fixed bug in gradio app
Browse files- app.py +11 -5
- app_modules/init.py +1 -1
- app_modules/llm_chat_chain.py +30 -0
- app_modules/llm_inference.py +10 -9
- app_modules/llm_loader.py +2 -2
- app_modules/llm_qa_chain.py +1 -1
- app_modules/qa_chain.py +0 -631
- notebooks/YT_LLaMA2_7B_Chat_LangChain_Basics.ipynb +0 -0
- test.py +57 -3
app.py
CHANGED
@@ -7,9 +7,9 @@ from timeit import default_timer as timer
|
|
7 |
import gradio as gr
|
8 |
from anyio.from_thread import start_blocking_portal
|
9 |
from app_modules.init import app_init
|
10 |
-
from app_modules.utils import print_llm_response
|
11 |
|
12 |
-
qa_chain = app_init()
|
13 |
|
14 |
chat_history_enabled = os.environ.get("CHAT_HISTORY_ENABLED") == "true"
|
15 |
show_param_settings = os.environ.get("SHOW_PARAM_SETTINGS") == "true"
|
@@ -17,9 +17,15 @@ share_gradio_app = os.environ.get("SHARE_GRADIO_APP") == "true"
|
|
17 |
|
18 |
using_openai = os.environ.get("LLM_MODEL_TYPE") == "openai"
|
19 |
model = (
|
20 |
-
"OpenAI GPT-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
)
|
22 |
-
href = "https://openai.com/gpt-4" if using_openai else f"https://huggingface.co/{model}"
|
23 |
|
24 |
title = """<h1 align="left" style="min-width:200px; margin-top:0;"> Chat with AI Books </h1>"""
|
25 |
|
@@ -75,7 +81,7 @@ def qa(chatbot):
|
|
75 |
print("nothing generated yet - retry in 0.5s")
|
76 |
time.sleep(0.5)
|
77 |
|
78 |
-
for next_token in
|
79 |
if next_token is job_done:
|
80 |
break
|
81 |
content += next_token or ""
|
|
|
7 |
import gradio as gr
|
8 |
from anyio.from_thread import start_blocking_portal
|
9 |
from app_modules.init import app_init
|
10 |
+
from app_modules.utils import print_llm_response, remove_extra_spaces
|
11 |
|
12 |
+
llm_loader, qa_chain = app_init()
|
13 |
|
14 |
chat_history_enabled = os.environ.get("CHAT_HISTORY_ENABLED") == "true"
|
15 |
show_param_settings = os.environ.get("SHOW_PARAM_SETTINGS") == "true"
|
|
|
17 |
|
18 |
using_openai = os.environ.get("LLM_MODEL_TYPE") == "openai"
|
19 |
model = (
|
20 |
+
"OpenAI GPT-3.5"
|
21 |
+
if using_openai
|
22 |
+
else os.environ.get("HUGGINGFACE_MODEL_NAME_OR_PATH")
|
23 |
+
)
|
24 |
+
href = (
|
25 |
+
"https://platform.openai.com/docs/models/gpt-3-5"
|
26 |
+
if using_openai
|
27 |
+
else f"https://huggingface.co/{model}"
|
28 |
)
|
|
|
29 |
|
30 |
title = """<h1 align="left" style="min-width:200px; margin-top:0;"> Chat with AI Books </h1>"""
|
31 |
|
|
|
81 |
print("nothing generated yet - retry in 0.5s")
|
82 |
time.sleep(0.5)
|
83 |
|
84 |
+
for next_token in llm_loader.streamer:
|
85 |
if next_token is job_done:
|
86 |
break
|
87 |
content += next_token or ""
|
app_modules/init.py
CHANGED
@@ -75,4 +75,4 @@ def app_init():
|
|
75 |
end = timer()
|
76 |
print(f"Completed in {end - start:.3f}s")
|
77 |
|
78 |
-
return qa_chain
|
|
|
75 |
end = timer()
|
76 |
print(f"Completed in {end - start:.3f}s")
|
77 |
|
78 |
+
return llm_loader, qa_chain
|
app_modules/llm_chat_chain.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains import ConversationalRetrievalChain
|
2 |
+
from langchain.chains.base import Chain
|
3 |
+
from langchain.memory import ConversationBufferMemory
|
4 |
+
from langchain import LLMChain, PromptTemplate
|
5 |
+
from app_modules.llm_inference import LLMInference
|
6 |
+
|
7 |
+
|
8 |
+
class ChatChain(LLMInference):
|
9 |
+
def __init__(self, llm_loader):
|
10 |
+
super().__init__(llm_loader)
|
11 |
+
|
12 |
+
def create_chain(self) -> Chain:
|
13 |
+
template = """You are a chatbot having a conversation with a human.
|
14 |
+
{chat_history}
|
15 |
+
Human: {question}
|
16 |
+
Chatbot:"""
|
17 |
+
|
18 |
+
prompt = PromptTemplate(
|
19 |
+
input_variables=["chat_history", "question"], template=template
|
20 |
+
)
|
21 |
+
memory = ConversationBufferMemory(memory_key="chat_history")
|
22 |
+
|
23 |
+
llm_chain = LLMChain(
|
24 |
+
llm=self.llm_loader.llm,
|
25 |
+
prompt=prompt,
|
26 |
+
verbose=True,
|
27 |
+
memory=memory,
|
28 |
+
)
|
29 |
+
|
30 |
+
return llm_chain
|
app_modules/llm_inference.py
CHANGED
@@ -55,15 +55,16 @@ class LLMInference(metaclass=abc.ABCMeta):
|
|
55 |
else chain(inputs)
|
56 |
)
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
67 |
|
68 |
return result
|
69 |
|
|
|
55 |
else chain(inputs)
|
56 |
)
|
57 |
|
58 |
+
if "answer" in result:
|
59 |
+
result["answer"] = remove_extra_spaces(result["answer"])
|
60 |
+
|
61 |
+
base_url = os.environ.get("PDF_FILE_BASE_URL")
|
62 |
+
if base_url is not None and len(base_url) > 0:
|
63 |
+
documents = result["source_documents"]
|
64 |
+
for doc in documents:
|
65 |
+
source = doc.metadata["source"]
|
66 |
+
title = source.split("/")[-1]
|
67 |
+
doc.metadata["url"] = f"{base_url}{urllib.parse.quote(title)}"
|
68 |
|
69 |
return result
|
70 |
|
app_modules/llm_loader.py
CHANGED
@@ -90,11 +90,11 @@ class LLMLoader:
|
|
90 |
streamer: any
|
91 |
max_tokens_limit: int
|
92 |
|
93 |
-
def __init__(self, llm_model_type):
|
94 |
self.llm_model_type = llm_model_type
|
95 |
self.llm = None
|
96 |
self.streamer = TextIteratorStreamer("")
|
97 |
-
self.max_tokens_limit =
|
98 |
self.search_kwargs = {"k": 4}
|
99 |
|
100 |
def _init_streamer(self, tokenizer, custom_handler):
|
|
|
90 |
streamer: any
|
91 |
max_tokens_limit: int
|
92 |
|
93 |
+
def __init__(self, llm_model_type, max_tokens_limit: int = 2048):
|
94 |
self.llm_model_type = llm_model_type
|
95 |
self.llm = None
|
96 |
self.streamer = TextIteratorStreamer("")
|
97 |
+
self.max_tokens_limit = max_tokens_limit
|
98 |
self.search_kwargs = {"k": 4}
|
99 |
|
100 |
def _init_streamer(self, tokenizer, custom_handler):
|
app_modules/llm_qa_chain.py
CHANGED
@@ -8,7 +8,7 @@ from app_modules.llm_inference import LLMInference
|
|
8 |
class QAChain(LLMInference):
|
9 |
vectorstore: VectorStore
|
10 |
|
11 |
-
def __init__(self, vectorstore, llm_loader
|
12 |
super().__init__(llm_loader)
|
13 |
self.vectorstore = vectorstore
|
14 |
|
|
|
8 |
class QAChain(LLMInference):
|
9 |
vectorstore: VectorStore
|
10 |
|
11 |
+
def __init__(self, vectorstore, llm_loader):
|
12 |
super().__init__(llm_loader)
|
13 |
self.vectorstore = vectorstore
|
14 |
|
app_modules/qa_chain.py
DELETED
@@ -1,631 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import time
|
4 |
-
import urllib
|
5 |
-
from queue import Queue
|
6 |
-
from threading import Thread
|
7 |
-
from typing import Any, Optional
|
8 |
-
|
9 |
-
import torch
|
10 |
-
from langchain.callbacks.base import BaseCallbackHandler
|
11 |
-
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
12 |
-
from langchain.callbacks.tracers import LangChainTracer
|
13 |
-
from langchain.chains import ConversationalRetrievalChain
|
14 |
-
from langchain.chat_models import ChatOpenAI
|
15 |
-
from langchain.llms import GPT4All, HuggingFacePipeline, LlamaCpp
|
16 |
-
from langchain.schema import LLMResult
|
17 |
-
from langchain.vectorstores import VectorStore
|
18 |
-
from langchain.vectorstores.base import VectorStore
|
19 |
-
from transformers import (
|
20 |
-
AutoConfig,
|
21 |
-
AutoModelForCausalLM,
|
22 |
-
AutoModelForSeq2SeqLM,
|
23 |
-
AutoTokenizer,
|
24 |
-
BitsAndBytesConfig,
|
25 |
-
StoppingCriteria,
|
26 |
-
StoppingCriteriaList,
|
27 |
-
T5Tokenizer,
|
28 |
-
TextStreamer,
|
29 |
-
pipeline,
|
30 |
-
)
|
31 |
-
|
32 |
-
from app_modules.instruct_pipeline import InstructionTextGenerationPipeline
|
33 |
-
from app_modules.utils import ensure_model_is_downloaded, remove_extra_spaces
|
34 |
-
|
35 |
-
|
36 |
-
class TextIteratorStreamer(TextStreamer, StreamingStdOutCallbackHandler):
|
37 |
-
def __init__(
|
38 |
-
self,
|
39 |
-
tokenizer: "AutoTokenizer",
|
40 |
-
skip_prompt: bool = False,
|
41 |
-
timeout: Optional[float] = None,
|
42 |
-
**decode_kwargs,
|
43 |
-
):
|
44 |
-
super().__init__(tokenizer, skip_prompt, **decode_kwargs)
|
45 |
-
self.text_queue = Queue()
|
46 |
-
self.stop_signal = None
|
47 |
-
self.timeout = timeout
|
48 |
-
|
49 |
-
def on_finalized_text(self, text: str, stream_end: bool = False):
|
50 |
-
super().on_finalized_text(text, stream_end=stream_end)
|
51 |
-
|
52 |
-
"""Put the new text in the queue. If the stream is ending, also put a stop signal in the queue."""
|
53 |
-
self.text_queue.put(text, timeout=self.timeout)
|
54 |
-
if stream_end:
|
55 |
-
print("\n")
|
56 |
-
self.text_queue.put("\n", timeout=self.timeout)
|
57 |
-
self.text_queue.put(self.stop_signal, timeout=self.timeout)
|
58 |
-
|
59 |
-
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
60 |
-
sys.stdout.write(token)
|
61 |
-
sys.stdout.flush()
|
62 |
-
self.text_queue.put(token, timeout=self.timeout)
|
63 |
-
|
64 |
-
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
65 |
-
print("\n")
|
66 |
-
self.text_queue.put("\n", timeout=self.timeout)
|
67 |
-
self.text_queue.put(self.stop_signal, timeout=self.timeout)
|
68 |
-
|
69 |
-
def __iter__(self):
|
70 |
-
return self
|
71 |
-
|
72 |
-
def __next__(self):
|
73 |
-
value = self.text_queue.get(timeout=self.timeout)
|
74 |
-
if value == self.stop_signal:
|
75 |
-
raise StopIteration()
|
76 |
-
else:
|
77 |
-
return value
|
78 |
-
|
79 |
-
def reset(self, q: Queue = None):
|
80 |
-
# print("resetting TextIteratorStreamer")
|
81 |
-
self.text_queue = q if q is not None else Queue()
|
82 |
-
|
83 |
-
def empty(self):
|
84 |
-
return self.text_queue.empty()
|
85 |
-
|
86 |
-
|
87 |
-
class QAChain:
|
88 |
-
llm_model_type: str
|
89 |
-
vectorstore: VectorStore
|
90 |
-
llm: any
|
91 |
-
streamer: any
|
92 |
-
|
93 |
-
def __init__(self, vectorstore, llm_model_type):
|
94 |
-
self.vectorstore = vectorstore
|
95 |
-
self.llm_model_type = llm_model_type
|
96 |
-
self.llm = None
|
97 |
-
self.streamer = TextIteratorStreamer("")
|
98 |
-
self.max_tokens_limit = 2048
|
99 |
-
self.search_kwargs = {"k": 4}
|
100 |
-
|
101 |
-
def _init_streamer(self, tokenizer, custom_handler):
|
102 |
-
self.streamer = (
|
103 |
-
TextIteratorStreamer(
|
104 |
-
tokenizer,
|
105 |
-
timeout=10.0,
|
106 |
-
skip_prompt=True,
|
107 |
-
skip_special_tokens=True,
|
108 |
-
)
|
109 |
-
if custom_handler is None
|
110 |
-
else TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
111 |
-
)
|
112 |
-
|
113 |
-
def init(
|
114 |
-
self,
|
115 |
-
custom_handler: Optional[BaseCallbackHandler] = None,
|
116 |
-
n_threds: int = 4,
|
117 |
-
hf_pipeline_device_type: str = None,
|
118 |
-
):
|
119 |
-
print("initializing LLM: " + self.llm_model_type)
|
120 |
-
|
121 |
-
if hf_pipeline_device_type is None:
|
122 |
-
hf_pipeline_device_type = "cpu"
|
123 |
-
|
124 |
-
using_cuda = hf_pipeline_device_type.startswith("cuda")
|
125 |
-
torch_dtype = torch.float16 if using_cuda else torch.float32
|
126 |
-
if os.environ.get("USING_TORCH_BFLOAT16") == "true":
|
127 |
-
torch_dtype = torch.bfloat16
|
128 |
-
load_quantized_model = os.environ.get("LOAD_QUANTIZED_MODEL")
|
129 |
-
|
130 |
-
print(f" hf_pipeline_device_type: {hf_pipeline_device_type}")
|
131 |
-
print(f" load_quantized_model: {load_quantized_model}")
|
132 |
-
print(f" torch_dtype: {torch_dtype}")
|
133 |
-
print(f" n_threds: {n_threds}")
|
134 |
-
|
135 |
-
double_quant_config = BitsAndBytesConfig(
|
136 |
-
load_in_4bit=load_quantized_model == "4bit",
|
137 |
-
bnb_4bit_use_double_quant=load_quantized_model == "4bit",
|
138 |
-
load_in_8bit=load_quantized_model == "8bit",
|
139 |
-
bnb_8bit_use_double_quant=load_quantized_model == "8bit",
|
140 |
-
)
|
141 |
-
|
142 |
-
callbacks = [self.streamer]
|
143 |
-
if custom_handler is not None:
|
144 |
-
callbacks.append(custom_handler)
|
145 |
-
|
146 |
-
if self.llm is None:
|
147 |
-
if self.llm_model_type == "openai":
|
148 |
-
MODEL_NAME = os.environ.get("OPENAI_MODEL_NAME") or "gpt-4"
|
149 |
-
print(f" using model: {MODEL_NAME}")
|
150 |
-
self.llm = ChatOpenAI(
|
151 |
-
model_name=MODEL_NAME,
|
152 |
-
streaming=True,
|
153 |
-
callbacks=callbacks,
|
154 |
-
verbose=True,
|
155 |
-
temperature=0,
|
156 |
-
)
|
157 |
-
elif self.llm_model_type.startswith("gpt4all"):
|
158 |
-
MODEL_PATH = ensure_model_is_downloaded(self.llm_model_type)
|
159 |
-
self.llm = GPT4All(
|
160 |
-
model=MODEL_PATH,
|
161 |
-
max_tokens=2048,
|
162 |
-
n_threads=n_threds,
|
163 |
-
backend="gptj" if self.llm_model_type == "gpt4all-j" else "llama",
|
164 |
-
callbacks=callbacks,
|
165 |
-
verbose=True,
|
166 |
-
use_mlock=True,
|
167 |
-
)
|
168 |
-
elif self.llm_model_type == "llamacpp":
|
169 |
-
MODEL_PATH = ensure_model_is_downloaded(self.llm_model_type)
|
170 |
-
self.llm = LlamaCpp(
|
171 |
-
model_path=MODEL_PATH,
|
172 |
-
n_ctx=8192,
|
173 |
-
n_threads=n_threds,
|
174 |
-
seed=0,
|
175 |
-
temperature=0,
|
176 |
-
max_tokens=2048,
|
177 |
-
callbacks=callbacks,
|
178 |
-
verbose=True,
|
179 |
-
use_mlock=True,
|
180 |
-
)
|
181 |
-
elif self.llm_model_type.startswith("huggingface"):
|
182 |
-
MODEL_NAME_OR_PATH = os.environ.get("HUGGINGFACE_MODEL_NAME_OR_PATH")
|
183 |
-
print(f" loading model: {MODEL_NAME_OR_PATH}")
|
184 |
-
|
185 |
-
hf_auth_token = os.environ.get("HUGGINGFACE_AUTH_TOKEN")
|
186 |
-
transformers_offline = os.environ.get("TRANSFORMERS_OFFLINE") == "1"
|
187 |
-
token = (
|
188 |
-
hf_auth_token
|
189 |
-
if hf_auth_token is not None
|
190 |
-
and len(hf_auth_token) > 0
|
191 |
-
and not transformers_offline
|
192 |
-
else None
|
193 |
-
)
|
194 |
-
print(f" HF auth token: {str(token)[-5:]}")
|
195 |
-
|
196 |
-
is_t5 = "t5" in MODEL_NAME_OR_PATH
|
197 |
-
temperature = (
|
198 |
-
0.01
|
199 |
-
if "gpt4all-j" in MODEL_NAME_OR_PATH
|
200 |
-
or "dolly" in MODEL_NAME_OR_PATH
|
201 |
-
else 0
|
202 |
-
)
|
203 |
-
use_fast = (
|
204 |
-
"stable" in MODEL_NAME_OR_PATH
|
205 |
-
or "RedPajama" in MODEL_NAME_OR_PATH
|
206 |
-
or "dolly" in MODEL_NAME_OR_PATH
|
207 |
-
)
|
208 |
-
padding_side = "left" # if "dolly" in MODEL_NAME_OR_PATH else None
|
209 |
-
|
210 |
-
config = AutoConfig.from_pretrained(
|
211 |
-
MODEL_NAME_OR_PATH,
|
212 |
-
trust_remote_code=True,
|
213 |
-
token=token,
|
214 |
-
)
|
215 |
-
# config.attn_config["attn_impl"] = "triton"
|
216 |
-
# config.max_seq_len = 4096
|
217 |
-
config.init_device = hf_pipeline_device_type
|
218 |
-
|
219 |
-
tokenizer = (
|
220 |
-
T5Tokenizer.from_pretrained(
|
221 |
-
MODEL_NAME_OR_PATH,
|
222 |
-
token=token,
|
223 |
-
)
|
224 |
-
if is_t5
|
225 |
-
else AutoTokenizer.from_pretrained(
|
226 |
-
MODEL_NAME_OR_PATH,
|
227 |
-
use_fast=use_fast,
|
228 |
-
trust_remote_code=True,
|
229 |
-
padding_side=padding_side,
|
230 |
-
token=token,
|
231 |
-
)
|
232 |
-
)
|
233 |
-
|
234 |
-
self._init_streamer(tokenizer, custom_handler)
|
235 |
-
|
236 |
-
task = "text2text-generation" if is_t5 else "text-generation"
|
237 |
-
|
238 |
-
return_full_text = True if "dolly" in MODEL_NAME_OR_PATH else None
|
239 |
-
|
240 |
-
repetition_penalty = (
|
241 |
-
1.15
|
242 |
-
if "falcon" in MODEL_NAME_OR_PATH
|
243 |
-
else (1.25 if "dolly" in MODEL_NAME_OR_PATH else 1.1)
|
244 |
-
)
|
245 |
-
|
246 |
-
if load_quantized_model is not None:
|
247 |
-
model = (
|
248 |
-
AutoModelForSeq2SeqLM.from_pretrained(
|
249 |
-
MODEL_NAME_OR_PATH,
|
250 |
-
config=config,
|
251 |
-
quantization_config=double_quant_config,
|
252 |
-
trust_remote_code=True,
|
253 |
-
token=token,
|
254 |
-
)
|
255 |
-
if is_t5
|
256 |
-
else AutoModelForCausalLM.from_pretrained(
|
257 |
-
MODEL_NAME_OR_PATH,
|
258 |
-
config=config,
|
259 |
-
quantization_config=double_quant_config,
|
260 |
-
trust_remote_code=True,
|
261 |
-
token=token,
|
262 |
-
)
|
263 |
-
)
|
264 |
-
|
265 |
-
print(f"Model memory footprint: {model.get_memory_footprint()}")
|
266 |
-
|
267 |
-
eos_token_id = -1
|
268 |
-
# starchat-beta uses a special <|end|> token with ID 49155 to denote ends of a turn
|
269 |
-
if "starchat" in MODEL_NAME_OR_PATH:
|
270 |
-
eos_token_id = 49155
|
271 |
-
pad_token_id = eos_token_id
|
272 |
-
|
273 |
-
pipe = (
|
274 |
-
InstructionTextGenerationPipeline(
|
275 |
-
task=task,
|
276 |
-
model=model,
|
277 |
-
tokenizer=tokenizer,
|
278 |
-
streamer=self.streamer,
|
279 |
-
max_new_tokens=2048,
|
280 |
-
temperature=temperature,
|
281 |
-
return_full_text=return_full_text, # langchain expects the full text
|
282 |
-
repetition_penalty=repetition_penalty,
|
283 |
-
)
|
284 |
-
if "dolly" in MODEL_NAME_OR_PATH
|
285 |
-
else (
|
286 |
-
pipeline(
|
287 |
-
task,
|
288 |
-
model=model,
|
289 |
-
tokenizer=tokenizer,
|
290 |
-
eos_token_id=eos_token_id,
|
291 |
-
pad_token_id=pad_token_id,
|
292 |
-
streamer=self.streamer,
|
293 |
-
return_full_text=return_full_text, # langchain expects the full text
|
294 |
-
device_map="auto",
|
295 |
-
trust_remote_code=True,
|
296 |
-
max_new_tokens=2048,
|
297 |
-
do_sample=True,
|
298 |
-
temperature=0.01,
|
299 |
-
top_p=0.95,
|
300 |
-
top_k=50,
|
301 |
-
repetition_penalty=repetition_penalty,
|
302 |
-
)
|
303 |
-
if eos_token_id != -1
|
304 |
-
else pipeline(
|
305 |
-
task,
|
306 |
-
model=model,
|
307 |
-
tokenizer=tokenizer,
|
308 |
-
streamer=self.streamer,
|
309 |
-
return_full_text=return_full_text, # langchain expects the full text
|
310 |
-
device_map="auto",
|
311 |
-
trust_remote_code=True,
|
312 |
-
max_new_tokens=2048,
|
313 |
-
# verbose=True,
|
314 |
-
temperature=temperature,
|
315 |
-
top_p=0.95,
|
316 |
-
top_k=0, # select from top 0 tokens (because zero, relies on top_p)
|
317 |
-
repetition_penalty=repetition_penalty,
|
318 |
-
)
|
319 |
-
)
|
320 |
-
)
|
321 |
-
elif "dolly" in MODEL_NAME_OR_PATH:
|
322 |
-
model = AutoModelForCausalLM.from_pretrained(
|
323 |
-
MODEL_NAME_OR_PATH,
|
324 |
-
device_map=hf_pipeline_device_type,
|
325 |
-
torch_dtype=torch_dtype,
|
326 |
-
)
|
327 |
-
|
328 |
-
pipe = InstructionTextGenerationPipeline(
|
329 |
-
task=task,
|
330 |
-
model=model,
|
331 |
-
tokenizer=tokenizer,
|
332 |
-
streamer=self.streamer,
|
333 |
-
max_new_tokens=2048,
|
334 |
-
temperature=temperature,
|
335 |
-
return_full_text=True,
|
336 |
-
repetition_penalty=repetition_penalty,
|
337 |
-
token=token,
|
338 |
-
)
|
339 |
-
else:
|
340 |
-
if os.environ.get("DISABLE_MODEL_PRELOADING") != "true":
|
341 |
-
use_auth_token = None
|
342 |
-
model = (
|
343 |
-
AutoModelForSeq2SeqLM.from_pretrained(
|
344 |
-
MODEL_NAME_OR_PATH,
|
345 |
-
config=config,
|
346 |
-
trust_remote_code=True,
|
347 |
-
token=token,
|
348 |
-
)
|
349 |
-
if is_t5
|
350 |
-
else AutoModelForCausalLM.from_pretrained(
|
351 |
-
MODEL_NAME_OR_PATH,
|
352 |
-
config=config,
|
353 |
-
trust_remote_code=True,
|
354 |
-
token=token,
|
355 |
-
)
|
356 |
-
)
|
357 |
-
print(f"Model memory footprint: {model.get_memory_footprint()}")
|
358 |
-
else:
|
359 |
-
use_auth_token = token
|
360 |
-
model = MODEL_NAME_OR_PATH
|
361 |
-
|
362 |
-
pipe = pipeline(
|
363 |
-
task,
|
364 |
-
model=model,
|
365 |
-
tokenizer=tokenizer,
|
366 |
-
streamer=self.streamer,
|
367 |
-
return_full_text=return_full_text, # langchain expects the full text
|
368 |
-
device=hf_pipeline_device_type,
|
369 |
-
torch_dtype=torch_dtype,
|
370 |
-
max_new_tokens=2048,
|
371 |
-
trust_remote_code=True,
|
372 |
-
temperature=temperature,
|
373 |
-
top_p=0.95,
|
374 |
-
top_k=0, # select from top 0 tokens (because zero, relies on top_p)
|
375 |
-
repetition_penalty=1.115,
|
376 |
-
token=use_auth_token,
|
377 |
-
)
|
378 |
-
|
379 |
-
self.llm = HuggingFacePipeline(pipeline=pipe, callbacks=callbacks)
|
380 |
-
elif self.llm_model_type == "mosaicml":
|
381 |
-
MODEL_NAME_OR_PATH = os.environ.get("MOSAICML_MODEL_NAME_OR_PATH")
|
382 |
-
print(f" loading model: {MODEL_NAME_OR_PATH}")
|
383 |
-
|
384 |
-
config = AutoConfig.from_pretrained(
|
385 |
-
MODEL_NAME_OR_PATH, trust_remote_code=True
|
386 |
-
)
|
387 |
-
# config.attn_config["attn_impl"] = "triton"
|
388 |
-
config.max_seq_len = 16384 if "30b" in MODEL_NAME_OR_PATH else 4096
|
389 |
-
config.init_device = hf_pipeline_device_type
|
390 |
-
|
391 |
-
model = (
|
392 |
-
AutoModelForCausalLM.from_pretrained(
|
393 |
-
MODEL_NAME_OR_PATH,
|
394 |
-
config=config,
|
395 |
-
quantization_config=double_quant_config,
|
396 |
-
trust_remote_code=True,
|
397 |
-
)
|
398 |
-
if load_quantized_model is not None
|
399 |
-
else AutoModelForCausalLM.from_pretrained(
|
400 |
-
MODEL_NAME_OR_PATH,
|
401 |
-
config=config,
|
402 |
-
torch_dtype=torch_dtype,
|
403 |
-
trust_remote_code=True,
|
404 |
-
)
|
405 |
-
)
|
406 |
-
|
407 |
-
print(f"Model loaded on {config.init_device}")
|
408 |
-
print(f"Model memory footprint: {model.get_memory_footprint()}")
|
409 |
-
|
410 |
-
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
411 |
-
self._init_streamer(tokenizer, custom_handler)
|
412 |
-
|
413 |
-
# mtp-7b is trained to add "<|endoftext|>" at the end of generations
|
414 |
-
stop_token_ids = tokenizer.convert_tokens_to_ids(["<|endoftext|>"])
|
415 |
-
|
416 |
-
# define custom stopping criteria object
|
417 |
-
class StopOnTokens(StoppingCriteria):
|
418 |
-
def __call__(
|
419 |
-
self,
|
420 |
-
input_ids: torch.LongTensor,
|
421 |
-
scores: torch.FloatTensor,
|
422 |
-
**kwargs,
|
423 |
-
) -> bool:
|
424 |
-
for stop_id in stop_token_ids:
|
425 |
-
if input_ids[0][-1] == stop_id:
|
426 |
-
return True
|
427 |
-
return False
|
428 |
-
|
429 |
-
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
430 |
-
|
431 |
-
max_new_tokens = 8192 if "30b" in MODEL_NAME_OR_PATH else 2048
|
432 |
-
self.max_tokens_limit = max_new_tokens
|
433 |
-
self.search_kwargs = (
|
434 |
-
{"k": 8} if "30b" in MODEL_NAME_OR_PATH else self.search_kwargs
|
435 |
-
)
|
436 |
-
repetition_penalty = 1.05 if "30b" in MODEL_NAME_OR_PATH else 1.02
|
437 |
-
|
438 |
-
pipe = (
|
439 |
-
pipeline(
|
440 |
-
model=model,
|
441 |
-
tokenizer=tokenizer,
|
442 |
-
streamer=self.streamer,
|
443 |
-
return_full_text=True, # langchain expects the full text
|
444 |
-
task="text-generation",
|
445 |
-
device_map="auto",
|
446 |
-
# we pass model parameters here too
|
447 |
-
stopping_criteria=stopping_criteria, # without this model will ramble
|
448 |
-
temperature=0, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
|
449 |
-
top_p=0.95, # select from top tokens whose probability add up to 15%
|
450 |
-
top_k=0, # select from top 0 tokens (because zero, relies on top_p)
|
451 |
-
max_new_tokens=max_new_tokens, # mex number of tokens to generate in the output
|
452 |
-
repetition_penalty=repetition_penalty, # without this output begins repeating
|
453 |
-
)
|
454 |
-
if load_quantized_model is not None
|
455 |
-
else pipeline(
|
456 |
-
model=model,
|
457 |
-
tokenizer=tokenizer,
|
458 |
-
streamer=self.streamer,
|
459 |
-
return_full_text=True, # langchain expects the full text
|
460 |
-
task="text-generation",
|
461 |
-
device=config.init_device,
|
462 |
-
# we pass model parameters here too
|
463 |
-
stopping_criteria=stopping_criteria, # without this model will ramble
|
464 |
-
temperature=0, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
|
465 |
-
top_p=0.95, # select from top tokens whose probability add up to 15%
|
466 |
-
top_k=0, # select from top 0 tokens (because zero, relies on top_p)
|
467 |
-
max_new_tokens=max_new_tokens, # mex number of tokens to generate in the output
|
468 |
-
repetition_penalty=repetition_penalty, # without this output begins repeating
|
469 |
-
)
|
470 |
-
)
|
471 |
-
self.llm = HuggingFacePipeline(pipeline=pipe, callbacks=callbacks)
|
472 |
-
elif self.llm_model_type == "stablelm":
|
473 |
-
MODEL_NAME_OR_PATH = os.environ.get("STABLELM_MODEL_NAME_OR_PATH")
|
474 |
-
print(f" loading model: {MODEL_NAME_OR_PATH}")
|
475 |
-
|
476 |
-
config = AutoConfig.from_pretrained(
|
477 |
-
MODEL_NAME_OR_PATH, trust_remote_code=True
|
478 |
-
)
|
479 |
-
# config.attn_config["attn_impl"] = "triton"
|
480 |
-
# config.max_seq_len = 4096
|
481 |
-
config.init_device = hf_pipeline_device_type
|
482 |
-
|
483 |
-
model = (
|
484 |
-
AutoModelForCausalLM.from_pretrained(
|
485 |
-
MODEL_NAME_OR_PATH,
|
486 |
-
config=config,
|
487 |
-
quantization_config=double_quant_config,
|
488 |
-
trust_remote_code=True,
|
489 |
-
)
|
490 |
-
if load_quantized_model is not None
|
491 |
-
else AutoModelForCausalLM.from_pretrained(
|
492 |
-
MODEL_NAME_OR_PATH,
|
493 |
-
config=config,
|
494 |
-
torch_dtype=torch_dtype,
|
495 |
-
trust_remote_code=True,
|
496 |
-
)
|
497 |
-
)
|
498 |
-
|
499 |
-
print(f"Model loaded on {config.init_device}")
|
500 |
-
print(f"Model memory footprint: {model.get_memory_footprint()}")
|
501 |
-
|
502 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH)
|
503 |
-
self._init_streamer(tokenizer, custom_handler)
|
504 |
-
|
505 |
-
class StopOnTokens(StoppingCriteria):
|
506 |
-
def __call__(
|
507 |
-
self,
|
508 |
-
input_ids: torch.LongTensor,
|
509 |
-
scores: torch.FloatTensor,
|
510 |
-
**kwargs,
|
511 |
-
) -> bool:
|
512 |
-
stop_ids = [50278, 50279, 50277, 1, 0]
|
513 |
-
for stop_id in stop_ids:
|
514 |
-
if input_ids[0][-1] == stop_id:
|
515 |
-
return True
|
516 |
-
return False
|
517 |
-
|
518 |
-
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
519 |
-
|
520 |
-
pipe = (
|
521 |
-
pipeline(
|
522 |
-
model=model,
|
523 |
-
tokenizer=tokenizer,
|
524 |
-
streamer=self.streamer,
|
525 |
-
return_full_text=True, # langchain expects the full text
|
526 |
-
task="text-generation",
|
527 |
-
device_map="auto",
|
528 |
-
# we pass model parameters here too
|
529 |
-
stopping_criteria=stopping_criteria, # without this model will ramble
|
530 |
-
temperature=0, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
|
531 |
-
top_p=0.95, # select from top tokens whose probability add up to 15%
|
532 |
-
top_k=0, # select from top 0 tokens (because zero, relies on top_p)
|
533 |
-
max_new_tokens=2048, # mex number of tokens to generate in the output
|
534 |
-
repetition_penalty=1.25, # without this output begins repeating
|
535 |
-
)
|
536 |
-
if load_quantized_model is not None
|
537 |
-
else pipeline(
|
538 |
-
model=model,
|
539 |
-
tokenizer=tokenizer,
|
540 |
-
streamer=self.streamer,
|
541 |
-
return_full_text=True, # langchain expects the full text
|
542 |
-
task="text-generation",
|
543 |
-
device=config.init_device,
|
544 |
-
# we pass model parameters here too
|
545 |
-
stopping_criteria=stopping_criteria, # without this model will ramble
|
546 |
-
temperature=0, # 'randomness' of outputs, 0.0 is the min and 1.0 the max
|
547 |
-
top_p=0.95, # select from top tokens whose probability add up to 15%
|
548 |
-
top_k=0, # select from top 0 tokens (because zero, relies on top_p)
|
549 |
-
max_new_tokens=2048, # mex number of tokens to generate in the output
|
550 |
-
repetition_penalty=1.05, # without this output begins repeating
|
551 |
-
)
|
552 |
-
)
|
553 |
-
self.llm = HuggingFacePipeline(pipeline=pipe, callbacks=callbacks)
|
554 |
-
|
555 |
-
print("initialization complete")
|
556 |
-
|
557 |
-
def get_chain(self, tracing: bool = False) -> ConversationalRetrievalChain:
|
558 |
-
if tracing:
|
559 |
-
tracer = LangChainTracer()
|
560 |
-
tracer.load_default_session()
|
561 |
-
|
562 |
-
if self.llm is None:
|
563 |
-
self.init()
|
564 |
-
|
565 |
-
qa = ConversationalRetrievalChain.from_llm(
|
566 |
-
self.llm,
|
567 |
-
self.vectorstore.as_retriever(search_kwargs=self.search_kwargs),
|
568 |
-
max_tokens_limit=self.max_tokens_limit,
|
569 |
-
return_source_documents=True,
|
570 |
-
)
|
571 |
-
|
572 |
-
return qa
|
573 |
-
|
574 |
-
def call(self, inputs, streaming_handler, q: Queue = None, tracing: bool = False):
|
575 |
-
print(inputs)
|
576 |
-
|
577 |
-
if self.streamer is not None and isinstance(
|
578 |
-
self.streamer, TextIteratorStreamer
|
579 |
-
):
|
580 |
-
self.streamer.reset(q)
|
581 |
-
|
582 |
-
qa = self.get_chain(tracing)
|
583 |
-
result = (
|
584 |
-
self._run_qa_chain(
|
585 |
-
qa,
|
586 |
-
inputs,
|
587 |
-
streaming_handler,
|
588 |
-
)
|
589 |
-
if streaming_handler is not None
|
590 |
-
else qa(inputs)
|
591 |
-
)
|
592 |
-
|
593 |
-
result["answer"] = remove_extra_spaces(result["answer"])
|
594 |
-
|
595 |
-
base_url = os.environ.get("PDF_FILE_BASE_URL")
|
596 |
-
if base_url is not None and len(base_url) > 0:
|
597 |
-
documents = result["source_documents"]
|
598 |
-
for doc in documents:
|
599 |
-
source = doc.metadata["source"]
|
600 |
-
title = source.split("/")[-1]
|
601 |
-
doc.metadata["url"] = f"{base_url}{urllib.parse.quote(title)}"
|
602 |
-
|
603 |
-
return result
|
604 |
-
|
605 |
-
def _run_qa_chain(self, qa, inputs, streaming_handler):
|
606 |
-
que = Queue()
|
607 |
-
|
608 |
-
t = Thread(
|
609 |
-
target=lambda qa, inputs, q, sh: q.put(qa(inputs, callbacks=[sh])),
|
610 |
-
args=(qa, inputs, que, streaming_handler),
|
611 |
-
)
|
612 |
-
t.start()
|
613 |
-
|
614 |
-
if self.streamer is not None and isinstance(
|
615 |
-
self.streamer, TextIteratorStreamer
|
616 |
-
):
|
617 |
-
count = 2 if len(inputs.get("chat_history")) > 0 else 1
|
618 |
-
|
619 |
-
while count > 0:
|
620 |
-
try:
|
621 |
-
for token in self.streamer:
|
622 |
-
streaming_handler.on_llm_new_token(token)
|
623 |
-
|
624 |
-
self.streamer.reset()
|
625 |
-
count -= 1
|
626 |
-
except Exception:
|
627 |
-
print("nothing generated yet - retry in 0.5s")
|
628 |
-
time.sleep(0.5)
|
629 |
-
|
630 |
-
t.join()
|
631 |
-
return que.get()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/YT_LLaMA2_7B_Chat_LangChain_Basics.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
test.py
CHANGED
@@ -8,11 +8,12 @@ from langchain.callbacks.base import BaseCallbackHandler
|
|
8 |
from langchain.schema import HumanMessage
|
9 |
|
10 |
from app_modules.init import app_init
|
|
|
11 |
from app_modules.llm_loader import LLMLoader
|
12 |
from app_modules.utils import get_device_types, print_llm_response
|
13 |
|
14 |
|
15 |
-
class TestLLMLoader
|
16 |
question = "What's the capital city of Malaysia?"
|
17 |
|
18 |
def run_test_case(self, llm_model_type, query):
|
@@ -50,6 +51,50 @@ class TestLLMLoader: # (unittest.TestCase):
|
|
50 |
self.run_test_case("huggingface", self.question)
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
class TestQAChain(unittest.TestCase):
|
54 |
qa_chain: any
|
55 |
question = "What's deep learning?"
|
@@ -57,16 +102,25 @@ class TestQAChain(unittest.TestCase):
|
|
57 |
def run_test_case(self, llm_model_type, query):
|
58 |
start = timer()
|
59 |
os.environ["LLM_MODEL_TYPE"] = llm_model_type
|
60 |
-
qa_chain = app_init()
|
61 |
end = timer()
|
62 |
print(f"App initialized in {end - start:.3f}s")
|
63 |
|
64 |
-
|
|
|
65 |
result = qa_chain.call_chain(inputs, None)
|
66 |
end2 = timer()
|
67 |
print(f"Inference completed in {end2 - end:.3f}s")
|
68 |
print_llm_response(result)
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
def test_openai(self):
|
71 |
self.run_test_case("openai", self.question)
|
72 |
|
|
|
8 |
from langchain.schema import HumanMessage
|
9 |
|
10 |
from app_modules.init import app_init
|
11 |
+
from app_modules.llm_chat_chain import ChatChain
|
12 |
from app_modules.llm_loader import LLMLoader
|
13 |
from app_modules.utils import get_device_types, print_llm_response
|
14 |
|
15 |
|
16 |
+
class TestLLMLoader(unittest.TestCase):
|
17 |
question = "What's the capital city of Malaysia?"
|
18 |
|
19 |
def run_test_case(self, llm_model_type, query):
|
|
|
51 |
self.run_test_case("huggingface", self.question)
|
52 |
|
53 |
|
54 |
+
class TestChatChain(unittest.TestCase):
|
55 |
+
question = "What's the capital city of Malaysia?"
|
56 |
+
|
57 |
+
def run_test_case(self, llm_model_type, query):
|
58 |
+
n_threds = int(os.environ.get("NUMBER_OF_CPU_CORES") or "4")
|
59 |
+
|
60 |
+
hf_embeddings_device_type, hf_pipeline_device_type = get_device_types()
|
61 |
+
print(f"hf_embeddings_device_type: {hf_embeddings_device_type}")
|
62 |
+
print(f"hf_pipeline_device_type: {hf_pipeline_device_type}")
|
63 |
+
|
64 |
+
llm_loader = LLMLoader(llm_model_type)
|
65 |
+
start = timer()
|
66 |
+
llm_loader.init(
|
67 |
+
n_threds=n_threds, hf_pipeline_device_type=hf_pipeline_device_type
|
68 |
+
)
|
69 |
+
chat = ChatChain(llm_loader)
|
70 |
+
end = timer()
|
71 |
+
print(f"Model loaded in {end - start:.3f}s")
|
72 |
+
|
73 |
+
inputs = {"question": query}
|
74 |
+
result = chat.call_chain(inputs, None)
|
75 |
+
end2 = timer()
|
76 |
+
print(f"Inference completed in {end2 - end:.3f}s")
|
77 |
+
print(result)
|
78 |
+
|
79 |
+
inputs = {"question": "how many people?"}
|
80 |
+
result = chat.call_chain(inputs, None)
|
81 |
+
end3 = timer()
|
82 |
+
print(f"Inference completed in {end3 - end2:.3f}s")
|
83 |
+
print(result)
|
84 |
+
|
85 |
+
def test_openai(self):
|
86 |
+
self.run_test_case("openai", self.question)
|
87 |
+
|
88 |
+
def test_llamacpp(self):
|
89 |
+
self.run_test_case("llamacpp", self.question)
|
90 |
+
|
91 |
+
def test_gpt4all_j(self):
|
92 |
+
self.run_test_case("gpt4all-j", self.question)
|
93 |
+
|
94 |
+
def test_huggingface(self):
|
95 |
+
self.run_test_case("huggingface", self.question)
|
96 |
+
|
97 |
+
|
98 |
class TestQAChain(unittest.TestCase):
|
99 |
qa_chain: any
|
100 |
question = "What's deep learning?"
|
|
|
102 |
def run_test_case(self, llm_model_type, query):
|
103 |
start = timer()
|
104 |
os.environ["LLM_MODEL_TYPE"] = llm_model_type
|
105 |
+
qa_chain = app_init()[1]
|
106 |
end = timer()
|
107 |
print(f"App initialized in {end - start:.3f}s")
|
108 |
|
109 |
+
chat_history = []
|
110 |
+
inputs = {"question": query, "chat_history": chat_history}
|
111 |
result = qa_chain.call_chain(inputs, None)
|
112 |
end2 = timer()
|
113 |
print(f"Inference completed in {end2 - end:.3f}s")
|
114 |
print_llm_response(result)
|
115 |
|
116 |
+
chat_history.append((query, result["answer"]))
|
117 |
+
|
118 |
+
inputs = {"question": "tell me more", "chat_history": chat_history}
|
119 |
+
result = qa_chain.call_chain(inputs, None)
|
120 |
+
end3 = timer()
|
121 |
+
print(f"Inference completed in {end3 - end2:.3f}s")
|
122 |
+
print(result)
|
123 |
+
|
124 |
def test_openai(self):
|
125 |
self.run_test_case("openai", self.question)
|
126 |
|