Accordion( label="⚙️ Parameters", open=False, render=False ), additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider( minimum=0, maximum=2, step=0.1, value=0, label="Temperature", render=False ), gr.Slider( minimum=-2, maximum=2, step=0.1, value=0, label="Frequency Penalty", render=False, ), gr.Slider( minimum=-2, maximum=2, step=0.1, value=0, label="Presence Penalty", render=False, ), gr.Slider( minimum=128, maximum=4096, step=1, value=512, label="Max new tokens", render=False, ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) demo.launch()