Spaces:
Build error
Build error
File size: 12,888 Bytes
0156aec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import os
import re
import pandas as pd
import evaluate
import seaborn as sns
import matplotlib.pyplot as plt
from datasets import load_dataset
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from tqdm import tqdm
from eval_modules.calc_repetitions import *
from llm_toolkit.llm_utils import load_tokenizer
print(f"loading {__file__}")
bleu = evaluate.load("bleu")
rouge = evaluate.load("rouge")
meteor = evaluate.load("meteor")
accuracy = evaluate.load("accuracy")
def extract_answer(text, debug=False):
if text:
# Remove the begin and end tokens
text = re.sub(
r".*?(assistant|\[/INST\]).+?\b", "", text, flags=re.DOTALL | re.MULTILINE
)
if debug:
print("--------\nstep 1:", text)
text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE)
if debug:
print("--------\nstep 2:", text)
text = re.sub(
r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE
)
if debug:
print("--------\nstep 3:", text)
return text
def calc_metrics(references, predictions, debug=False):
assert len(references) == len(
predictions
), f"lengths are difference: {len(references)} != {len(predictions)}"
predictions = [extract_answer(text) for text in predictions]
results = {}
results["meteor"] = meteor.compute(predictions=predictions, references=references)[
"meteor"
]
results["bleu_scores"] = bleu.compute(
predictions=predictions, references=references, max_order=4
)
results["rouge_scores"] = rouge.compute(
predictions=predictions, references=references
)
correct = [1 if ref == pred else 0 for ref, pred in zip(references, predictions)]
accuracy = sum(correct) / len(references)
results["accuracy"] = accuracy
if debug:
correct_ids = [i for i, c in enumerate(correct) if c == 1]
results["correct_ids"] = correct_ids
return results
def save_results(model_name, results_path, dataset, predictions, debug=False):
if not os.path.exists(results_path):
# Get the directory part of the file path
dir_path = os.path.dirname(results_path)
# Create all directories in the path (if they don't exist)
os.makedirs(dir_path, exist_ok=True)
df = dataset.to_pandas()
df.drop(columns=["text", "prompt"], inplace=True)
else:
df = pd.read_csv(results_path, on_bad_lines="warn")
df[model_name] = predictions
if debug:
print(df.head(1))
df.to_csv(results_path, index=False)
def load_translation_dataset(data_path, tokenizer=None):
train_data_file = data_path.replace(".tsv", "-train.tsv")
test_data_file = data_path.replace(".tsv", "-test.tsv")
if not os.path.exists(train_data_file):
print("generating train/test data files")
dataset = load_dataset(
"csv", data_files=data_path, delimiter="\t", split="train"
)
print(len(dataset))
dataset = dataset.filter(lambda x: x["chinese"] and x["english"])
datasets = dataset.train_test_split(test_size=0.2)
print(len(dataset))
# Convert to pandas DataFrame
train_df = pd.DataFrame(datasets["train"])
test_df = pd.DataFrame(datasets["test"])
# Save to TSV
train_df.to_csv(train_data_file, sep="\t", index=False)
test_df.to_csv(test_data_file, sep="\t", index=False)
print("loading train/test data files")
datasets = load_dataset(
"csv",
data_files={"train": train_data_file, "test": test_data_file},
delimiter="\t",
)
if tokenizer:
translation_prompt = "Please translate the following Chinese text into English and provide only the translated content, nothing else.\n{}"
def formatting_prompts_func(examples):
inputs = examples["chinese"]
outputs = examples["english"]
messages = [
{
"role": "system",
"content": "You are an expert in translating Chinese to English.",
},
None,
]
model_name = os.getenv("MODEL_NAME")
# if "mistral" in model_name.lower():
# messages = messages[1:]
texts = []
prompts = []
for input, output in zip(inputs, outputs):
prompt = translation_prompt.format(input)
messages[-1] = {"role": "user", "content": prompt}
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
prompts.append(prompt)
texts.append(prompt + output + tokenizer.eos_token)
return {"text": texts, "prompt": prompts}
datasets = datasets.map(
formatting_prompts_func,
batched=True,
)
print(datasets)
return datasets
def count_entries_with_max_tokens(entries, max_tokens):
"""
Count the number of entries with the max output tokens or more.
Parameters:
entries (list of int): List of token counts for each entry.
max_tokens (int): The maximum token threshold.
Returns:
int: The number of entries with token counts greater than or equal to max_tokens.
"""
count = 0
for tokens in entries:
if tokens >= max_tokens:
count += 1
return count
def detect_repetition_scores(row, col, debug=False):
# print(f"row: {row}")
newline_score, repetition_score, total_repetitions = detect_repetitions(
row[col], debug=debug
)
newline_score -= row["ground_truth_ews_score"]
repetition_score -= row["ground_truth_repetition_score"]
total_repetitions -= row["ground_truth_total_repetitions"]
return pd.Series(
[
newline_score if newline_score > 0 else 0,
repetition_score if repetition_score > 0 else 0,
total_repetitions if total_repetitions > 0 else 0,
]
)
def get_metrics(df, max_output_tokens=2048):
metrics_df = pd.DataFrame(df.columns.T)[2:]
metrics_df.rename(columns={0: "model"}, inplace=True)
metrics_df["rpp"] = metrics_df["model"].apply(lambda x: x.split("rpp-")[-1])
metrics_df["model"] = metrics_df["model"].apply(lambda x: x.split("/rpp-")[0])
metrics_df.reset_index(inplace=True)
metrics_df = metrics_df.drop(columns=["index"])
tokenizers = {
model: load_tokenizer(model) for model in metrics_df["model"].unique()
}
meteor = []
bleu_1 = []
rouge_l = []
ews_score = []
repetition_score = []
total_repetitions = []
num_max_output_tokens = []
columns = df.columns[2:]
df[
[
"ground_truth_ews_score",
"ground_truth_repetition_score",
"ground_truth_total_repetitions",
]
] = df["english"].apply(detect_scores)
for col in columns:
metrics = calc_metrics(df["english"], df[col], debug=True)
print(f"{col}: {metrics}")
meteor.append(metrics["meteor"])
bleu_1.append(metrics["bleu_scores"]["bleu"])
rouge_l.append(metrics["rouge_scores"]["rougeL"])
df[["ews_score", "repetition_score", "total_repetitions"]] = df.apply(
lambda x: detect_repetition_scores(x, col), axis=1
)
ews_score.append(df["ews_score"].mean())
repetition_score.append(df["repetition_score"].mean())
total_repetitions.append(df["total_repetitions"].mean())
model = col.split("/rpp")[0]
new_col = f"ground_truth_tokens-{model}"
df[new_col] = df["english"].apply(
lambda x: len(tokenizers[model](x)["input_ids"])
)
new_col = f"output_tokens-{col}"
df[new_col] = df[col].apply(lambda x: len(tokenizers[model](x)["input_ids"]))
num_max_output_tokens.append(
count_entries_with_max_tokens(df[new_col], max_output_tokens)
)
metrics_df["meteor"] = meteor
metrics_df["bleu_1"] = bleu_1
metrics_df["rouge_l"] = rouge_l
metrics_df["ews_score"] = ews_score
metrics_df["repetition_score"] = repetition_score
metrics_df["total_repetitions"] = total_repetitions
metrics_df["rap"] = metrics_df.apply(
lambda x: x["meteor"] / math.log10(10 + x["total_repetitions"]), axis=1
)
metrics_df["num_max_output_tokens"] = num_max_output_tokens
return metrics_df
def plot_metrics(metrics_df, figsize=(14, 5), ylim=(0, 0.44)):
plt.figure(figsize=figsize)
df_melted = pd.melt(
metrics_df, id_vars="model", value_vars=["meteor", "bleu_1", "rouge_l"]
)
barplot = sns.barplot(x="variable", y="value", hue="model", data=df_melted)
# Set different hatches for each model
hatches = ["/", "\\", "|", "-", "+", "x", "o", "O", ".", "*", "//", "\\\\"]
# Create a dictionary to map models to hatches
model_hatches = {
model: hatches[i % len(hatches)]
for i, model in enumerate(metrics_df["model"].unique())
}
# Apply hatches based on the model
num_vars = len(df_melted["variable"].unique())
for i, bar in enumerate(barplot.patches):
model = df_melted["model"].iloc[i // num_vars]
bar.set_hatch(model_hatches[model])
# Manually update legend to match the bar hatches
handles, labels = barplot.get_legend_handles_labels()
for handle, model in zip(handles, metrics_df["model"].unique()):
handle.set_hatch(model_hatches[model])
barplot.set_xticklabels(["METEOR", "BLEU-1", "ROUGE-L"])
for p in barplot.patches:
if p.get_height() == 0:
continue
barplot.annotate(
f"{p.get_height():.2f}",
(p.get_x() + p.get_width() / 2.0, p.get_height()),
ha="center",
va="center",
xytext=(0, 10),
textcoords="offset points",
)
barplot.set(ylim=ylim, ylabel="Scores", xlabel="Metrics")
plt.legend(bbox_to_anchor=(0.5, -0.1), loc="upper center")
plt.show()
def plot_times(perf_df, ylim=0.421):
# Adjusted code to put "train-time" bars in red at the bottom
fig, ax1 = plt.subplots(figsize=(12, 10))
color_train = "tab:red"
color_eval = "orange"
ax1.set_xlabel("Models")
ax1.set_ylabel("Time (mins)")
ax1.set_xticks(range(len(perf_df["model"]))) # Set x-ticks positions
ax1.set_xticklabels(perf_df["model"], rotation=90)
# Plot "train-time" first so it's at the bottom
ax1.bar(
perf_df["model"],
perf_df["train-time(mins)"],
color=color_train,
label="train-time",
)
# Then, plot "eval-time" on top of "train-time"
ax1.bar(
perf_df["model"],
perf_df["eval-time(mins)"],
bottom=perf_df["train-time(mins)"],
color=color_eval,
label="eval-time",
)
ax1.tick_params(axis="y")
ax1.legend(loc="upper left")
if "meteor" in perf_df.columns:
ax2 = ax1.twinx()
color_meteor = "tab:blue"
ax2.set_ylabel("METEOR", color=color_meteor)
ax2.plot(
perf_df["model"],
perf_df["meteor"],
color=color_meteor,
marker="o",
label="meteor",
)
ax2.tick_params(axis="y", labelcolor=color_meteor)
ax2.legend(loc="upper right")
ax2.set_ylim(ax2.get_ylim()[0], ylim)
# Show numbers in bars
for p in ax1.patches:
height = p.get_height()
if height == 0: # Skip bars with height 0
continue
ax1.annotate(
f"{height:.2f}",
(p.get_x() + p.get_width() / 2.0, p.get_y() + height),
ha="center",
va="center",
xytext=(0, -10),
textcoords="offset points",
)
fig.tight_layout()
plt.show()
def translate_via_llm(text):
base_url = os.getenv("OPENAI_BASE_URL") or "http://localhost:8000/v1"
llm = ChatOpenAI(
model="gpt-4o",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
base_url=base_url,
)
prompt = ChatPromptTemplate.from_messages(
[
(
"human",
"Please translate the following Chinese text into English and provide only the translated content, nothing else.\n{input}",
),
]
)
chain = prompt | llm
response = chain.invoke(
{
"input": text,
}
)
return response.content
def translate(text, cache_dict):
if text in cache_dict:
return cache_dict[text]
else:
translated_text = translate_via_llm(text)
cache_dict[text] = translated_text
return translated_text
|