File size: 115,416 Bytes
3f6b774
1
2
{"cells":[{"cell_type":"code","execution_count":33,"metadata":{"executionInfo":{"elapsed":476,"status":"ok","timestamp":1720679526275,"user":{"displayName":"HUANG DONGHAO _","userId":"00977795705617022768"},"user_tz":-480},"id":"uWKRSV6eZsCn"},"outputs":[{"name":"stdout","output_type":"stream","text":["The autoreload extension is already loaded. To reload it, use:\n","  %reload_ext autoreload\n"]}],"source":["%load_ext autoreload\n","%autoreload 2"]},{"cell_type":"code","execution_count":34,"metadata":{"application/vnd.databricks.v1+cell":{"cellMetadata":{"byteLimit":2048000,"rowLimit":10000},"inputWidgets":{},"nuid":"6d394937-6c99-4a7c-9d32-7600a280032f","showTitle":false,"title":""},"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":5,"status":"ok","timestamp":1720679529345,"user":{"displayName":"HUANG DONGHAO _","userId":"00977795705617022768"},"user_tz":-480},"id":"G5pNu3zgZBrL","outputId":"160a554f-fb08-4aa0-bc00-0422fb7c1fac"},"outputs":[{"name":"stdout","output_type":"stream","text":["workding dir: /Users/inflaton/code/engd/papers/rapget-translation\n"]}],"source":["import os\n","import sys\n","from pathlib import Path\n","\n","# check if workding_dir is in local variables\n","if \"workding_dir\" not in locals():\n","    workding_dir = str(Path.cwd().parent)\n","\n","os.chdir(workding_dir)\n","sys.path.append(workding_dir)\n","print(\"workding dir:\", workding_dir)"]},{"cell_type":"code","execution_count":35,"metadata":{"application/vnd.databricks.v1+cell":{"cellMetadata":{"byteLimit":2048000,"rowLimit":10000},"inputWidgets":{},"nuid":"9f67ec60-2f24-411c-84eb-0dd664b44775","showTitle":false,"title":""},"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":3,"status":"ok","timestamp":1720679529345,"user":{"displayName":"HUANG DONGHAO _","userId":"00977795705617022768"},"user_tz":-480},"id":"hPCC-6m7ZBrM","outputId":"c7aa2c96-5e99-440a-c148-201d79465ff9"},"outputs":[{"name":"stdout","output_type":"stream","text":["loading env vars from: /Users/inflaton/code/engd/papers/rapget-translation/.env\n"]},{"data":{"text/plain":["True"]},"execution_count":35,"metadata":{},"output_type":"execute_result"}],"source":["from dotenv import find_dotenv, load_dotenv\n","\n","found_dotenv = find_dotenv(\".env\")\n","\n","if len(found_dotenv) == 0:\n","    found_dotenv = find_dotenv(\".env.example\")\n","print(f\"loading env vars from: {found_dotenv}\")\n","load_dotenv(found_dotenv, override=True)"]},{"cell_type":"code","execution_count":36,"metadata":{"application/vnd.databricks.v1+cell":{"cellMetadata":{"byteLimit":2048000,"rowLimit":10000},"inputWidgets":{},"nuid":"f1597656-8042-4878-9d3b-9ebfb8dd86dc","showTitle":false,"title":""},"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":3,"status":"ok","timestamp":1720679529345,"user":{"displayName":"HUANG DONGHAO _","userId":"00977795705617022768"},"user_tz":-480},"id":"1M3IraVtZBrM","outputId":"29ab35f6-2970-4ade-d85d-3174acf8cda0"},"outputs":[{"name":"stdout","output_type":"stream","text":["Qwen/Qwen2-7B-Instruct None False datasets/mac/mac.tsv results/mac-results.csv False 300\n"]}],"source":["import os\n","\n","model_name = os.getenv(\"MODEL_NAME\")\n","adapter_name_or_path = os.getenv(\"ADAPTER_NAME_OR_PATH\")\n","load_in_4bit = os.getenv(\"LOAD_IN_4BIT\") == \"true\"\n","data_path = os.getenv(\"DATA_PATH\")\n","results_path = os.getenv(\"RESULTS_PATH\")\n","use_english_datasets = os.getenv(\"USE_ENGLISH_DATASETS\") == \"true\"\n","max_new_tokens = int(os.getenv(\"MAX_NEW_TOKENS\", 2048))\n","\n","print(\n","    model_name,\n","    adapter_name_or_path,\n","    load_in_4bit,\n","    data_path,\n","    results_path,\n","    use_english_datasets,\n","    max_new_tokens,\n",")"]},{"cell_type":"code","execution_count":37,"metadata":{"application/vnd.databricks.v1+cell":{"cellMetadata":{"byteLimit":2048000,"rowLimit":10000},"inputWidgets":{},"nuid":"b2a43943-9324-4839-9a47-cfa72de2244b","showTitle":false,"title":""},"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":564,"status":"ok","timestamp":1720679529907,"user":{"displayName":"HUANG DONGHAO _","userId":"00977795705617022768"},"user_tz":-480},"id":"UgMvt6dIZBrM","outputId":"ce37581c-fd26-46c2-ad87-d933d99f68f7"},"outputs":[{"name":"stdout","output_type":"stream","text":["Python 3.11.9\n","Name: torch\n","Version: 2.4.0\n","Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration\n","Home-page: https://pytorch.org/\n","Author: PyTorch Team\n","Author-email: packages@pytorch.org\n","License: BSD-3\n","Location: /Users/inflaton/anaconda3/envs/rapget/lib/python3.11/site-packages\n","Requires: filelock, fsspec, jinja2, networkx, sympy, typing-extensions\n","Required-by: accelerate, peft, torchaudio, torchvision, trl\n","---\n","Name: transformers\n","Version: 4.43.3\n","Summary: State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow\n","Home-page: https://github.com/huggingface/transformers\n","Author: The Hugging Face team (past and future) with the help of all our contributors (https://github.com/huggingface/transformers/graphs/contributors)\n","Author-email: transformers@huggingface.co\n","License: Apache 2.0 License\n","Location: /Users/inflaton/anaconda3/envs/rapget/lib/python3.11/site-packages\n","Requires: filelock, huggingface-hub, numpy, packaging, pyyaml, regex, requests, safetensors, tokenizers, tqdm\n","Required-by: llamafactory, peft, trl\n","CPU times: user 8.97 ms, sys: 13.7 ms, total: 22.7 ms\n","Wall time: 1.91 s\n"]}],"source":["%%time\n","os.environ[\"TOKENIZERS_PARALLELISM\"] = \"true\"\n","\n","!python --version\n","!pip show torch transformers"]},{"cell_type":"code","execution_count":38,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":1685,"status":"ok","timestamp":1720679531591,"user":{"displayName":"HUANG DONGHAO _","userId":"00977795705617022768"},"user_tz":-480},"id":"ZuS_FsLyZBrN","outputId":"2cba0105-c505-4395-afbd-2f2fee6581d0"},"outputs":[{"name":"stdout","output_type":"stream","text":["MPS is available\n"]}],"source":["from llm_toolkit.llm_utils import *\n","from llm_toolkit.translation_utils import *\n","\n","device = check_gpu()"]},{"cell_type":"code","execution_count":39,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["loading existing data from: logs/openai-training-sample.jsonl\n"]},{"data":{"text/html":["<div>\n","<style scoped>\n","    .dataframe tbody tr th:only-of-type {\n","        vertical-align: middle;\n","    }\n","\n","    .dataframe tbody tr th {\n","        vertical-align: top;\n","    }\n","\n","    .dataframe thead th {\n","        text-align: right;\n","    }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n","  <thead>\n","    <tr style=\"text-align: right;\">\n","      <th></th>\n","      <th>messages</th>\n","    </tr>\n","  </thead>\n","  <tbody>\n","    <tr>\n","      <th>0</th>\n","      <td>[{'role': 'system', 'content': 'Marv is a fact...</td>\n","    </tr>\n","    <tr>\n","      <th>1</th>\n","      <td>[{'role': 'system', 'content': 'Marv is a fact...</td>\n","    </tr>\n","    <tr>\n","      <th>2</th>\n","      <td>[{'role': 'system', 'content': 'Marv is a fact...</td>\n","    </tr>\n","  </tbody>\n","</table>\n","</div>"],"text/plain":["                                            messages\n","0  [{'role': 'system', 'content': 'Marv is a fact...\n","1  [{'role': 'system', 'content': 'Marv is a fact...\n","2  [{'role': 'system', 'content': 'Marv is a fact..."]},"execution_count":39,"metadata":{},"output_type":"execute_result"}],"source":["df_openai = load_openai_training_data(\n","    data_path, openai_data_path=\"logs/openai-training-sample.jsonl\"\n",")\n","df_openai"]},{"cell_type":"code","execution_count":40,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["--------------------------------------------------\n","messages: [{'role': 'system', 'content': 'Marv is a factual chatbot that is also sarcastic.'}, {'role': 'user', 'content': \"What's the capital of France?\"}, {'role': 'assistant', 'content': \"Paris, as if everyone doesn't know that already.\"}]\n","--------------------------------------------------\n","messages: [{'role': 'system', 'content': 'Marv is a factual chatbot that is also sarcastic.'}, {'role': 'user', 'content': \"Who wrote 'Romeo and Juliet'?\"}, {'role': 'assistant', 'content': 'Oh, just some guy named William Shakespeare. Ever heard of him?'}]\n","--------------------------------------------------\n","messages: [{'role': 'system', 'content': 'Marv is a factual chatbot that is also sarcastic.'}, {'role': 'user', 'content': 'How far is the Moon from Earth?'}, {'role': 'assistant', 'content': 'Around 384,400 kilometers. Give or take a few, like that really matters.'}]\n"]}],"source":["print_row_details(df_openai, range(len(df_openai)))"]},{"cell_type":"code","execution_count":41,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["loading existing data from: datasets/mac/openai-training.jsonl\n","--------------------------------------------------\n","messages: [{'role': 'system', 'content': 'You are a helpful assistant that translates Chinese to English.'}, {'role': 'user', 'content': 'You will be given a Chinese sentence to translate. If it is an incomplete sentence, or if you are unsure about the meaning, simply copy the input text as your output. Do not output any additional sentence such as explanation or reasoning.\\n\\nChinese: 全仗着狐仙搭救。\\nEnglish:'}, {'role': 'assistant', 'content': 'Because I was protected by a fox fairy.'}]\n"]}],"source":["df_openai = load_openai_training_data(data_path)\n","print_row_details(df_openai)"]},{"cell_type":"code","execution_count":42,"metadata":{},"outputs":[{"data":{"text/plain":["FileObject(id='file-IokPHn4YWcniXL4wGnK4xVmn', bytes=3413094, created_at=1723269681, filename='openai-training.jsonl', object='file', purpose='fine-tune', status='processed', status_details=None)"]},"execution_count":42,"metadata":{},"output_type":"execute_result"}],"source":["from openai import OpenAI\n","\n","client = OpenAI()\n","\n","client.files.create(\n","    file=open(\"datasets/mac/openai-training.jsonl\", \"rb\"), purpose=\"fine-tune\"\n",")"]},{"cell_type":"code","execution_count":50,"metadata":{},"outputs":[{"data":{"text/plain":["FineTuningJob(id='ftjob-TcCo4KtDd3Gp5cnOVky2Rxhh', created_at=1723270136, error=Error(code=None, message=None, param=None), fine_tuned_model=None, finished_at=None, hyperparameters=Hyperparameters(n_epochs=6, batch_size='auto', learning_rate_multiplier='auto'), model='gpt-4o-mini-2024-07-18', object='fine_tuning.job', organization_id='org-RXHVnD8cqPvqTPdXgZ5rQdl3', result_files=[], seed=1046194933, status='validating_files', trained_tokens=None, training_file='file-IokPHn4YWcniXL4wGnK4xVmn', validation_file=None, estimated_finish=None, integrations=[], user_provided_suffix=None)"]},"execution_count":50,"metadata":{},"output_type":"execute_result"}],"source":["from openai import OpenAI\n","\n","client = OpenAI()\n","\n","client.fine_tuning.jobs.create(\n","    training_file=\"file-IokPHn4YWcniXL4wGnK4xVmn\",\n","    model=\"gpt-4o-mini-2024-07-18\",\n","    hyperparameters={\"n_epochs\": 6},\n",")"]},{"cell_type":"code","execution_count":52,"metadata":{},"outputs":[{"data":{"text/plain":["FineTuningJob(id='ftjob-TcCo4KtDd3Gp5cnOVky2Rxhh', created_at=1723270136, error=Error(code=None, message=None, param=None), fine_tuned_model='ft:gpt-4o-mini-2024-07-18:mastercard::9uaCEFTs', finished_at=1723272532, hyperparameters=Hyperparameters(n_epochs=6, batch_size=18, learning_rate_multiplier=1.8), model='gpt-4o-mini-2024-07-18', object='fine_tuning.job', organization_id='org-RXHVnD8cqPvqTPdXgZ5rQdl3', result_files=['file-aCppW0GWhhytwe4yKwymNUZl'], seed=1046194933, status='succeeded', trained_tokens=3640956, training_file='file-IokPHn4YWcniXL4wGnK4xVmn', validation_file=None, estimated_finish=None, integrations=[], user_provided_suffix=None)"]},"execution_count":52,"metadata":{},"output_type":"execute_result"}],"source":["from openai import OpenAI\n","\n","client = OpenAI()\n","\n","client.fine_tuning.jobs.retrieve(\"ftjob-TcCo4KtDd3Gp5cnOVky2Rxhh\")"]},{"cell_type":"code","execution_count":56,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["loading /Users/inflaton/code/engd/papers/rapget-translation/llm_toolkit/translation_utils.py\n"]},{"name":"stderr","output_type":"stream","text":["[nltk_data] Downloading package wordnet to\n","[nltk_data]     /Users/inflaton/nltk_data...\n","[nltk_data]   Package wordnet is already up-to-date!\n","[nltk_data] Downloading package punkt to /Users/inflaton/nltk_data...\n","[nltk_data]   Package punkt is already up-to-date!\n","[nltk_data] Downloading package omw-1.4 to\n","[nltk_data]     /Users/inflaton/nltk_data...\n","[nltk_data]   Package omw-1.4 is already up-to-date!\n"]},{"name":"stdout","output_type":"stream","text":["loading train/test data files\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"1a87da44759e427f8aeba2beb4fad0ec","version_major":2,"version_minor":0},"text/plain":["Map:   0%|          | 0/4528 [00:00<?, ? examples/s]"]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"fff4afca226843d89ba56ec8c0d305f7","version_major":2,"version_minor":0},"text/plain":["Map:   0%|          | 0/1133 [00:00<?, ? examples/s]"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["DatasetDict({\n","    train: Dataset({\n","        features: ['chinese', 'english', 'text', 'prompt'],\n","        num_rows: 4528\n","    })\n","    test: Dataset({\n","        features: ['chinese', 'english', 'text', 'prompt'],\n","        num_rows: 1133\n","    })\n","})\n","--------------------------------------------------\n","chinese: 然后他们到一间为游客开的通宵酒吧中去坐了两个多小时,沙瑞山一杯接着一杯地灌啤酒,变得更加健谈,而汪淼却早已心神不定,脑子里不断地浮现出那条绿色直线。\n","--------------------------------------------------\n","english: Then they went to an all-night bar for tourists and sat for two hours. As Sha finished one beer after another, his tongue loosened even more. But Wang became anxious, and his mind kept returning to that green line on the terminal in Sha's office.\n","--------------------------------------------------\n","text: [{'content': 'You are a helpful assistant that translates Chinese to English.', 'role': 'system'}\n"," {'content': 'You will be given a Chinese sentence to translate. If it is an incomplete sentence, or if you are unsure about the meaning, simply copy the input text as your output. Do not output any additional sentence such as explanation or reasoning.\\n\\nChinese: 然后他们到一间为游客开的通宵酒吧中去坐了两个多小时,沙瑞山一杯接着一杯地灌啤酒,变得更加健谈,而汪淼却早已心神不定,脑子里不断地浮现出那条绿色直线。\\nEnglish:', 'role': 'user'}\n"," {'content': \"Then they went to an all-night bar for tourists and sat for two hours. As Sha finished one beer after another, his tongue loosened even more. But Wang became anxious, and his mind kept returning to that green line on the terminal in Sha's office.\", 'role': 'assistant'}]\n","--------------------------------------------------\n","prompt: [{'content': 'You are a helpful assistant that translates Chinese to English.', 'role': 'system'}\n"," {'content': 'You will be given a Chinese sentence to translate. If it is an incomplete sentence, or if you are unsure about the meaning, simply copy the input text as your output. Do not output any additional sentence such as explanation or reasoning.\\n\\nChinese: 然后他们到一间为游客开的通宵酒吧中去坐了两个多小时,沙瑞山一杯接着一杯地灌啤酒,变得更加健谈,而汪淼却早已心神不定,脑子里不断地浮现出那条绿色直线。\\nEnglish:', 'role': 'user'}]\n"]}],"source":["datasets = load_translation_dataset(data_path, for_openai=True)\n","df_test = datasets[\"test\"].to_pandas()\n","print_row_details(df_test, [100])"]},{"cell_type":"code","execution_count":57,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["ChatCompletionMessage(content=\"After that, they sat for more than two hours in an all-night bar open to hotel guests. Sha drank one cup of beer after another, becoming even more talkative. On the other hand, Wang's mind was no longer there. The green line floated constantly in his mind.\", role='assistant', function_call=None, tool_calls=None, refusal=None)\n"]}],"source":["from openai import OpenAI\n","\n","client = OpenAI()\n","\n","completion = client.chat.completions.create(\n","    model=\"ft:gpt-4o-mini-2024-07-18:mastercard::9uaCEFTs\",\n","    messages=df_test.iloc[100].prompt,\n",")\n","print(completion.choices[0].message)"]},{"cell_type":"code","execution_count":60,"metadata":{},"outputs":[{"ename":"RateLimitError","evalue":"Error code: 429 - {'error': {'message': \"This fine-tune request has been rate-limited. Your organization has reached the maximum of 3 active requests (2 running, 1 pending) for the model 'gpt-4o-mini-2024-07-18'.\", 'type': 'invalid_request_error', 'param': None, 'code': 'rate_limit_exceeded'}}","output_type":"error","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mRateLimitError\u001b[0m                            Traceback (most recent call last)","Cell \u001b[0;32mIn[60], line 7\u001b[0m\n\u001b[1;32m      5\u001b[0m jobs \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m      6\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m epoch \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m6\u001b[39m):\n\u001b[0;32m----> 7\u001b[0m     job \u001b[38;5;241m=\u001b[39m \u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfine_tuning\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mjobs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m      8\u001b[0m \u001b[43m        \u001b[49m\u001b[43mtraining_file\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfile-IokPHn4YWcniXL4wGnK4xVmn\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m      9\u001b[0m \u001b[43m        \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgpt-4o-mini-2024-07-18\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m     10\u001b[0m \u001b[43m        \u001b[49m\u001b[43mseed\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1046194933\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m     11\u001b[0m \u001b[43m        \u001b[49m\u001b[43mhyperparameters\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m{\u001b[49m\n\u001b[1;32m     12\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mn_epochs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mepoch\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     13\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mbatch_size\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m18\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m     14\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlearning_rate_multiplier\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1.8\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m     15\u001b[0m \u001b[43m        \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     16\u001b[0m \u001b[43m        \u001b[49m\u001b[43mintegrations\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\n\u001b[1;32m     17\u001b[0m \u001b[43m            \u001b[49m\u001b[43m{\u001b[49m\n\u001b[1;32m     18\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtype\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mwandb\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m     19\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mwandb\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43m{\u001b[49m\n\u001b[1;32m     20\u001b[0m \u001b[43m                    \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mproject\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mOpenAI\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m     21\u001b[0m \u001b[43m                    \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mname\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgpt-4o-mini-2024-07-18-\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mepoch\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m     22\u001b[0m \u001b[43m                \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     23\u001b[0m \u001b[43m            \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     24\u001b[0m \u001b[43m        \u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m     25\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     26\u001b[0m     jobs\u001b[38;5;241m.\u001b[39mappend(job)\n\u001b[1;32m     28\u001b[0m jobs\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/openai/resources/fine_tuning/jobs/jobs.py:133\u001b[0m, in \u001b[0;36mJobs.create\u001b[0;34m(self, model, training_file, hyperparameters, integrations, seed, suffix, validation_file, extra_headers, extra_query, extra_body, timeout)\u001b[0m\n\u001b[1;32m     52\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate\u001b[39m(\n\u001b[1;32m     53\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m     54\u001b[0m     \u001b[38;5;241m*\u001b[39m,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     67\u001b[0m     timeout: \u001b[38;5;28mfloat\u001b[39m \u001b[38;5;241m|\u001b[39m httpx\u001b[38;5;241m.\u001b[39mTimeout \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m|\u001b[39m NotGiven \u001b[38;5;241m=\u001b[39m NOT_GIVEN,\n\u001b[1;32m     68\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m FineTuningJob:\n\u001b[1;32m     69\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m     70\u001b[0m \u001b[38;5;124;03m    Creates a fine-tuning job which begins the process of creating a new model from\u001b[39;00m\n\u001b[1;32m     71\u001b[0m \u001b[38;5;124;03m    a given dataset.\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    131\u001b[0m \u001b[38;5;124;03m      timeout: Override the client-level default timeout for this request, in seconds\u001b[39;00m\n\u001b[1;32m    132\u001b[0m \u001b[38;5;124;03m    \"\"\"\u001b[39;00m\n\u001b[0;32m--> 133\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_post\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    134\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/fine_tuning/jobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m    135\u001b[0m \u001b[43m        \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaybe_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    136\u001b[0m \u001b[43m            \u001b[49m\u001b[43m{\u001b[49m\n\u001b[1;32m    137\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodel\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    138\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtraining_file\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtraining_file\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    139\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mhyperparameters\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mhyperparameters\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    140\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mintegrations\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mintegrations\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    141\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mseed\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mseed\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    142\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msuffix\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43msuffix\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    143\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mvalidation_file\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidation_file\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    144\u001b[0m \u001b[43m            \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    145\u001b[0m \u001b[43m            \u001b[49m\u001b[43mjob_create_params\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mJobCreateParams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    146\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    147\u001b[0m \u001b[43m        \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmake_request_options\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    148\u001b[0m \u001b[43m            \u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_headers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_query\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_query\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_body\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_body\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\n\u001b[1;32m    149\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    150\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mFineTuningJob\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    151\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/openai/_base_client.py:1266\u001b[0m, in \u001b[0;36mSyncAPIClient.post\u001b[0;34m(self, path, cast_to, body, options, files, stream, stream_cls)\u001b[0m\n\u001b[1;32m   1252\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpost\u001b[39m(\n\u001b[1;32m   1253\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m   1254\u001b[0m     path: \u001b[38;5;28mstr\u001b[39m,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   1261\u001b[0m     stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m   1262\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[1;32m   1263\u001b[0m     opts \u001b[38;5;241m=\u001b[39m FinalRequestOptions\u001b[38;5;241m.\u001b[39mconstruct(\n\u001b[1;32m   1264\u001b[0m         method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpost\u001b[39m\u001b[38;5;124m\"\u001b[39m, url\u001b[38;5;241m=\u001b[39mpath, json_data\u001b[38;5;241m=\u001b[39mbody, files\u001b[38;5;241m=\u001b[39mto_httpx_files(files), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39moptions\n\u001b[1;32m   1265\u001b[0m     )\n\u001b[0;32m-> 1266\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m cast(ResponseT, \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m)\u001b[49m)\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/openai/_base_client.py:942\u001b[0m, in \u001b[0;36mSyncAPIClient.request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m    933\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrequest\u001b[39m(\n\u001b[1;32m    934\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m    935\u001b[0m     cast_to: Type[ResponseT],\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    940\u001b[0m     stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m    941\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[0;32m--> 942\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    943\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    944\u001b[0m \u001b[43m        \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    945\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    946\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    947\u001b[0m \u001b[43m        \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    948\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/openai/_base_client.py:1031\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m   1029\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m retries \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_retry(err\u001b[38;5;241m.\u001b[39mresponse):\n\u001b[1;32m   1030\u001b[0m     err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mclose()\n\u001b[0;32m-> 1031\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_retry_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1032\u001b[0m \u001b[43m        \u001b[49m\u001b[43minput_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1033\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1034\u001b[0m \u001b[43m        \u001b[49m\u001b[43mretries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1035\u001b[0m \u001b[43m        \u001b[49m\u001b[43merr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1036\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1037\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1038\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1040\u001b[0m \u001b[38;5;66;03m# If the response is streamed then we need to explicitly read the response\u001b[39;00m\n\u001b[1;32m   1041\u001b[0m \u001b[38;5;66;03m# to completion before attempting to access the response text.\u001b[39;00m\n\u001b[1;32m   1042\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mis_closed:\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/openai/_base_client.py:1079\u001b[0m, in \u001b[0;36mSyncAPIClient._retry_request\u001b[0;34m(self, options, cast_to, remaining_retries, response_headers, stream, stream_cls)\u001b[0m\n\u001b[1;32m   1075\u001b[0m \u001b[38;5;66;03m# In a synchronous context we are blocking the entire thread. Up to the library user to run the client in a\u001b[39;00m\n\u001b[1;32m   1076\u001b[0m \u001b[38;5;66;03m# different thread if necessary.\u001b[39;00m\n\u001b[1;32m   1077\u001b[0m time\u001b[38;5;241m.\u001b[39msleep(timeout)\n\u001b[0;32m-> 1079\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1080\u001b[0m \u001b[43m    \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1081\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1082\u001b[0m \u001b[43m    \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1083\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1084\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1085\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/openai/_base_client.py:1031\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m   1029\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m retries \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_retry(err\u001b[38;5;241m.\u001b[39mresponse):\n\u001b[1;32m   1030\u001b[0m     err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mclose()\n\u001b[0;32m-> 1031\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_retry_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1032\u001b[0m \u001b[43m        \u001b[49m\u001b[43minput_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1033\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1034\u001b[0m \u001b[43m        \u001b[49m\u001b[43mretries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1035\u001b[0m \u001b[43m        \u001b[49m\u001b[43merr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1036\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1037\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1038\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1040\u001b[0m \u001b[38;5;66;03m# If the response is streamed then we need to explicitly read the response\u001b[39;00m\n\u001b[1;32m   1041\u001b[0m \u001b[38;5;66;03m# to completion before attempting to access the response text.\u001b[39;00m\n\u001b[1;32m   1042\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mis_closed:\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/openai/_base_client.py:1079\u001b[0m, in \u001b[0;36mSyncAPIClient._retry_request\u001b[0;34m(self, options, cast_to, remaining_retries, response_headers, stream, stream_cls)\u001b[0m\n\u001b[1;32m   1075\u001b[0m \u001b[38;5;66;03m# In a synchronous context we are blocking the entire thread. Up to the library user to run the client in a\u001b[39;00m\n\u001b[1;32m   1076\u001b[0m \u001b[38;5;66;03m# different thread if necessary.\u001b[39;00m\n\u001b[1;32m   1077\u001b[0m time\u001b[38;5;241m.\u001b[39msleep(timeout)\n\u001b[0;32m-> 1079\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1080\u001b[0m \u001b[43m    \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1081\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1082\u001b[0m \u001b[43m    \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1083\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1084\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1085\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/openai/_base_client.py:1046\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m   1043\u001b[0m         err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mread()\n\u001b[1;32m   1045\u001b[0m     log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRe-raising status error\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 1046\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_status_error_from_response(err\u001b[38;5;241m.\u001b[39mresponse) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m   1048\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_process_response(\n\u001b[1;32m   1049\u001b[0m     cast_to\u001b[38;5;241m=\u001b[39mcast_to,\n\u001b[1;32m   1050\u001b[0m     options\u001b[38;5;241m=\u001b[39moptions,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   1053\u001b[0m     stream_cls\u001b[38;5;241m=\u001b[39mstream_cls,\n\u001b[1;32m   1054\u001b[0m )\n","\u001b[0;31mRateLimitError\u001b[0m: Error code: 429 - {'error': {'message': \"This fine-tune request has been rate-limited. Your organization has reached the maximum of 3 active requests (2 running, 1 pending) for the model 'gpt-4o-mini-2024-07-18'.\", 'type': 'invalid_request_error', 'param': None, 'code': 'rate_limit_exceeded'}}"]}],"source":["from openai import OpenAI\n","\n","client = OpenAI()\n","\n","jobs = []\n","for epoch in range(1, 6):\n","    job = client.fine_tuning.jobs.create(\n","        training_file=\"file-IokPHn4YWcniXL4wGnK4xVmn\",\n","        model=\"gpt-4o-mini-2024-07-18\",\n","        seed=1046194933,\n","        hyperparameters={\n","            \"n_epochs\": epoch,\n","            \"batch_size\": 18,\n","            \"learning_rate_multiplier\": 1.8,\n","        },\n","        integrations=[\n","            {\n","                \"type\": \"wandb\",\n","                \"wandb\": {\n","                    \"project\": \"OpenAI\",\n","                    \"name\": f\"gpt-4o-mini-2024-07-18-{epoch}\",\n","                },\n","            },\n","        ],\n","    )\n","    jobs.append(job)\n","\n","jobs"]},{"cell_type":"code","execution_count":61,"metadata":{},"outputs":[{"data":{"text/plain":["[FineTuningJob(id='ftjob-LtXA4cTshuV3CVogO2jmRkMb', created_at=1723294897, error=Error(code=None, message=None, param=None), fine_tuned_model=None, finished_at=None, hyperparameters=Hyperparameters(n_epochs=4, batch_size=18, learning_rate_multiplier=1.8), model='gpt-4o-mini-2024-07-18', object='fine_tuning.job', organization_id='org-RXHVnD8cqPvqTPdXgZ5rQdl3', result_files=[], seed=1046194933, status='validating_files', trained_tokens=None, training_file='file-IokPHn4YWcniXL4wGnK4xVmn', validation_file=None, estimated_finish=None, integrations=[FineTuningJobWandbIntegrationObject(type='wandb', wandb=FineTuningJobWandbIntegration(project='OpenAI', entity=None, name=None, tags=None, run_id='ftjob-LtXA4cTshuV3CVogO2jmRkMb'))], user_provided_suffix=None),\n"," FineTuningJob(id='ftjob-ryBXC4G96hIWQ0M2csfwx42J', created_at=1723294900, error=Error(code=None, message=None, param=None), fine_tuned_model=None, finished_at=None, hyperparameters=Hyperparameters(n_epochs=5, batch_size=18, learning_rate_multiplier=1.8), model='gpt-4o-mini-2024-07-18', object='fine_tuning.job', organization_id='org-RXHVnD8cqPvqTPdXgZ5rQdl3', result_files=[], seed=1046194933, status='validating_files', trained_tokens=None, training_file='file-IokPHn4YWcniXL4wGnK4xVmn', validation_file=None, estimated_finish=None, integrations=[FineTuningJobWandbIntegrationObject(type='wandb', wandb=FineTuningJobWandbIntegration(project='OpenAI', entity=None, name=None, tags=None, run_id='ftjob-ryBXC4G96hIWQ0M2csfwx42J'))], user_provided_suffix=None)]"]},"execution_count":61,"metadata":{},"output_type":"execute_result"}],"source":["from openai import OpenAI\n","\n","client = OpenAI()\n","\n","jobs = []\n","for epoch in range(4, 6):\n","    job = client.fine_tuning.jobs.create(\n","        training_file=\"file-IokPHn4YWcniXL4wGnK4xVmn\",\n","        model=\"gpt-4o-mini-2024-07-18\",\n","        seed=1046194933,\n","        hyperparameters={\n","            \"n_epochs\": epoch,\n","            \"batch_size\": 18,\n","            \"learning_rate_multiplier\": 1.8,\n","        },\n","        integrations=[\n","            {\n","                \"type\": \"wandb\",\n","                \"wandb\": {\n","                    \"project\": \"OpenAI\",\n","                    \"name\": f\"gpt-4o-mini-2024-07-18-{epoch}\",\n","                },\n","            },\n","        ],\n","    )\n","    jobs.append(job)\n","\n","jobs"]},{"cell_type":"code","execution_count":67,"metadata":{},"outputs":[],"source":["fine_tuned_models = [\n","    \"ft:gpt-4o-mini-2024-07-18:mastercard::9ufuULvy\",\n","    \"ft:gpt-4o-mini-2024-07-18:mastercard::9ug0Gt3w\",\n","    \"ft:gpt-4o-mini-2024-07-18:mastercard::9ug5PhpZ\",\n","    \"ft:gpt-4o-mini-2024-07-18:mastercard::9ugPThQI\",\n","    \"ft:gpt-4o-mini-2024-07-18:mastercard::9ugVLmcB\",\n","    \"ft:gpt-4o-mini-2024-07-18:mastercard::9uaCEFTs\",\n","]"]},{"cell_type":"code","execution_count":68,"metadata":{},"outputs":[],"source":["from llm_toolkit.eval_openai import evaluate_model_with_num_shots"]},{"cell_type":"code","execution_count":69,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ufuULvy\n","loading train/test data files\n","DatasetDict({\n","    train: Dataset({\n","        features: ['chinese', 'english'],\n","        num_rows: 4528\n","    })\n","    test: Dataset({\n","        features: ['chinese', 'english'],\n","        num_rows: 1133\n","    })\n","})\n","--------------------------------------------------\n","chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。\n","--------------------------------------------------\n","english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches.\n","*** Evaluating with num_shots: 0\n"]},{"name":"stderr","output_type":"stream","text":["100%|██████████| 1133/1133 [16:48<00:00,  1.12it/s]\n"]},{"name":"stdout","output_type":"stream","text":["gpt-4o-mini/epochs-01 metrics: {'meteor': 0.3785370331806402, 'sacrebleu': {'score': 12.052844230027103, 'counts': [12818, 4623, 2153, 1081], 'totals': [29097, 27964, 26850, 25740], 'precisions': [44.05265147609719, 16.53196967529681, 8.018621973929237, 4.1996891996892], 'bp': 0.9631327655852462, 'sys_len': 29097, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.12052844230027103, 'precisions': [0.44052651476097193, 0.1653196967529681, 0.08018621973929237, 0.041996891996891994], 'brevity_penalty': 0.9631327655852462, 'length_ratio': 0.9637959589267969, 'translation_length': 29097, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.4244007719128182, 'rouge2': 0.17601540674784633, 'rougeL': 0.3693615986543504, 'rougeLsum': 0.3696442718692141}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]}\n","Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ug0Gt3w\n","loading train/test data files\n","DatasetDict({\n","    train: Dataset({\n","        features: ['chinese', 'english'],\n","        num_rows: 4528\n","    })\n","    test: Dataset({\n","        features: ['chinese', 'english'],\n","        num_rows: 1133\n","    })\n","})\n","--------------------------------------------------\n","chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。\n","--------------------------------------------------\n","english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches.\n","*** Evaluating with num_shots: 0\n"]},{"name":"stderr","output_type":"stream","text":["100%|██████████| 1133/1133 [17:56<00:00,  1.05it/s]\n"]},{"name":"stdout","output_type":"stream","text":["gpt-4o-mini/epochs-02 metrics: {'meteor': 0.3785921332515917, 'sacrebleu': {'score': 12.033706874864837, 'counts': [12801, 4628, 2150, 1076], 'totals': [29076, 27943, 26830, 25722], 'precisions': [44.02600082542303, 16.562287513867517, 8.013417815877748, 4.183189487598165], 'bp': 0.9624112877781842, 'sys_len': 29076, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.12033706874864836, 'precisions': [0.4402600082542303, 0.16562287513867516, 0.08013417815877749, 0.04183189487598165], 'brevity_penalty': 0.9624112877781842, 'length_ratio': 0.9631003643590593, 'translation_length': 29076, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.4235104923203792, 'rouge2': 0.1758318317686482, 'rougeL': 0.36922125683186846, 'rougeLsum': 0.3693808162149962}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]}\n","Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ug5PhpZ\n","loading train/test data files\n","DatasetDict({\n","    train: Dataset({\n","        features: ['chinese', 'english'],\n","        num_rows: 4528\n","    })\n","    test: Dataset({\n","        features: ['chinese', 'english'],\n","        num_rows: 1133\n","    })\n","})\n","--------------------------------------------------\n","chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。\n","--------------------------------------------------\n","english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches.\n","*** Evaluating with num_shots: 0\n"]},{"name":"stderr","output_type":"stream","text":["100%|██████████| 1133/1133 [17:02<00:00,  1.11it/s]\n"]},{"name":"stdout","output_type":"stream","text":["gpt-4o-mini/epochs-03 metrics: {'meteor': 0.37736228106121694, 'sacrebleu': {'score': 11.933111335430906, 'counts': [12779, 4601, 2124, 1061], 'totals': [29096, 27963, 26848, 25737], 'precisions': [43.920126477866376, 16.453885491542394, 7.911203814064362, 4.122469596301046], 'bp': 0.9630984208616785, 'sys_len': 29096, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.11933111335430906, 'precisions': [0.4392012647786637, 0.16453885491542394, 0.07911203814064362, 0.041224695963010455], 'brevity_penalty': 0.9630984208616785, 'length_ratio': 0.9637628353759523, 'translation_length': 29096, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.4235319934194407, 'rouge2': 0.17493309683581332, 'rougeL': 0.3685697120399035, 'rougeLsum': 0.3689298428303013}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]}\n","Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ugPThQI\n","loading train/test data files\n","DatasetDict({\n","    train: Dataset({\n","        features: ['chinese', 'english'],\n","        num_rows: 4528\n","    })\n","    test: Dataset({\n","        features: ['chinese', 'english'],\n","        num_rows: 1133\n","    })\n","})\n","--------------------------------------------------\n","chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。\n","--------------------------------------------------\n","english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches.\n","*** Evaluating with num_shots: 0\n"]},{"name":"stderr","output_type":"stream","text":["100%|██████████| 1133/1133 [18:35<00:00,  1.02it/s]\n"]},{"name":"stdout","output_type":"stream","text":["gpt-4o-mini/epochs-04 metrics: {'meteor': 0.37818535038887346, 'sacrebleu': {'score': 11.933285526593995, 'counts': [12797, 4601, 2121, 1061], 'totals': [29110, 27977, 26861, 25749], 'precisions': [43.960838199931295, 16.445651785395146, 7.896206395889952, 4.120548370810517], 'bp': 0.9635791436286372, 'sys_len': 29110, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.11933285526593994, 'precisions': [0.43960838199931296, 0.16445651785395146, 0.07896206395889951, 0.041205483708105166], 'brevity_penalty': 0.9635791436286371, 'length_ratio': 0.9642265650877774, 'translation_length': 29110, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.42372801674771476, 'rouge2': 0.17487358435014705, 'rougeL': 0.36931437347367646, 'rougeLsum': 0.36934766241132383}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]}\n","Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ugVLmcB\n","loading train/test data files\n","DatasetDict({\n","    train: Dataset({\n","        features: ['chinese', 'english'],\n","        num_rows: 4528\n","    })\n","    test: Dataset({\n","        features: ['chinese', 'english'],\n","        num_rows: 1133\n","    })\n","})\n","--------------------------------------------------\n","chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。\n","--------------------------------------------------\n","english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches.\n","*** Evaluating with num_shots: 0\n"]},{"name":"stderr","output_type":"stream","text":["  7%|▋         | 82/1133 [5:27:15<69:54:29, 239.46s/it]\n"]},{"ename":"KeyboardInterrupt","evalue":"","output_type":"error","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)","Cell \u001b[0;32mIn[69], line 3\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, model \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(fine_tuned_models):\n\u001b[1;32m      2\u001b[0m     epoch \u001b[38;5;241m=\u001b[39m i \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[0;32m----> 3\u001b[0m     \u001b[43mevaluate_model_with_num_shots\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m      4\u001b[0m \u001b[43m        \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m      5\u001b[0m \u001b[43m        \u001b[49m\u001b[43mdata_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m      6\u001b[0m \u001b[43m        \u001b[49m\u001b[43mresults_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mresults/mac-results_few_shots_openai.csv\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m      7\u001b[0m \u001b[43m        \u001b[49m\u001b[43mrange_num_shots\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m      8\u001b[0m \u001b[43m        \u001b[49m\u001b[43mmax_new_tokens\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_new_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m      9\u001b[0m \u001b[43m        \u001b[49m\u001b[43mresult_column_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgpt-4o-mini/epochs-\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mepoch\u001b[49m\u001b[38;5;132;43;01m:\u001b[39;49;00m\u001b[38;5;124;43m02d\u001b[39;49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m     10\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n","File \u001b[0;32m~/code/engd/papers/rapget-translation/llm_toolkit/eval_openai.py:60\u001b[0m, in \u001b[0;36mevaluate_model_with_num_shots\u001b[0;34m(model_name, data_path, results_path, range_num_shots, max_new_tokens, result_column_name)\u001b[0m\n\u001b[1;32m     57\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m num_shots \u001b[38;5;129;01min\u001b[39;00m range_num_shots:\n\u001b[1;32m     58\u001b[0m     \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m*** Evaluating with num_shots: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnum_shots\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m---> 60\u001b[0m     predictions \u001b[38;5;241m=\u001b[39m \u001b[43meval_openai\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnum_shots\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdatasets\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_new_tokens\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_new_tokens\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     61\u001b[0m     model_name_with_shorts \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m     62\u001b[0m         result_column_name\n\u001b[1;32m     63\u001b[0m         \u001b[38;5;28;01mif\u001b[39;00m result_column_name\n\u001b[1;32m     64\u001b[0m         \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmodel_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m/shots-\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mnum_shots\u001b[38;5;132;01m:\u001b[39;00m\u001b[38;5;124m02d\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m     65\u001b[0m     )\n\u001b[1;32m     67\u001b[0m     \u001b[38;5;28;01mtry\u001b[39;00m:\n","File \u001b[0;32m~/code/engd/papers/rapget-translation/llm_toolkit/translation_utils.py:505\u001b[0m, in \u001b[0;36meval_openai\u001b[0;34m(num_shots, datasets, model, max_new_tokens)\u001b[0m\n\u001b[1;32m    502\u001b[0m predictions \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m    504\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m tqdm(\u001b[38;5;28mrange\u001b[39m(total)):\n\u001b[0;32m--> 505\u001b[0m     output \u001b[38;5;241m=\u001b[39m \u001b[43mtranslate_via_openai\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    506\u001b[0m \u001b[43m        \u001b[49m\u001b[43meval_dataset\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mchinese\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    507\u001b[0m \u001b[43m        \u001b[49m\u001b[43mtranslation_prompt\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    508\u001b[0m \u001b[43m        \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    509\u001b[0m \u001b[43m        \u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_new_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    510\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    511\u001b[0m     predictions\u001b[38;5;241m.\u001b[39mappend(output)\n\u001b[1;32m    513\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m predictions\n","File \u001b[0;32m~/code/engd/papers/rapget-translation/llm_toolkit/translation_utils.py:489\u001b[0m, in \u001b[0;36mtranslate_via_openai\u001b[0;34m(text, translation_prompt, max_tokens, model, base_url)\u001b[0m\n\u001b[1;32m    475\u001b[0m prompt \u001b[38;5;241m=\u001b[39m ChatPromptTemplate\u001b[38;5;241m.\u001b[39mfrom_messages(\n\u001b[1;32m    476\u001b[0m     [\n\u001b[1;32m    477\u001b[0m         (\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    485\u001b[0m     ]\n\u001b[1;32m    486\u001b[0m )\n\u001b[1;32m    488\u001b[0m chain \u001b[38;5;241m=\u001b[39m prompt \u001b[38;5;241m|\u001b[39m llm\n\u001b[0;32m--> 489\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43mchain\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    490\u001b[0m \u001b[43m    \u001b[49m\u001b[43m{\u001b[49m\n\u001b[1;32m    491\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43minput\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtext\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    492\u001b[0m \u001b[43m    \u001b[49m\u001b[43m}\u001b[49m\n\u001b[1;32m    493\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    495\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m response\u001b[38;5;241m.\u001b[39mcontent\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/langchain_core/runnables/base.py:2875\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m   2873\u001b[0m             \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m step\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m   2874\u001b[0m         \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2875\u001b[0m             \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   2876\u001b[0m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[1;32m   2877\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:274\u001b[0m, in \u001b[0;36mBaseChatModel.invoke\u001b[0;34m(self, input, config, stop, **kwargs)\u001b[0m\n\u001b[1;32m    263\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21minvoke\u001b[39m(\n\u001b[1;32m    264\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m    265\u001b[0m     \u001b[38;5;28minput\u001b[39m: LanguageModelInput,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    269\u001b[0m     \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m    270\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m BaseMessage:\n\u001b[1;32m    271\u001b[0m     config \u001b[38;5;241m=\u001b[39m ensure_config(config)\n\u001b[1;32m    272\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m cast(\n\u001b[1;32m    273\u001b[0m         ChatGeneration,\n\u001b[0;32m--> 274\u001b[0m         \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate_prompt\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    275\u001b[0m \u001b[43m            \u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_convert_input\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    276\u001b[0m \u001b[43m            \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    277\u001b[0m \u001b[43m            \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcallbacks\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    278\u001b[0m \u001b[43m            \u001b[49m\u001b[43mtags\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtags\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    279\u001b[0m \u001b[43m            \u001b[49m\u001b[43mmetadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmetadata\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    280\u001b[0m \u001b[43m            \u001b[49m\u001b[43mrun_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_name\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    281\u001b[0m \u001b[43m            \u001b[49m\u001b[43mrun_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpop\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrun_id\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    282\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    283\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mgenerations[\u001b[38;5;241m0\u001b[39m][\u001b[38;5;241m0\u001b[39m],\n\u001b[1;32m    284\u001b[0m     )\u001b[38;5;241m.\u001b[39mmessage\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:714\u001b[0m, in \u001b[0;36mBaseChatModel.generate_prompt\u001b[0;34m(self, prompts, stop, callbacks, **kwargs)\u001b[0m\n\u001b[1;32m    706\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mgenerate_prompt\u001b[39m(\n\u001b[1;32m    707\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m    708\u001b[0m     prompts: List[PromptValue],\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    711\u001b[0m     \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m    712\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m LLMResult:\n\u001b[1;32m    713\u001b[0m     prompt_messages \u001b[38;5;241m=\u001b[39m [p\u001b[38;5;241m.\u001b[39mto_messages() \u001b[38;5;28;01mfor\u001b[39;00m p \u001b[38;5;129;01min\u001b[39;00m prompts]\n\u001b[0;32m--> 714\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprompt_messages\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallbacks\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:571\u001b[0m, in \u001b[0;36mBaseChatModel.generate\u001b[0;34m(self, messages, stop, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001b[0m\n\u001b[1;32m    569\u001b[0m         \u001b[38;5;28;01mif\u001b[39;00m run_managers:\n\u001b[1;32m    570\u001b[0m             run_managers[i]\u001b[38;5;241m.\u001b[39mon_llm_error(e, response\u001b[38;5;241m=\u001b[39mLLMResult(generations\u001b[38;5;241m=\u001b[39m[]))\n\u001b[0;32m--> 571\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m    572\u001b[0m flattened_outputs \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m    573\u001b[0m     LLMResult(generations\u001b[38;5;241m=\u001b[39m[res\u001b[38;5;241m.\u001b[39mgenerations], llm_output\u001b[38;5;241m=\u001b[39mres\u001b[38;5;241m.\u001b[39mllm_output)  \u001b[38;5;66;03m# type: ignore[list-item]\u001b[39;00m\n\u001b[1;32m    574\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m res \u001b[38;5;129;01min\u001b[39;00m results\n\u001b[1;32m    575\u001b[0m ]\n\u001b[1;32m    576\u001b[0m llm_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_combine_llm_outputs([res\u001b[38;5;241m.\u001b[39mllm_output \u001b[38;5;28;01mfor\u001b[39;00m res \u001b[38;5;129;01min\u001b[39;00m results])\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:561\u001b[0m, in \u001b[0;36mBaseChatModel.generate\u001b[0;34m(self, messages, stop, callbacks, tags, metadata, run_name, run_id, **kwargs)\u001b[0m\n\u001b[1;32m    558\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i, m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(messages):\n\u001b[1;32m    559\u001b[0m     \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m    560\u001b[0m         results\u001b[38;5;241m.\u001b[39mappend(\n\u001b[0;32m--> 561\u001b[0m             \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_generate_with_cache\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    562\u001b[0m \u001b[43m                \u001b[49m\u001b[43mm\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    563\u001b[0m \u001b[43m                \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    564\u001b[0m \u001b[43m                \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_managers\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mrun_managers\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m    565\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    566\u001b[0m \u001b[43m            \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    567\u001b[0m         )\n\u001b[1;32m    568\u001b[0m     \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m    569\u001b[0m         \u001b[38;5;28;01mif\u001b[39;00m run_managers:\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/langchain_core/language_models/chat_models.py:793\u001b[0m, in \u001b[0;36mBaseChatModel._generate_with_cache\u001b[0;34m(self, messages, stop, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m    791\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    792\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m inspect\u001b[38;5;241m.\u001b[39msignature(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_generate)\u001b[38;5;241m.\u001b[39mparameters\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_manager\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[0;32m--> 793\u001b[0m         result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_generate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    794\u001b[0m \u001b[43m            \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m    795\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    796\u001b[0m     \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    797\u001b[0m         result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_generate(messages, stop\u001b[38;5;241m=\u001b[39mstop, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/langchain_openai/chat_models/base.py:549\u001b[0m, in \u001b[0;36mBaseChatOpenAI._generate\u001b[0;34m(self, messages, stop, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m    547\u001b[0m message_dicts, params \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_create_message_dicts(messages, stop)\n\u001b[1;32m    548\u001b[0m params \u001b[38;5;241m=\u001b[39m {\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mparams, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs}\n\u001b[0;32m--> 549\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmessages\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmessage_dicts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    550\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_create_chat_result(response)\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/openai/_utils/_utils.py:277\u001b[0m, in \u001b[0;36mrequired_args.<locals>.inner.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    275\u001b[0m             msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMissing required argument: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mquote(missing[\u001b[38;5;241m0\u001b[39m])\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m    276\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(msg)\n\u001b[0;32m--> 277\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/openai/resources/chat/completions.py:646\u001b[0m, in \u001b[0;36mCompletions.create\u001b[0;34m(self, messages, model, frequency_penalty, function_call, functions, logit_bias, logprobs, max_tokens, n, parallel_tool_calls, presence_penalty, response_format, seed, service_tier, stop, stream, stream_options, temperature, tool_choice, tools, top_logprobs, top_p, user, extra_headers, extra_query, extra_body, timeout)\u001b[0m\n\u001b[1;32m    612\u001b[0m \u001b[38;5;129m@required_args\u001b[39m([\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m], [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstream\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m    613\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate\u001b[39m(\n\u001b[1;32m    614\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    644\u001b[0m     timeout: \u001b[38;5;28mfloat\u001b[39m \u001b[38;5;241m|\u001b[39m httpx\u001b[38;5;241m.\u001b[39mTimeout \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m|\u001b[39m NotGiven \u001b[38;5;241m=\u001b[39m NOT_GIVEN,\n\u001b[1;32m    645\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ChatCompletion \u001b[38;5;241m|\u001b[39m Stream[ChatCompletionChunk]:\n\u001b[0;32m--> 646\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_post\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    647\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/chat/completions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m    648\u001b[0m \u001b[43m        \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaybe_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    649\u001b[0m \u001b[43m            \u001b[49m\u001b[43m{\u001b[49m\n\u001b[1;32m    650\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmessages\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    651\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodel\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    652\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfrequency_penalty\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrequency_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    653\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfunction_call\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunction_call\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    654\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfunctions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunctions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    655\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlogit_bias\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogit_bias\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    656\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlogprobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    657\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmax_tokens\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    658\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mn\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    659\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mparallel_tool_calls\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mparallel_tool_calls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    660\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mpresence_penalty\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mpresence_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    661\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mresponse_format\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_format\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    662\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mseed\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mseed\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    663\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mservice_tier\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mservice_tier\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    664\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstop\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    665\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstream\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    666\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstream_options\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    667\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtemperature\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtemperature\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    668\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtool_choice\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtool_choice\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    669\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtools\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtools\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    670\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_logprobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_logprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    671\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_p\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_p\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    672\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muser\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43muser\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    673\u001b[0m \u001b[43m            \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    674\u001b[0m \u001b[43m            \u001b[49m\u001b[43mcompletion_create_params\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mCompletionCreateParams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    675\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    676\u001b[0m \u001b[43m        \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmake_request_options\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    677\u001b[0m \u001b[43m            \u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_headers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_query\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_query\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_body\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_body\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\n\u001b[1;32m    678\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    679\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mChatCompletion\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    680\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m    681\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mStream\u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatCompletionChunk\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    682\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/openai/_base_client.py:1266\u001b[0m, in \u001b[0;36mSyncAPIClient.post\u001b[0;34m(self, path, cast_to, body, options, files, stream, stream_cls)\u001b[0m\n\u001b[1;32m   1252\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpost\u001b[39m(\n\u001b[1;32m   1253\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m   1254\u001b[0m     path: \u001b[38;5;28mstr\u001b[39m,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   1261\u001b[0m     stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m   1262\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[1;32m   1263\u001b[0m     opts \u001b[38;5;241m=\u001b[39m FinalRequestOptions\u001b[38;5;241m.\u001b[39mconstruct(\n\u001b[1;32m   1264\u001b[0m         method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpost\u001b[39m\u001b[38;5;124m\"\u001b[39m, url\u001b[38;5;241m=\u001b[39mpath, json_data\u001b[38;5;241m=\u001b[39mbody, files\u001b[38;5;241m=\u001b[39mto_httpx_files(files), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39moptions\n\u001b[1;32m   1265\u001b[0m     )\n\u001b[0;32m-> 1266\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m cast(ResponseT, \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m)\u001b[49m)\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/openai/_base_client.py:942\u001b[0m, in \u001b[0;36mSyncAPIClient.request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m    933\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrequest\u001b[39m(\n\u001b[1;32m    934\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m    935\u001b[0m     cast_to: Type[ResponseT],\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    940\u001b[0m     stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m    941\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[0;32m--> 942\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    943\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    944\u001b[0m \u001b[43m        \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    945\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    946\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    947\u001b[0m \u001b[43m        \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    948\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/openai/_base_client.py:978\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[0;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[1;32m    975\u001b[0m log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSending HTTP Request: \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m\"\u001b[39m, request\u001b[38;5;241m.\u001b[39mmethod, request\u001b[38;5;241m.\u001b[39murl)\n\u001b[1;32m    977\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 978\u001b[0m     response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_client\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msend\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    979\u001b[0m \u001b[43m        \u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    980\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_should_stream_response_body\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    981\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    982\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    983\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m httpx\u001b[38;5;241m.\u001b[39mTimeoutException \u001b[38;5;28;01mas\u001b[39;00m err:\n\u001b[1;32m    984\u001b[0m     log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mEncountered httpx.TimeoutException\u001b[39m\u001b[38;5;124m\"\u001b[39m, exc_info\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/httpx/_client.py:914\u001b[0m, in \u001b[0;36mClient.send\u001b[0;34m(self, request, stream, auth, follow_redirects)\u001b[0m\n\u001b[1;32m    906\u001b[0m follow_redirects \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m    907\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfollow_redirects\n\u001b[1;32m    908\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(follow_redirects, UseClientDefault)\n\u001b[1;32m    909\u001b[0m     \u001b[38;5;28;01melse\u001b[39;00m follow_redirects\n\u001b[1;32m    910\u001b[0m )\n\u001b[1;32m    912\u001b[0m auth \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_request_auth(request, auth)\n\u001b[0;32m--> 914\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_send_handling_auth\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    915\u001b[0m \u001b[43m    \u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    916\u001b[0m \u001b[43m    \u001b[49m\u001b[43mauth\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mauth\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    917\u001b[0m \u001b[43m    \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    918\u001b[0m \u001b[43m    \u001b[49m\u001b[43mhistory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    919\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    920\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m    921\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m stream:\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/httpx/_client.py:942\u001b[0m, in \u001b[0;36mClient._send_handling_auth\u001b[0;34m(self, request, auth, follow_redirects, history)\u001b[0m\n\u001b[1;32m    939\u001b[0m request \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mnext\u001b[39m(auth_flow)\n\u001b[1;32m    941\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m--> 942\u001b[0m     response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_send_handling_redirects\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    943\u001b[0m \u001b[43m        \u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    944\u001b[0m \u001b[43m        \u001b[49m\u001b[43mfollow_redirects\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfollow_redirects\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    945\u001b[0m \u001b[43m        \u001b[49m\u001b[43mhistory\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mhistory\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    946\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    947\u001b[0m     \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m    948\u001b[0m         \u001b[38;5;28;01mtry\u001b[39;00m:\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/httpx/_client.py:979\u001b[0m, in \u001b[0;36mClient._send_handling_redirects\u001b[0;34m(self, request, follow_redirects, history)\u001b[0m\n\u001b[1;32m    976\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m hook \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_event_hooks[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrequest\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n\u001b[1;32m    977\u001b[0m     hook(request)\n\u001b[0;32m--> 979\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_send_single_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    980\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m    981\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m hook \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_event_hooks[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mresponse\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/httpx/_client.py:1015\u001b[0m, in \u001b[0;36mClient._send_single_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m   1010\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\n\u001b[1;32m   1011\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAttempted to send an async request with a sync Client instance.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m   1012\u001b[0m     )\n\u001b[1;32m   1014\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m request_context(request\u001b[38;5;241m=\u001b[39mrequest):\n\u001b[0;32m-> 1015\u001b[0m     response \u001b[38;5;241m=\u001b[39m \u001b[43mtransport\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1017\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(response\u001b[38;5;241m.\u001b[39mstream, SyncByteStream)\n\u001b[1;32m   1019\u001b[0m response\u001b[38;5;241m.\u001b[39mrequest \u001b[38;5;241m=\u001b[39m request\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/httpx/_transports/default.py:233\u001b[0m, in \u001b[0;36mHTTPTransport.handle_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m    220\u001b[0m req \u001b[38;5;241m=\u001b[39m httpcore\u001b[38;5;241m.\u001b[39mRequest(\n\u001b[1;32m    221\u001b[0m     method\u001b[38;5;241m=\u001b[39mrequest\u001b[38;5;241m.\u001b[39mmethod,\n\u001b[1;32m    222\u001b[0m     url\u001b[38;5;241m=\u001b[39mhttpcore\u001b[38;5;241m.\u001b[39mURL(\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    230\u001b[0m     extensions\u001b[38;5;241m=\u001b[39mrequest\u001b[38;5;241m.\u001b[39mextensions,\n\u001b[1;32m    231\u001b[0m )\n\u001b[1;32m    232\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m map_httpcore_exceptions():\n\u001b[0;32m--> 233\u001b[0m     resp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_pool\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mreq\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    235\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(resp\u001b[38;5;241m.\u001b[39mstream, typing\u001b[38;5;241m.\u001b[39mIterable)\n\u001b[1;32m    237\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m Response(\n\u001b[1;32m    238\u001b[0m     status_code\u001b[38;5;241m=\u001b[39mresp\u001b[38;5;241m.\u001b[39mstatus,\n\u001b[1;32m    239\u001b[0m     headers\u001b[38;5;241m=\u001b[39mresp\u001b[38;5;241m.\u001b[39mheaders,\n\u001b[1;32m    240\u001b[0m     stream\u001b[38;5;241m=\u001b[39mResponseStream(resp\u001b[38;5;241m.\u001b[39mstream),\n\u001b[1;32m    241\u001b[0m     extensions\u001b[38;5;241m=\u001b[39mresp\u001b[38;5;241m.\u001b[39mextensions,\n\u001b[1;32m    242\u001b[0m )\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/httpcore/_sync/connection_pool.py:216\u001b[0m, in \u001b[0;36mConnectionPool.handle_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m    213\u001b[0m         closing \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_assign_requests_to_connections()\n\u001b[1;32m    215\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_close_connections(closing)\n\u001b[0;32m--> 216\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m exc \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m    218\u001b[0m \u001b[38;5;66;03m# Return the response. Note that in this case we still have to manage\u001b[39;00m\n\u001b[1;32m    219\u001b[0m \u001b[38;5;66;03m# the point at which the response is closed.\u001b[39;00m\n\u001b[1;32m    220\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(response\u001b[38;5;241m.\u001b[39mstream, Iterable)\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/httpcore/_sync/connection_pool.py:196\u001b[0m, in \u001b[0;36mConnectionPool.handle_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m    192\u001b[0m connection \u001b[38;5;241m=\u001b[39m pool_request\u001b[38;5;241m.\u001b[39mwait_for_connection(timeout\u001b[38;5;241m=\u001b[39mtimeout)\n\u001b[1;32m    194\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m    195\u001b[0m     \u001b[38;5;66;03m# Send the request on the assigned connection.\u001b[39;00m\n\u001b[0;32m--> 196\u001b[0m     response \u001b[38;5;241m=\u001b[39m \u001b[43mconnection\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    197\u001b[0m \u001b[43m        \u001b[49m\u001b[43mpool_request\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\n\u001b[1;32m    198\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    199\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ConnectionNotAvailable:\n\u001b[1;32m    200\u001b[0m     \u001b[38;5;66;03m# In some cases a connection may initially be available to\u001b[39;00m\n\u001b[1;32m    201\u001b[0m     \u001b[38;5;66;03m# handle a request, but then become unavailable.\u001b[39;00m\n\u001b[1;32m    202\u001b[0m     \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[1;32m    203\u001b[0m     \u001b[38;5;66;03m# In this case we clear the connection and try again.\u001b[39;00m\n\u001b[1;32m    204\u001b[0m     pool_request\u001b[38;5;241m.\u001b[39mclear_connection()\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/httpcore/_sync/connection.py:101\u001b[0m, in \u001b[0;36mHTTPConnection.handle_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m     98\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_connect_failed \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m     99\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m exc\n\u001b[0;32m--> 101\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_connection\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhandle_request\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequest\u001b[49m\u001b[43m)\u001b[49m\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/httpcore/_sync/http11.py:143\u001b[0m, in \u001b[0;36mHTTP11Connection.handle_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m    141\u001b[0m     \u001b[38;5;28;01mwith\u001b[39;00m Trace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mresponse_closed\u001b[39m\u001b[38;5;124m\"\u001b[39m, logger, request) \u001b[38;5;28;01mas\u001b[39;00m trace:\n\u001b[1;32m    142\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_response_closed()\n\u001b[0;32m--> 143\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/httpcore/_sync/http11.py:113\u001b[0m, in \u001b[0;36mHTTP11Connection.handle_request\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m    102\u001b[0m     \u001b[38;5;28;01mpass\u001b[39;00m\n\u001b[1;32m    104\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m Trace(\n\u001b[1;32m    105\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mreceive_response_headers\u001b[39m\u001b[38;5;124m\"\u001b[39m, logger, request, kwargs\n\u001b[1;32m    106\u001b[0m ) \u001b[38;5;28;01mas\u001b[39;00m trace:\n\u001b[1;32m    107\u001b[0m     (\n\u001b[1;32m    108\u001b[0m         http_version,\n\u001b[1;32m    109\u001b[0m         status,\n\u001b[1;32m    110\u001b[0m         reason_phrase,\n\u001b[1;32m    111\u001b[0m         headers,\n\u001b[1;32m    112\u001b[0m         trailing_data,\n\u001b[0;32m--> 113\u001b[0m     ) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_receive_response_headers\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    114\u001b[0m     trace\u001b[38;5;241m.\u001b[39mreturn_value \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m    115\u001b[0m         http_version,\n\u001b[1;32m    116\u001b[0m         status,\n\u001b[1;32m    117\u001b[0m         reason_phrase,\n\u001b[1;32m    118\u001b[0m         headers,\n\u001b[1;32m    119\u001b[0m     )\n\u001b[1;32m    121\u001b[0m network_stream \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_network_stream\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/httpcore/_sync/http11.py:186\u001b[0m, in \u001b[0;36mHTTP11Connection._receive_response_headers\u001b[0;34m(self, request)\u001b[0m\n\u001b[1;32m    183\u001b[0m timeout \u001b[38;5;241m=\u001b[39m timeouts\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mread\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m    185\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[0;32m--> 186\u001b[0m     event \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_receive_event\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    187\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(event, h11\u001b[38;5;241m.\u001b[39mResponse):\n\u001b[1;32m    188\u001b[0m         \u001b[38;5;28;01mbreak\u001b[39;00m\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/httpcore/_sync/http11.py:224\u001b[0m, in \u001b[0;36mHTTP11Connection._receive_event\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m    221\u001b[0m     event \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_h11_state\u001b[38;5;241m.\u001b[39mnext_event()\n\u001b[1;32m    223\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m event \u001b[38;5;129;01mis\u001b[39;00m h11\u001b[38;5;241m.\u001b[39mNEED_DATA:\n\u001b[0;32m--> 224\u001b[0m     data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_network_stream\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m    225\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mREAD_NUM_BYTES\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\n\u001b[1;32m    226\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    228\u001b[0m     \u001b[38;5;66;03m# If we feed this case through h11 we'll raise an exception like:\u001b[39;00m\n\u001b[1;32m    229\u001b[0m     \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[1;32m    230\u001b[0m     \u001b[38;5;66;03m#     httpcore.RemoteProtocolError: can't handle event type\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    234\u001b[0m     \u001b[38;5;66;03m# perspective. Instead we handle this case distinctly and treat\u001b[39;00m\n\u001b[1;32m    235\u001b[0m     \u001b[38;5;66;03m# it as a ConnectError.\u001b[39;00m\n\u001b[1;32m    236\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m data \u001b[38;5;241m==\u001b[39m \u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_h11_state\u001b[38;5;241m.\u001b[39mtheir_state \u001b[38;5;241m==\u001b[39m h11\u001b[38;5;241m.\u001b[39mSEND_RESPONSE:\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/site-packages/httpcore/_backends/sync.py:126\u001b[0m, in \u001b[0;36mSyncStream.read\u001b[0;34m(self, max_bytes, timeout)\u001b[0m\n\u001b[1;32m    124\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m map_exceptions(exc_map):\n\u001b[1;32m    125\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sock\u001b[38;5;241m.\u001b[39msettimeout(timeout)\n\u001b[0;32m--> 126\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sock\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrecv\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmax_bytes\u001b[49m\u001b[43m)\u001b[49m\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/ssl.py:1295\u001b[0m, in \u001b[0;36mSSLSocket.recv\u001b[0;34m(self, buflen, flags)\u001b[0m\n\u001b[1;32m   1291\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m flags \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m   1292\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m   1293\u001b[0m             \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnon-zero flags not allowed in calls to recv() on \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m\n\u001b[1;32m   1294\u001b[0m             \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m)\n\u001b[0;32m-> 1295\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbuflen\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1296\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m   1297\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39mrecv(buflen, flags)\n","File \u001b[0;32m~/anaconda3/envs/rapget/lib/python3.11/ssl.py:1168\u001b[0m, in \u001b[0;36mSSLSocket.read\u001b[0;34m(self, len, buffer)\u001b[0m\n\u001b[1;32m   1166\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sslobj\u001b[38;5;241m.\u001b[39mread(\u001b[38;5;28mlen\u001b[39m, buffer)\n\u001b[1;32m   1167\u001b[0m     \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1168\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sslobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1169\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m SSLError \u001b[38;5;28;01mas\u001b[39;00m x:\n\u001b[1;32m   1170\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m x\u001b[38;5;241m.\u001b[39margs[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m==\u001b[39m SSL_ERROR_EOF \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msuppress_ragged_eofs:\n","\u001b[0;31mKeyboardInterrupt\u001b[0m: "]}],"source":["for i, model in enumerate(fine_tuned_models):\n","    epoch = i + 1\n","    evaluate_model_with_num_shots(\n","        model,\n","        data_path,\n","        results_path=\"results/mac-results_few_shots_openai.csv\",\n","        range_num_shots=[0],\n","        max_new_tokens=max_new_tokens,\n","        result_column_name=f\"gpt-4o-mini/epochs-{epoch:02d}\",\n","    )"]},{"cell_type":"code","execution_count":70,"metadata":{},"outputs":[{"name":"stdout","output_type":"stream","text":["Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9ugVLmcB\n","loading train/test data files\n","DatasetDict({\n","    train: Dataset({\n","        features: ['chinese', 'english'],\n","        num_rows: 4528\n","    })\n","    test: Dataset({\n","        features: ['chinese', 'english'],\n","        num_rows: 1133\n","    })\n","})\n","--------------------------------------------------\n","chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。\n","--------------------------------------------------\n","english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches.\n","*** Evaluating with num_shots: 0\n"]},{"name":"stderr","output_type":"stream","text":["100%|██████████| 1133/1133 [15:47<00:00,  1.20it/s]\n"]},{"name":"stdout","output_type":"stream","text":["gpt-4o-mini/epochs-05 metrics: {'meteor': 0.3790673551140706, 'sacrebleu': {'score': 11.955698498650582, 'counts': [12808, 4609, 2126, 1064], 'totals': [29209, 28076, 26959, 25846], 'precisions': [43.849498442260945, 16.416156147599374, 7.88604918580066, 4.116691170780778], 'bp': 0.9669721941455759, 'sys_len': 29209, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.11955698498650584, 'precisions': [0.4384949844226095, 0.16416156147599373, 0.0788604918580066, 0.041166911707807785], 'brevity_penalty': 0.9669721941455759, 'length_ratio': 0.9675057966213978, 'translation_length': 29209, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.42476082012412075, 'rouge2': 0.17559955520032905, 'rougeL': 0.3700113513462385, 'rougeLsum': 0.37012014201963733}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]}\n","Evaluating model: ft:gpt-4o-mini-2024-07-18:mastercard::9uaCEFTs\n","loading train/test data files\n","DatasetDict({\n","    train: Dataset({\n","        features: ['chinese', 'english'],\n","        num_rows: 4528\n","    })\n","    test: Dataset({\n","        features: ['chinese', 'english'],\n","        num_rows: 1133\n","    })\n","})\n","--------------------------------------------------\n","chinese: 老耿端起枪,眯缝起一只三角眼,一搂扳机响了枪,冰雹般的金麻雀劈哩啪啦往下落,铁砂子在柳枝间飞迸着,嚓嚓有声。\n","--------------------------------------------------\n","english: Old Geng picked up his shotgun, squinted, and pulled the trigger. Two sparrows crashed to the ground like hailstones as shotgun pellets tore noisily through the branches.\n","*** Evaluating with num_shots: 0\n"]},{"name":"stderr","output_type":"stream","text":["100%|██████████| 1133/1133 [15:43<00:00,  1.20it/s]\n"]},{"name":"stdout","output_type":"stream","text":["gpt-4o-mini/epochs-06 metrics: {'meteor': 0.3792226866395673, 'sacrebleu': {'score': 11.982811850915233, 'counts': [12810, 4617, 2137, 1066], 'totals': [29116, 27983, 26868, 25757], 'precisions': [43.996428080780326, 16.499303148340065, 7.95369956825964, 4.138680746981403], 'bp': 0.9637850995333245, 'sys_len': 29116, 'ref_len': 30190}, 'bleu_scores': {'bleu': 0.11982811850915229, 'precisions': [0.43996428080780325, 0.16499303148340064, 0.0795369956825964, 0.04138680746981403], 'brevity_penalty': 0.9637850995333245, 'length_ratio': 0.9644253063928453, 'translation_length': 29116, 'reference_length': 30190}, 'rouge_scores': {'rouge1': 0.4251187202203103, 'rouge2': 0.17553224521896635, 'rougeL': 0.37003282393672954, 'rougeLsum': 0.370114181474168}, 'accuracy': 0.00088261253309797, 'correct_ids': [77]}\n"]}],"source":["for i, model in enumerate(fine_tuned_models):\n","    epoch = i + 1\n","    if epoch < 5:\n","        continue\n","    \n","    evaluate_model_with_num_shots(\n","        model,\n","        data_path,\n","        results_path=\"results/mac-results_few_shots_openai.csv\",\n","        range_num_shots=[0],\n","        max_new_tokens=max_new_tokens,\n","        result_column_name=f\"gpt-4o-mini/epochs-{epoch:02d}\",\n","    )"]}],"metadata":{"accelerator":"GPU","application/vnd.databricks.v1+notebook":{"dashboards":[],"environmentMetadata":null,"language":"python","notebookMetadata":{"mostRecentlyExecutedCommandWithImplicitDF":{"commandId":-1,"dataframes":["_sqldf"]},"pythonIndentUnit":4},"notebookName":"10_eval-lf-medium-py3.11","widgets":{}},"colab":{"gpuType":"L4","provenance":[]},"kernelspec":{"display_name":"Python 3","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.11.9"}},"nbformat":4,"nbformat_minor":0}