File size: 18,584 Bytes
3860729
 
95ba169
3860729
 
 
 
 
 
 
 
990ef6d
ad9aba8
3860729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
990ef6d
3860729
 
 
 
 
 
 
 
 
 
 
990ef6d
 
 
 
 
 
 
 
 
3860729
 
 
 
 
 
 
 
 
 
 
fddc7fb
3860729
 
 
 
 
 
 
 
 
 
 
6fc6dc9
 
 
fddc7fb
 
 
 
 
 
 
 
 
 
 
 
 
6c91c84
3860729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fddc7fb
3860729
 
 
 
 
 
 
 
6fc6dc9
3860729
 
 
 
 
 
12a5ff3
 
3860729
 
 
 
fddc7fb
3860729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a9edc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dab5c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0156aec
3860729
 
0156aec
 
 
 
 
 
3860729
 
 
a69b127
 
 
 
3860729
 
 
990ef6d
 
 
7dab5c1
 
 
 
 
 
 
 
 
 
 
 
3860729
 
 
 
 
 
 
7dab5c1
 
990ef6d
 
 
 
 
0156aec
1bdff66
 
 
 
a69b127
 
7dab5c1
1bdff66
 
7dab5c1
1bdff66
a69b127
 
3860729
 
 
990ef6d
1a9edc9
 
1bdff66
 
 
3860729
7dab5c1
 
3860729
 
 
ad9aba8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3860729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fddc7fb
 
 
3860729
fddc7fb
3860729
fddc7fb
3860729
 
 
 
 
 
 
fddc7fb
 
 
 
3860729
 
fddc7fb
3860729
 
 
 
 
 
 
 
 
 
fddc7fb
3860729
 
 
fddc7fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95ba169
 
6fc6dc9
95ba169
 
 
 
 
6fc6dc9
95ba169
 
 
 
6fc6dc9
95ba169
 
6fc6dc9
95ba169
 
6fc6dc9
95ba169
6fc6dc9
95ba169
 
 
 
 
 
6fc6dc9
95ba169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fc6dc9
 
 
95ba169
 
 
 
 
 
 
 
 
 
 
 
 
 
6fc6dc9
95ba169
 
 
 
 
 
 
 
6fc6dc9
95ba169
 
 
 
6fc6dc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
import os
import re
import glob
import pandas as pd
import evaluate
import seaborn as sns
import matplotlib.pyplot as plt
from datasets import load_dataset
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from tqdm import tqdm
from eval_modules.calc_repetitions import *
from llm_toolkit.llm_utils import load_tokenizer, print_row_details

print(f"loading {__file__}")

bleu = evaluate.load("bleu")
rouge = evaluate.load("rouge")
meteor = evaluate.load("meteor")
accuracy = evaluate.load("accuracy")


def extract_answer(text, debug=False):
    if text:
        # Remove the begin and end tokens
        text = re.sub(
            r".*?(assistant|\[/INST\]).+?\b", "", text, flags=re.DOTALL | re.MULTILINE
        )
        if debug:
            print("--------\nstep 1:", text)

        text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE)
        if debug:
            print("--------\nstep 2:", text)

        text = re.sub(
            r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE
        )
        if debug:
            print("--------\nstep 3:", text)

    return text


def calc_metrics(references, predictions, debug=False):
    assert len(references) == len(
        predictions
    ), f"lengths are difference: {len(references)} != {len(predictions)}"

    predictions = [extract_answer(text) for text in predictions]
    results = {}

    results["meteor"] = meteor.compute(predictions=predictions, references=references)[
        "meteor"
    ]

    results["bleu_scores"] = bleu.compute(
        predictions=predictions, references=references, max_order=4
    )
    results["rouge_scores"] = rouge.compute(
        predictions=predictions, references=references
    )

    correct = [1 if ref == pred else 0 for ref, pred in zip(references, predictions)]
    accuracy = sum(correct) / len(references)

    results["accuracy"] = accuracy
    if debug:
        correct_ids = [i for i, c in enumerate(correct) if c == 1]
        results["correct_ids"] = correct_ids

    return results


def save_results(model_name, results_path, dataset, predictions, debug=False):
    if not os.path.exists(results_path):
        # Get the directory part of the file path
        dir_path = os.path.dirname(results_path)

        # Create all directories in the path (if they don't exist)
        os.makedirs(dir_path, exist_ok=True)
        df = dataset.to_pandas()
        df.drop(columns=["text", "prompt"], inplace=True, errors="ignore")
    else:
        df = pd.read_csv(results_path, on_bad_lines="warn")

    df[model_name] = predictions

    if debug:
        print(df.head(1))

    df.to_csv(results_path, index=False)


system_prompt = "You are a helpful assistant that translates Chinese to English."


def get_few_shot_prompt(dataset, num_shots=5):
    translation_prompt = "You will be given a Chinese sentence to translate. If it is an incomplete sentence, or if you are unsure about the meaning, simply copy the input text as your output. Do not output any additional sentence such as explanation or reasoning.\n\n"
    if num_shots > 0:
        example_translations = "Example Translations:\n"
        for i in range(num_shots):
            example_translations += f"Chinese: {dataset[i]['chinese']}\n"
            example_translations += f"English: {dataset[i]['english']}\n"
        translation_prompt = translation_prompt + example_translations + "\n"

    translation_prompt = translation_prompt + "Chinese: {input}\nEnglish:"
    return translation_prompt


def load_translation_dataset(data_path, tokenizer=None, num_shots=5):
    train_data_file = data_path.replace(".tsv", "-train.tsv")
    test_data_file = data_path.replace(".tsv", "-test.tsv")

    if not os.path.exists(train_data_file):
        print("generating train/test data files")
        dataset = load_dataset(
            "csv", data_files=data_path, delimiter="\t", split="train"
        )
        print(len(dataset))
        dataset = dataset.filter(lambda x: x["chinese"] and x["english"])

        datasets = dataset.train_test_split(test_size=0.2)
        print(len(dataset))

        # Convert to pandas DataFrame
        train_df = pd.DataFrame(datasets["train"])
        test_df = pd.DataFrame(datasets["test"])

        # Save to TSV
        train_df.to_csv(train_data_file, sep="\t", index=False)
        test_df.to_csv(test_data_file, sep="\t", index=False)

    print("loading train/test data files")
    datasets = load_dataset(
        "csv",
        data_files={"train": train_data_file, "test": test_data_file},
        delimiter="\t",
    )

    if tokenizer:
        translation_prompt = get_few_shot_prompt(datasets["train"], num_shots)

        def formatting_prompts_func(examples):
            inputs = examples["chinese"]
            outputs = examples["english"]

            messages = [
                {
                    "role": "system",
                    "content": system_prompt,
                },
                None,
            ]

            model_name = os.getenv("MODEL_NAME")

            # if "mistral" in model_name.lower():
            # messages = messages[1:]

            texts = []
            prompts = []
            for input, output in zip(inputs, outputs):
                prompt = translation_prompt.format(input=input)
                messages[-1] = {"role": "user", "content": prompt}

                prompt = tokenizer.apply_chat_template(
                    messages, tokenize=False, add_generation_prompt=True
                )
                prompts.append(prompt)
                texts.append(prompt + output + tokenizer.eos_token)
            return {"text": texts, "prompt": prompts}

        datasets = datasets.map(
            formatting_prompts_func,
            batched=True,
        )

    print(datasets)
    return datasets


def count_entries_with_max_tokens(entries, max_tokens):
    """
    Count the number of entries with the max output tokens or more.

    Parameters:
    entries (list of int): List of token counts for each entry.
    max_tokens (int): The maximum token threshold.

    Returns:
    int: The number of entries with token counts greater than or equal to max_tokens.
    """
    count = 0
    for tokens in entries:
        if tokens >= max_tokens:
            count += 1
    return count


def detect_repetition_scores(row, col, debug=False):
    # print(f"row: {row}")
    newline_score, repetition_score, total_repetitions = detect_repetitions(
        row[col], debug=debug
    )
    newline_score -= row["ground_truth_ews_score"]
    repetition_score -= row["ground_truth_repetition_score"]
    total_repetitions -= row["ground_truth_total_repetitions"]

    return pd.Series(
        [
            newline_score if newline_score > 0 else 0,
            repetition_score if repetition_score > 0 else 0,
            total_repetitions if total_repetitions > 0 else 0,
        ]
    )


def get_metrics(df, max_output_tokens=2048, variant="rpp"):
    metrics_df = pd.DataFrame(df.columns.T)[2:]
    metrics_df.rename(columns={0: "model"}, inplace=True)
    metrics_df[variant] = metrics_df["model"].apply(
        lambda x: x.split(f"{variant}-")[-1]
    )
    metrics_df["model"] = metrics_df["model"].apply(
        lambda x: x.split(f"/{variant}-")[0]
    )
    metrics_df.reset_index(inplace=True)
    metrics_df = metrics_df.drop(columns=["index"])

    tokenizers = {
        model: load_tokenizer(model) for model in metrics_df["model"].unique()
    }

    meteor = []
    bleu_1 = []
    rouge_l = []
    ews_score = []
    repetition_score = []
    total_repetitions = []
    num_max_output_tokens = []
    columns = df.columns[2:]

    df[
        [
            "ground_truth_ews_score",
            "ground_truth_repetition_score",
            "ground_truth_total_repetitions",
        ]
    ] = df["english"].apply(detect_scores)

    for col in columns:
        metrics = calc_metrics(df["english"], df[col], debug=True)
        print(f"{col}: {metrics}")

        meteor.append(metrics["meteor"])
        bleu_1.append(metrics["bleu_scores"]["bleu"])
        rouge_l.append(metrics["rouge_scores"]["rougeL"])

        df[["ews_score", "repetition_score", "total_repetitions"]] = df.apply(
            lambda x: detect_repetition_scores(x, col), axis=1
        )
        ews_score.append(df["ews_score"].mean())
        repetition_score.append(df["repetition_score"].mean())
        total_repetitions.append(df["total_repetitions"].mean())

        model = col.split(f"/{variant}")[0]

        new_col = f"ground_truth_tokens-{model}"
        df[new_col] = df["english"].apply(
            lambda x: len(tokenizers[model](x)["input_ids"])
        )

        new_col = f"output_tokens-{col}"
        df[new_col] = df[col].apply(lambda x: len(tokenizers[model](x)["input_ids"]))

        num_max_output_tokens.append(
            count_entries_with_max_tokens(df[new_col], max_output_tokens)
        )

    metrics_df["meteor"] = meteor
    metrics_df["bleu_1"] = bleu_1
    metrics_df["rouge_l"] = rouge_l
    metrics_df["ews_score"] = ews_score
    metrics_df["repetition_score"] = repetition_score
    metrics_df["total_repetitions"] = total_repetitions
    metrics_df["rap"] = metrics_df.apply(
        lambda x: x["meteor"] / math.log10(10 + x["total_repetitions"]), axis=1
    )

    metrics_df["num_max_output_tokens"] = num_max_output_tokens

    return metrics_df


def analyze_translation_results(df, col, max_new_tokens=300, repetition_threshold=100):
    df[["ews_score", "repetition_score", "total_repetitions"]] = df.apply(
        lambda x: detect_repetition_scores(x, col), axis=1
    )
    rows = df.query(f"total_repetitions > {repetition_threshold}")
    print(
        f"*** Found {len(rows)} rows with total_repetitions > {repetition_threshold} for {col}"
    )

    for i in range(len(rows)):
        row = rows.iloc[i]
        print(row["chinese"])
        print("=" * 80)
        print(row["english"])
        print("=" * 80)
        output = row[col]
        print(output)
        print("=" * 80)
        detect_repetitions(output, debug=True)

    output_tokens = f"output_tokens-{col}"
    df2 = df[df[output_tokens] >= max_new_tokens][
        ["chinese", "english", col, output_tokens]
    ]

    print(
        f"\n*** Found {len(df2)} rows with output_tokens >= {max_new_tokens} for {col}"
    )
    print_row_details(df2, range(len(df2)))


def plot_metrics(metrics_df, figsize=(14, 5), ylim=(0, 0.44)):
    plt.figure(figsize=figsize)
    df_melted = pd.melt(
        metrics_df, id_vars="model", value_vars=["meteor", "bleu_1", "rouge_l"]
    )

    barplot = sns.barplot(x="variable", y="value", hue="model", data=df_melted)

    # Set different hatches for each model
    hatches = ["/", "\\", "|", "-", "+", "x", "o", "O", ".", "*", "//", "\\\\"]

    # Create a dictionary to map models to hatches
    model_hatches = {
        model: hatches[i % len(hatches)]
        for i, model in enumerate(metrics_df["model"].unique())
    }

    # Apply hatches based on the model
    num_vars = len(df_melted["variable"].unique())
    for i, bar in enumerate(barplot.patches):
        model = df_melted["model"].iloc[i // num_vars]
        bar.set_hatch(model_hatches[model])

    # Manually update legend to match the bar hatches
    handles, labels = barplot.get_legend_handles_labels()
    for handle, model in zip(handles, metrics_df["model"].unique()):
        handle.set_hatch(model_hatches[model])

    barplot.set_xticklabels(["METEOR", "BLEU-1", "ROUGE-L"])
    for p in barplot.patches:
        if p.get_height() == 0:
            continue
        barplot.annotate(
            f"{p.get_height():.2f}",
            (p.get_x() + p.get_width() / 2.0, p.get_height()),
            ha="center",
            va="center",
            xytext=(0, 10),
            textcoords="offset points",
        )

    barplot.set(ylim=ylim, ylabel="Scores", xlabel="Metrics")
    plt.legend(bbox_to_anchor=(0.5, -0.1), loc="upper center")
    plt.show()


def plot_times(perf_df, ylim=0.421):
    # Adjusted code to put "train-time" bars in red at the bottom

    fig, ax1 = plt.subplots(figsize=(12, 10))

    color_train = "tab:red"
    color_eval = "orange"
    ax1.set_xlabel("Models")
    ax1.set_ylabel("Time (mins)")
    ax1.set_xticks(range(len(perf_df["model"])))  # Set x-ticks positions
    ax1.set_xticklabels(perf_df["model"], rotation=90)

    # Plot "train-time" first so it's at the bottom
    ax1.bar(
        perf_df["model"],
        perf_df["train-time(mins)"],
        color=color_train,
        label="train-time",
    )

    # Then, plot "eval-time" on top of "train-time"
    ax1.bar(
        perf_df["model"],
        perf_df["eval-time(mins)"],
        bottom=perf_df["train-time(mins)"],
        color=color_eval,
        label="eval-time",
    )

    ax1.tick_params(axis="y")
    ax1.legend(loc="upper left")

    if "meteor" in perf_df.columns:
        ax2 = ax1.twinx()
        color_meteor = "tab:blue"
        ax2.set_ylabel("METEOR", color=color_meteor)
        ax2.plot(
            perf_df["model"],
            perf_df["meteor"],
            color=color_meteor,
            marker="o",
            label="meteor",
        )
        ax2.tick_params(axis="y", labelcolor=color_meteor)
        ax2.legend(loc="upper right")
        ax2.set_ylim(ax2.get_ylim()[0], ylim)

    # Show numbers in bars
    for p in ax1.patches:
        height = p.get_height()
        if height == 0:  # Skip bars with height 0
            continue
        ax1.annotate(
            f"{height:.2f}",
            (p.get_x() + p.get_width() / 2.0, p.get_y() + height),
            ha="center",
            va="center",
            xytext=(0, -10),
            textcoords="offset points",
        )

    fig.tight_layout()
    plt.show()


def translate_via_openai(
    text, translation_prompt, max_tokens=None, model="gpt-4o-mini", base_url=None
):
    llm = ChatOpenAI(
        model=model,
        temperature=0,
        max_tokens=max_tokens,
        timeout=None,
        max_retries=2,
        base_url=base_url,
    )

    prompt = ChatPromptTemplate.from_messages(
        [
            (
                "system",
                "You are a helpful assistant that translates Chinese to English.",
            ),
            (
                "human",
                translation_prompt,
            ),
        ]
    )

    chain = prompt | llm
    response = chain.invoke(
        {
            "input": text,
        }
    )

    return response.content


def eval_openai(num_shots, datasets, model="gpt-4o-mini", max_new_tokens=300):
    translation_prompt = get_few_shot_prompt(datasets["train"], num_shots=num_shots)
    eval_dataset = datasets["test"]
    total = len(eval_dataset)
    predictions = []

    for i in tqdm(range(total)):
        output = translate_via_openai(
            eval_dataset["chinese"][i],
            translation_prompt,
            model=model,
            max_tokens=max_new_tokens,
        )
        predictions.append(output)

    return predictions


def convert_time_to_seconds(time_str):
    # print(f"converting time_str: {time_str}")
    # Split the time string into its components
    time_parts = list(map(int, time_str.split(":")))

    # Initialize total minutes
    total_seconds = 0

    # Calculate total minutes based on the number of parts
    if len(time_parts) == 3:  # HH:MM:SS
        hours, minutes, seconds = time_parts
        total_seconds = hours * 3600 + minutes * 60 + seconds
    elif len(time_parts) == 2:  # MM:SS
        minutes, seconds = time_parts
        total_seconds = minutes * 60 + seconds
    elif len(time_parts) == 1:  # SS
        seconds = time_parts[0]
        total_seconds = seconds

    return total_seconds


time_pattern = re.compile(r"\[(.{5,10})<00:00")
metrics_pattern = re.compile(r"(.*)/shots-(.*) metrics:")


def process_log_file(log_file, total_entries):
    model = []
    shots = []
    eval_time = []

    with open(log_file, "r") as f:
        try:
            for line in f:
                matches = time_pattern.search(line)
                if matches:
                    time_pattern_matches = matches
                else:
                    matches = metrics_pattern.search(line)
                    if matches:
                        metrics_pattern_matches = matches
                        groups = metrics_pattern_matches.groups()

                        model.append(groups[0])
                        shots.append(groups[1])

                        groups = time_pattern_matches.groups()
                        time_str = groups[0]
                        eval_time.append(
                            convert_time_to_seconds(time_str) / total_entries
                        )
        except Exception as e:
            print(f"Error processing log file: {log_file}")
            print(e)

    df = pd.DataFrame(
        {
            "model": model,
            "shots": shots,
            "eval_time": eval_time,
        }
    )
    return df


def load_eval_times(logs_folder, total_entries=1133):
    # Get a list of all files in the logs folder
    log_files = glob.glob(os.path.join(logs_folder, "*"))
    log_files.sort()

    time_df = pd.DataFrame({"model": [], "shots": [], "eval_time": []})

    for log_file in log_files:
        print(f"Loading content of {log_file}")
        df = process_log_file(log_file, total_entries=total_entries)
        time_df = pd.concat([time_df, df], ignore_index=True)

    time_df["shots"] = time_df["shots"].apply(lambda x: int(x))
    return time_df


def load_alpaca_data(data_path):
    alpaca_data_path = "data/alpaca_mac.json"

    if os.path.exists(alpaca_data_path):
        print("loading existing data from:", alpaca_data_path)
        data = pd.read_json(alpaca_data_path, orient="records", lines=False)
        return data

    datasets = load_translation_dataset(data_path)
    prompt_template = get_few_shot_prompt(datasets["train"], num_shots=0)

    df_train = datasets["train"].to_pandas()
    df_train["instruction"] = df_train.apply(
        lambda x: prompt_template.format(input=x["chinese"]), axis=1
    )

    df_alpaca = pd.DataFrame(
        {
            "system": [system_prompt] * len(df_train),
            "instruction": df_train["instruction"].to_list(),
            "input": [""] * len(df_train),
            "output": df_train["english"].to_list(),
        }
    )

    df_alpaca.to_json(alpaca_data_path, orient="records", lines=False, indent=2)

    return df_alpaca