Spaces:
Build error
Build error
import os | |
import sys | |
import torch | |
from dotenv import find_dotenv, load_dotenv | |
found_dotenv = find_dotenv(".env") | |
if len(found_dotenv) == 0: | |
found_dotenv = find_dotenv(".env.example") | |
print(f"loading env vars from: {found_dotenv}") | |
load_dotenv(found_dotenv, override=False) | |
path = os.path.dirname(found_dotenv) | |
print(f"Adding {path} to sys.path") | |
sys.path.append(path) | |
from llm_toolkit.llm_utils import * | |
from llm_toolkit.translation_utils import * | |
device = check_gpu() | |
is_cuda = torch.cuda.is_available() | |
model_name = os.getenv("MODEL_NAME") | |
adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH") | |
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true" | |
data_path = os.getenv("DATA_PATH") | |
results_path = os.getenv("RESULTS_PATH") | |
batch_size = int(os.getenv("BATCH_SIZE", 1)) | |
use_english_datasets = os.getenv("USE_ENGLISH_DATASETS") == "true" | |
max_new_tokens = int(os.getenv("MAX_NEW_TOKENS", 2048)) | |
start_repetition_penalty = float(os.getenv("START_REPETITION_PENALTY", 1.0)) | |
print( | |
model_name, | |
adapter_name_or_path, | |
load_in_4bit, | |
data_path, | |
results_path, | |
use_english_datasets, | |
max_new_tokens, | |
batch_size, | |
) | |
if is_cuda: | |
torch.cuda.empty_cache() | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(0) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
torch.cuda.empty_cache() | |
model, tokenizer = load_model( | |
model_name, load_in_4bit=load_in_4bit, adapter_name_or_path=adapter_name_or_path | |
) | |
if is_cuda: | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |
datasets = load_translation_dataset(data_path, tokenizer) | |
if len(sys.argv) > 1: | |
num = int(sys.argv[1]) | |
if num > 0: | |
print(f"--- evaluating {num} entries") | |
datasets["test"] = datasets["test"].select(range(num)) | |
print_row_details(datasets["test"].to_pandas(), indices=[0, -1]) | |
def on_repetition_penalty_step_completed(model_name, predictions): | |
save_results( | |
model_name, | |
results_path, | |
datasets["test"], | |
predictions, | |
) | |
metrics = calc_metrics(datasets["test"]["english"], predictions, debug=True) | |
print(f"{model_name} metrics: {metrics}") | |
if adapter_name_or_path is not None: | |
model_name += "/" + adapter_name_or_path.split("/")[-1] | |
evaluate_model_with_repetition_penalty( | |
model, | |
tokenizer, | |
model_name, | |
datasets["test"], | |
on_repetition_penalty_step_completed, | |
start_repetition_penalty=start_repetition_penalty, | |
end_repetition_penalty=1.3, | |
step_repetition_penalty=0.02, | |
batch_size=batch_size, | |
max_new_tokens=max_new_tokens, | |
device=device, | |
) | |
if is_cuda: | |
gpu_stats = torch.cuda.get_device_properties(0) | |
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) | |
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) | |
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") | |
print(f"{start_gpu_memory} GB of memory reserved.") | |