Spaces:
Build error
Build error
File size: 13,046 Bytes
3f6b774 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
Qwen/Qwen2-7B-Instruct None False datasets/mac/mac.tsv results/mac-results.csv False 300 loading env vars from: /Users/inflaton/code/engd/papers/rapget-translation/.env workding dir: /Users/inflaton/code/engd/papers/rapget-translation Python 3.11.9 Name: torch Version: 2.4.0 Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration Home-page: https://pytorch.org/ Author: PyTorch Team Author-email: packages@pytorch.org License: BSD-3 Location: /Users/inflaton/anaconda3/envs/rapget/lib/python3.11/site-packages Requires: filelock, fsspec, jinja2, networkx, sympy, typing-extensions Required-by: accelerate, peft, torchaudio, torchvision, trl --- Name: transformers Version: 4.43.3 Summary: State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow Home-page: https://github.com/huggingface/transformers Author: The Hugging Face team (past and future) with the help of all our contributors (https://github.com/huggingface/transformers/graphs/contributors) Author-email: transformers@huggingface.co License: Apache 2.0 License Location: /Users/inflaton/anaconda3/envs/rapget/lib/python3.11/site-packages Requires: filelock, huggingface-hub, numpy, packaging, pyyaml, regex, requests, safetensors, tokenizers, tqdm Required-by: llamafactory, peft, trl CPU times: user 8.97 ms, sys: 13.7 ms, total: 22.7 ms Wall time: 1.91 s MPS is available loading existing data from: logs/openai-training-sample.jsonl messages 0 [{'role': 'system', 'content': 'Marv is a fact... 1 [{'role': 'system', 'content': 'Marv is a fact... 2 [{'role': 'system', 'content': 'Marv is a fact... FileObject(id='file-IokPHn4YWcniXL4wGnK4xVmn', bytes=3413094, created_at=1723269681, filename='openai-training.jsonl', object='file', purpose='fine-tune', status='processed', status_details=None) FineTuningJob(id='ftjob-TcCo4KtDd3Gp5cnOVky2Rxhh', created_at=1723270136, error=Error(code=None, message=None, param=None), fine_tuned_model=None, finished_at=None, hyperparameters=Hyperparameters(n_epochs=6, batch_size='auto', learning_rate_multiplier='auto'), model='gpt-4o-mini-2024-07-18', object='fine_tuning.job', organization_id='org-RXHVnD8cqPvqTPdXgZ5rQdl3', result_files=[], seed=1046194933, status='validating_files', trained_tokens=None, training_file='file-IokPHn4YWcniXL4wGnK4xVmn', validation_file=None, estimated_finish=None, integrations=[], user_provided_suffix=None) FineTuningJob(id='ftjob-TcCo4KtDd3Gp5cnOVky2Rxhh', created_at=1723270136, error=Error(code=None, message=None, param=None), fine_tuned_model='ft:gpt-4o-mini-2024-07-18:mastercard::9uaCEFTs', finished_at=1723272532, hyperparameters=Hyperparameters(n_epochs=6, batch_size=18, learning_rate_multiplier=1.8), model='gpt-4o-mini-2024-07-18', object='fine_tuning.job', organization_id='org-RXHVnD8cqPvqTPdXgZ5rQdl3', result_files=['file-aCppW0GWhhytwe4yKwymNUZl'], seed=1046194933, status='succeeded', trained_tokens=3640956, training_file='file-IokPHn4YWcniXL4wGnK4xVmn', validation_file=None, estimated_finish=None, integrations=[], user_provided_suffix=None) Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ufuULvy loading train/test data files DatasetDict({ train: Dataset({ features: ['chinese', 'english'], num_rows: 4528 }) test: Dataset({ features: ['chinese', 'english'], num_rows: 1133 }) }) -------------------------------------------------- chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。 -------------------------------------------------- english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches. *** Evaluating with num_shots: 0 100%|██████████| 1133/1133 [16:48<00:00, 1.12it/s] gpt-4o-mini/epochs-01 metrics: {'meteor': 0.3785370331806402, 'sacrebleu': {'score': 12.052844230027103, 'counts': [12818, 4623, 2153, 1081], 'totals': [29097, 27964, 26850, 25740], 'precisions': [44.05265147609719, 16.53196967529681, 8.018621973929237, 4.1996891996892], 'bp': 0.9631327655852462, 'sys_len': 29097, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.12052844230027103, 'precisions': [0.44052651476097193, 0.1653196967529681, 0.08018621973929237, 0.041996891996891994], 'brevity_penalty': 0.9631327655852462, 'length_ratio': 0.9637959589267969, 'translation_length': 29097, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.4244007719128182, 'rouge2': 0.17601540674784633, 'rougeL': 0.3693615986543504, 'rougeLsum': 0.3696442718692141}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]} Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ug0Gt3w loading train/test data files DatasetDict({ train: Dataset({ features: ['chinese', 'english'], num_rows: 4528 }) test: Dataset({ features: ['chinese', 'english'], num_rows: 1133 }) }) -------------------------------------------------- chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。 -------------------------------------------------- english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches. *** Evaluating with num_shots: 0 100%|██████████| 1133/1133 [17:56<00:00, 1.05it/s] gpt-4o-mini/epochs-02 metrics: {'meteor': 0.3785921332515917, 'sacrebleu': {'score': 12.033706874864837, 'counts': [12801, 4628, 2150, 1076], 'totals': [29076, 27943, 26830, 25722], 'precisions': [44.02600082542303, 16.562287513867517, 8.013417815877748, 4.183189487598165], 'bp': 0.9624112877781842, 'sys_len': 29076, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.12033706874864836, 'precisions': [0.4402600082542303, 0.16562287513867516, 0.08013417815877749, 0.04183189487598165], 'brevity_penalty': 0.9624112877781842, 'length_ratio': 0.9631003643590593, 'translation_length': 29076, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.4235104923203792, 'rouge2': 0.1758318317686482, 'rougeL': 0.36922125683186846, 'rougeLsum': 0.3693808162149962}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]} Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ug5PhpZ loading train/test data files DatasetDict({ train: Dataset({ features: ['chinese', 'english'], num_rows: 4528 }) test: Dataset({ features: ['chinese', 'english'], num_rows: 1133 }) }) -------------------------------------------------- chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。 -------------------------------------------------- english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches. *** Evaluating with num_shots: 0 100%|██████████| 1133/1133 [17:02<00:00, 1.11it/s] gpt-4o-mini/epochs-03 metrics: {'meteor': 0.37736228106121694, 'sacrebleu': {'score': 11.933111335430906, 'counts': [12779, 4601, 2124, 1061], 'totals': [29096, 27963, 26848, 25737], 'precisions': [43.920126477866376, 16.453885491542394, 7.911203814064362, 4.122469596301046], 'bp': 0.9630984208616785, 'sys_len': 29096, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.11933111335430906, 'precisions': [0.4392012647786637, 0.16453885491542394, 0.07911203814064362, 0.041224695963010455], 'brevity_penalty': 0.9630984208616785, 'length_ratio': 0.9637628353759523, 'translation_length': 29096, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.4235319934194407, 'rouge2': 0.17493309683581332, 'rougeL': 0.3685697120399035, 'rougeLsum': 0.3689298428303013}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]} Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ugPThQI loading train/test data files DatasetDict({ train: Dataset({ features: ['chinese', 'english'], num_rows: 4528 }) test: Dataset({ features: ['chinese', 'english'], num_rows: 1133 }) }) -------------------------------------------------- chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。 -------------------------------------------------- english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches. *** Evaluating with num_shots: 0 100%|██████████| 1133/1133 [18:35<00:00, 1.02it/s] gpt-4o-mini/epochs-04 metrics: {'meteor': 0.37818535038887346, 'sacrebleu': {'score': 11.933285526593995, 'counts': [12797, 4601, 2121, 1061], 'totals': [29110, 27977, 26861, 25749], 'precisions': [43.960838199931295, 16.445651785395146, 7.896206395889952, 4.120548370810517], 'bp': 0.9635791436286372, 'sys_len': 29110, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.11933285526593994, 'precisions': [0.43960838199931296, 0.16445651785395146, 0.07896206395889951, 0.041205483708105166], 'brevity_penalty': 0.9635791436286371, 'length_ratio': 0.9642265650877774, 'translation_length': 29110, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.42372801674771476, 'rouge2': 0.17487358435014705, 'rougeL': 0.36931437347367646, 'rougeLsum': 0.36934766241132383}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]} Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ugVLmcB loading train/test data files DatasetDict({ train: Dataset({ features: ['chinese', 'english'], num_rows: 4528 }) test: Dataset({ features: ['chinese', 'english'], num_rows: 1133 }) }) -------------------------------------------------- chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。 -------------------------------------------------- english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches. *** Evaluating with num_shots: 0 100%|██████████| 1133/1133 [15:47<00:00, 1.20it/s] gpt-4o-mini/epochs-05 metrics: {'meteor': 0.3790673551140706, 'sacrebleu': {'score': 11.955698498650582, 'counts': [12808, 4609, 2126, 1064], 'totals': [29209, 28076, 26959, 25846], 'precisions': [43.849498442260945, 16.416156147599374, 7.88604918580066, 4.116691170780778], 'bp': 0.9669721941455759, 'sys_len': 29209, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.11955698498650584, 'precisions': [0.4384949844226095, 0.16416156147599373, 0.0788604918580066, 0.041166911707807785], 'brevity_penalty': 0.9669721941455759, 'length_ratio': 0.9675057966213978, 'translation_length': 29209, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.42476082012412075, 'rouge2': 0.17559955520032905, 'rougeL': 0.3700113513462385, 'rougeLsum': 0.37012014201963733}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]} Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9uaCEFTs loading train/test data files DatasetDict({ train: Dataset({ features: ['chinese', 'english'], num_rows: 4528 }) test: Dataset({ features: ['chinese', 'english'], num_rows: 1133 }) }) -------------------------------------------------- chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。 -------------------------------------------------- english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches. *** Evaluating with num_shots: 0 100%|██████████| 1133/1133 [15:43<00:00, 1.20it/s] gpt-4o-mini/epochs-06 metrics: {'meteor': 0.3792226866395673, 'sacrebleu': {'score': 11.982811850915233, 'counts': [12810, 4617, 2137, 1066], 'totals': [29116, 27983, 26868, 25757], 'precisions': [43.996428080780326, 16.499303148340065, 7.95369956825964, 4.138680746981403], 'bp': 0.9637850995333245, 'sys_len': 29116, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.11982811850915229, 'precisions': [0.43996428080780325, 0.16499303148340064, 0.0795369956825964, 0.04138680746981403], 'brevity_penalty': 0.9637850995333245, 'length_ratio': 0.9644253063928453, 'translation_length': 29116, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.4251187202203103, 'rouge2': 0.17553224521896635, 'rougeL': 0.37003282393672954, 'rougeLsum': 0.370114181474168}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]} |