Spaces:
Build error
Build error
import os | |
import sys | |
import subprocess | |
from dotenv import find_dotenv, load_dotenv | |
found_dotenv = find_dotenv(".env") | |
if len(found_dotenv) == 0: | |
found_dotenv = find_dotenv(".env.example") | |
print(f"loading env vars from: {found_dotenv}") | |
load_dotenv(found_dotenv, override=False) | |
workding_dir = os.path.dirname(found_dotenv) | |
os.chdir(workding_dir) | |
sys.path.append(workding_dir) | |
print("workding dir:", workding_dir) | |
print(f"adding {workding_dir} to sys.path") | |
sys.path.append(workding_dir) | |
from llm_toolkit.llm_utils import * | |
from llm_toolkit.translation_utils import * | |
def evaluate_model_all_epochs( | |
model, | |
tokenizer, | |
model_name, | |
adapter_path_base, | |
dataset, | |
results_path, | |
start_epoch=0, | |
end_epoch=-1, | |
batch_size=1, | |
max_new_tokens=300, | |
checkpoints_per_epoch=1, | |
device="cuda", | |
): | |
if adapter_path_base is None: | |
num_train_epochs = 0 | |
print(f"No adapter path provided. Running with base model:{model_name}") | |
else: | |
# find subdirectories in adapter_path_base | |
# and sort them by epoch number | |
subdirs = [ | |
d | |
for d in os.listdir(adapter_path_base) | |
if os.path.isdir(os.path.join(adapter_path_base, d)) | |
] | |
subdirs = sorted(subdirs, key=lambda x: int(x.split("-")[-1])) | |
num_train_epochs = len(subdirs) // checkpoints_per_epoch | |
if checkpoints_per_epoch > 1: | |
subdirs = subdirs[checkpoints_per_epoch - 1 :: checkpoints_per_epoch] | |
print(f"found {num_train_epochs} checkpoints: {subdirs}") | |
if end_epoch < 0 or end_epoch > num_train_epochs: | |
end_epoch = num_train_epochs | |
print(f"Running from epoch {start_epoch} to {end_epoch}") | |
for i in range(start_epoch, end_epoch + 1): | |
print(f"Epoch {i}") | |
if i > 0: | |
adapter_name = subdirs[i - 1] | |
adapter_path = adapter_path_base + "/" + adapter_name | |
print(f"loading adapter: {adapter_path}") | |
model.load_adapter(adapter_path, adapter_name=adapter_name) | |
model.active_adapters = adapter_name | |
predictions = eval_model( | |
model, | |
tokenizer, | |
dataset, | |
device=device, | |
batch_size=batch_size, | |
max_new_tokens=max_new_tokens, | |
) | |
model_name_with_epochs = f"{model_name}/epochs-{i:02d}" | |
save_results( | |
model_name_with_epochs, | |
results_path, | |
dataset, | |
predictions, | |
) | |
metrics = calc_metrics(dataset["english"], predictions, debug=True) | |
print(f"{model_name_with_epochs} metrics: {metrics}") | |
if __name__ == "__main__": | |
model_name = os.getenv("MODEL_NAME") | |
adapter_path_base = os.getenv("ADAPTER_PATH_BASE") | |
checkpoints_per_epoch = int(os.getenv("CHECKPOINTS_PER_EPOCH", 1)) | |
start_epoch = int(os.getenv("START_EPOCH", 1)) | |
end_epoch = os.getenv("END_EPOCH", -1) | |
load_in_4bit = os.getenv("LOAD_IN_4BIT", "true").lower() == "true" | |
results_path = os.getenv("RESULTS_PATH", None) | |
data_path = os.getenv("DATA_PATH") | |
print( | |
model_name, | |
adapter_path_base, | |
load_in_4bit, | |
start_epoch, | |
results_path, | |
) | |
device = check_gpu() | |
is_cuda = torch.cuda.is_available() | |
print(f"Evaluating model: {model_name} on {device}") | |
if is_cuda: | |
torch.cuda.empty_cache() | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round( | |
torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3 | |
) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(0) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
# model, tokenizer = load_model(model_name, load_in_4bit=load_in_4bit) | |
model, tokenizer = None, None | |
datasets = load_translation_dataset(data_path, tokenizer, num_shots=0) | |
print_row_details(datasets["test"].to_pandas()) | |
if is_cuda: | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round( | |
torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3 | |
) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(1) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
evaluate_model_all_epochs( | |
model, | |
tokenizer, | |
model_name, | |
adapter_path_base, | |
datasets["test"], | |
results_path, | |
checkpoints_per_epoch=checkpoints_per_epoch, | |
start_epoch=start_epoch, | |
end_epoch=end_epoch, | |
device=device, | |
) | |
if is_cuda: | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round( | |
torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3 | |
) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |