"""Main entrypoint for the app.""" import os from threading import Thread import time from queue import Queue from timeit import default_timer as timer import gradio as gr from anyio.from_thread import start_blocking_portal from app_modules.init import app_init from app_modules.llm_chat_chain import ChatChain from app_modules.utils import print_llm_response, remove_extra_spaces llm_loader, qa_chain = app_init() share_gradio_app = os.environ.get("SHARE_GRADIO_APP") == "true" using_openai = os.environ.get("LLM_MODEL_TYPE") == "openai" chat_with_orca_2 = ( not using_openai and os.environ.get("USE_ORCA_2_PROMPT_TEMPLATE") == "true" ) chat_history_enabled = ( not chat_with_orca_2 and os.environ.get("CHAT_HISTORY_ENABLED") == "true" ) model = ( "OpenAI GPT-3.5" if using_openai else os.environ.get("HUGGINGFACE_MODEL_NAME_OR_PATH") ) href = ( "https://platform.openai.com/docs/models/gpt-3-5" if using_openai else f"https://huggingface.co/{model}" ) if chat_with_orca_2: qa_chain = ChatChain(llm_loader) name = "Orca-2" else: name = "AI Books" title = f"Chat with {name}" examples = ( ["How to cook a fish?", "Who is the president of US now?"] if chat_with_orca_2 else [ "What's Machine Learning?", "What's Generative AI?", "What's Difference in Differences?", "What's Instrumental Variable?", ] ) description = f"""\

Currently Running: {model}

""" def task(question, chat_history, q, result): start = timer() inputs = {"question": question, "chat_history": chat_history} ret = qa_chain.call_chain(inputs, None, q) end = timer() print(f"Completed in {end - start:.3f}s") print_llm_response(ret) result.put(ret) def predict(message, history): print("predict:", message, history) chat_history = [] if chat_history_enabled: for element in history: item = (element[0] or "", element[1] or "") chat_history.append(item) if not chat_history: qa_chain.reset() q = Queue() result = Queue() t = Thread(target=task, args=(message, chat_history, q, result)) t.start() # Starting the generation in a separate thread. partial_message = "" count = 2 if len(chat_history) > 0 else 1 while count > 0: while q.empty(): print("nothing generated yet - retry in 0.5s") time.sleep(0.5) for next_token in llm_loader.streamer: partial_message += next_token or "" # partial_message = remove_extra_spaces(partial_message) yield partial_message if count == 2: partial_message += "\n\n" count -= 1 if not chat_with_orca_2: partial_message += "\n\nSources:\n" ret = result.get() titles = [] for doc in ret["source_documents"]: page = doc.metadata["page"] + 1 url = f"{doc.metadata['url']}#page={page}" file_name = doc.metadata["source"].split("/")[-1] title = f"{file_name} Page: {page}" if title not in titles: titles.append(title) partial_message += f"1. [{title}]({url})\n" yield partial_message # Setting up the Gradio chat interface. gr.ChatInterface( predict, title=title, description=description, examples=examples, ).launch( share=share_gradio_app ) # Launching the web interface.