Spaces:
Build error
Build error
import os | |
import re | |
import glob | |
import pandas as pd | |
import evaluate | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
from datasets import load_dataset | |
from langchain_openai import ChatOpenAI | |
from langchain_core.prompts import ChatPromptTemplate | |
from tqdm import tqdm | |
from eval_modules.calc_repetitions import * | |
from llm_toolkit.llm_utils import load_tokenizer, print_row_details | |
print(f"loading {__file__}") | |
bleu = evaluate.load("bleu") | |
rouge = evaluate.load("rouge") | |
meteor = evaluate.load("meteor") | |
accuracy = evaluate.load("accuracy") | |
def extract_answer(text, debug=False): | |
if text: | |
# Remove the begin and end tokens | |
text = re.sub( | |
r".*?(assistant|\[/INST\]).+?\b", "", text, flags=re.DOTALL | re.MULTILINE | |
) | |
if debug: | |
print("--------\nstep 1:", text) | |
text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE) | |
if debug: | |
print("--------\nstep 2:", text) | |
text = re.sub( | |
r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE | |
) | |
if debug: | |
print("--------\nstep 3:", text) | |
return text | |
def calc_metrics(references, predictions, debug=False): | |
assert len(references) == len( | |
predictions | |
), f"lengths are difference: {len(references)} != {len(predictions)}" | |
predictions = [extract_answer(text) for text in predictions] | |
results = {} | |
results["meteor"] = meteor.compute(predictions=predictions, references=references)[ | |
"meteor" | |
] | |
results["bleu_scores"] = bleu.compute( | |
predictions=predictions, references=references, max_order=4 | |
) | |
results["rouge_scores"] = rouge.compute( | |
predictions=predictions, references=references | |
) | |
correct = [1 if ref == pred else 0 for ref, pred in zip(references, predictions)] | |
accuracy = sum(correct) / len(references) | |
results["accuracy"] = accuracy | |
if debug: | |
correct_ids = [i for i, c in enumerate(correct) if c == 1] | |
results["correct_ids"] = correct_ids | |
return results | |
def save_results(model_name, results_path, dataset, predictions, debug=False): | |
if not os.path.exists(results_path): | |
# Get the directory part of the file path | |
dir_path = os.path.dirname(results_path) | |
# Create all directories in the path (if they don't exist) | |
os.makedirs(dir_path, exist_ok=True) | |
df = dataset.to_pandas() | |
df.drop(columns=["text", "prompt"], inplace=True, errors="ignore") | |
else: | |
df = pd.read_csv(results_path, on_bad_lines="warn") | |
df[model_name] = predictions | |
if debug: | |
print(df.head(1)) | |
df.to_csv(results_path, index=False) | |
system_prompt = "You are a helpful assistant that translates Chinese to English." | |
def get_few_shot_prompt(dataset, num_shots=5): | |
translation_prompt = "You will be given a Chinese sentence to translate. If it is an incomplete sentence, or if you are unsure about the meaning, simply copy the input text as your output. Do not output any additional sentence such as explanation or reasoning.\n\n" | |
if num_shots > 0: | |
example_translations = "Example Translations:\n" | |
for i in range(num_shots): | |
example_translations += f"Chinese: {dataset[i]['chinese']}\n" | |
example_translations += f"English: {dataset[i]['english']}\n" | |
translation_prompt = translation_prompt + example_translations + "\n" | |
translation_prompt = translation_prompt + "Chinese: {input}\nEnglish:" | |
return translation_prompt | |
def load_translation_dataset(data_path, tokenizer=None, num_shots=5): | |
train_data_file = data_path.replace(".tsv", "-train.tsv") | |
test_data_file = data_path.replace(".tsv", "-test.tsv") | |
if not os.path.exists(train_data_file): | |
print("generating train/test data files") | |
dataset = load_dataset( | |
"csv", data_files=data_path, delimiter="\t", split="train" | |
) | |
print(len(dataset)) | |
dataset = dataset.filter(lambda x: x["chinese"] and x["english"]) | |
datasets = dataset.train_test_split(test_size=0.2) | |
print(len(dataset)) | |
# Convert to pandas DataFrame | |
train_df = pd.DataFrame(datasets["train"]) | |
test_df = pd.DataFrame(datasets["test"]) | |
# Save to TSV | |
train_df.to_csv(train_data_file, sep="\t", index=False) | |
test_df.to_csv(test_data_file, sep="\t", index=False) | |
print("loading train/test data files") | |
datasets = load_dataset( | |
"csv", | |
data_files={"train": train_data_file, "test": test_data_file}, | |
delimiter="\t", | |
) | |
if tokenizer: | |
translation_prompt = get_few_shot_prompt(datasets["train"], num_shots) | |
def formatting_prompts_func(examples): | |
inputs = examples["chinese"] | |
outputs = examples["english"] | |
messages = [ | |
{ | |
"role": "system", | |
"content": system_prompt, | |
}, | |
None, | |
] | |
model_name = os.getenv("MODEL_NAME") | |
# if "mistral" in model_name.lower(): | |
# messages = messages[1:] | |
texts = [] | |
prompts = [] | |
for input, output in zip(inputs, outputs): | |
prompt = translation_prompt.format(input=input) | |
messages[-1] = {"role": "user", "content": prompt} | |
prompt = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
prompts.append(prompt) | |
texts.append(prompt + output + tokenizer.eos_token) | |
return {"text": texts, "prompt": prompts} | |
datasets = datasets.map( | |
formatting_prompts_func, | |
batched=True, | |
) | |
print(datasets) | |
return datasets | |
def count_entries_with_max_tokens(entries, max_tokens): | |
""" | |
Count the number of entries with the max output tokens or more. | |
Parameters: | |
entries (list of int): List of token counts for each entry. | |
max_tokens (int): The maximum token threshold. | |
Returns: | |
int: The number of entries with token counts greater than or equal to max_tokens. | |
""" | |
count = 0 | |
for tokens in entries: | |
if tokens >= max_tokens: | |
count += 1 | |
return count | |
def detect_repetition_scores(row, col, debug=False): | |
# print(f"row: {row}") | |
newline_score, repetition_score, total_repetitions = detect_repetitions( | |
row[col], debug=debug | |
) | |
newline_score -= row["ground_truth_ews_score"] | |
repetition_score -= row["ground_truth_repetition_score"] | |
total_repetitions -= row["ground_truth_total_repetitions"] | |
return pd.Series( | |
[ | |
newline_score if newline_score > 0 else 0, | |
repetition_score if repetition_score > 0 else 0, | |
total_repetitions if total_repetitions > 0 else 0, | |
] | |
) | |
def get_metrics(df, max_output_tokens=2048, variant="rpp"): | |
metrics_df = pd.DataFrame(df.columns.T)[2:] | |
metrics_df.rename(columns={0: "model"}, inplace=True) | |
metrics_df[variant] = metrics_df["model"].apply( | |
lambda x: x.split(f"{variant}-")[-1] | |
) | |
metrics_df["model"] = metrics_df["model"].apply( | |
lambda x: x.split(f"/{variant}-")[0] | |
) | |
metrics_df.reset_index(inplace=True) | |
metrics_df = metrics_df.drop(columns=["index"]) | |
tokenizers = { | |
model: load_tokenizer(model) for model in metrics_df["model"].unique() | |
} | |
meteor = [] | |
bleu_1 = [] | |
rouge_l = [] | |
ews_score = [] | |
repetition_score = [] | |
total_repetitions = [] | |
num_max_output_tokens = [] | |
columns = df.columns[2:] | |
df[ | |
[ | |
"ground_truth_ews_score", | |
"ground_truth_repetition_score", | |
"ground_truth_total_repetitions", | |
] | |
] = df["english"].apply(detect_scores) | |
for col in columns: | |
metrics = calc_metrics(df["english"], df[col], debug=True) | |
print(f"{col}: {metrics}") | |
meteor.append(metrics["meteor"]) | |
bleu_1.append(metrics["bleu_scores"]["bleu"]) | |
rouge_l.append(metrics["rouge_scores"]["rougeL"]) | |
df[["ews_score", "repetition_score", "total_repetitions"]] = df.apply( | |
lambda x: detect_repetition_scores(x, col), axis=1 | |
) | |
ews_score.append(df["ews_score"].mean()) | |
repetition_score.append(df["repetition_score"].mean()) | |
total_repetitions.append(df["total_repetitions"].mean()) | |
model = col.split(f"/{variant}")[0] | |
new_col = f"ground_truth_tokens-{model}" | |
df[new_col] = df["english"].apply( | |
lambda x: len(tokenizers[model](x)["input_ids"]) | |
) | |
new_col = f"output_tokens-{col}" | |
df[new_col] = df[col].apply(lambda x: len(tokenizers[model](x)["input_ids"])) | |
num_max_output_tokens.append( | |
count_entries_with_max_tokens(df[new_col], max_output_tokens) | |
) | |
metrics_df["meteor"] = meteor | |
metrics_df["bleu_1"] = bleu_1 | |
metrics_df["rouge_l"] = rouge_l | |
metrics_df["ews_score"] = ews_score | |
metrics_df["repetition_score"] = repetition_score | |
metrics_df["total_repetitions"] = total_repetitions | |
metrics_df["rap"] = metrics_df.apply( | |
lambda x: x["meteor"] / math.log10(10 + x["total_repetitions"]), axis=1 | |
) | |
metrics_df["num_max_output_tokens"] = num_max_output_tokens | |
return metrics_df | |
def analyze_translation_results(df, col, max_new_tokens=300, repetition_threshold=100): | |
df[["ews_score", "repetition_score", "total_repetitions"]] = df.apply( | |
lambda x: detect_repetition_scores(x, col), axis=1 | |
) | |
rows = df.query(f"total_repetitions > {repetition_threshold}") | |
print( | |
f"*** Found {len(rows)} rows with total_repetitions > {repetition_threshold} for {col}" | |
) | |
for i in range(len(rows)): | |
row = rows.iloc[i] | |
print(row["chinese"]) | |
print("=" * 80) | |
print(row["english"]) | |
print("=" * 80) | |
output = row[col] | |
print(output) | |
print("=" * 80) | |
detect_repetitions(output, debug=True) | |
output_tokens = f"output_tokens-{col}" | |
df2 = df[df[output_tokens] >= max_new_tokens][ | |
["chinese", "english", col, output_tokens] | |
] | |
print( | |
f"\n*** Found {len(df2)} rows with output_tokens >= {max_new_tokens} for {col}" | |
) | |
print_row_details(df2, range(len(df2))) | |
def plot_metrics(metrics_df, figsize=(14, 5), ylim=(0, 0.44)): | |
plt.figure(figsize=figsize) | |
df_melted = pd.melt( | |
metrics_df, id_vars="model", value_vars=["meteor", "bleu_1", "rouge_l"] | |
) | |
barplot = sns.barplot(x="variable", y="value", hue="model", data=df_melted) | |
# Set different hatches for each model | |
hatches = ["/", "\\", "|", "-", "+", "x", "o", "O", ".", "*", "//", "\\\\"] | |
# Create a dictionary to map models to hatches | |
model_hatches = { | |
model: hatches[i % len(hatches)] | |
for i, model in enumerate(metrics_df["model"].unique()) | |
} | |
# Apply hatches based on the model | |
num_vars = len(df_melted["variable"].unique()) | |
for i, bar in enumerate(barplot.patches): | |
model = df_melted["model"].iloc[i // num_vars] | |
bar.set_hatch(model_hatches[model]) | |
# Manually update legend to match the bar hatches | |
handles, labels = barplot.get_legend_handles_labels() | |
for handle, model in zip(handles, metrics_df["model"].unique()): | |
handle.set_hatch(model_hatches[model]) | |
barplot.set_xticklabels(["METEOR", "BLEU-1", "ROUGE-L"]) | |
for p in barplot.patches: | |
if p.get_height() == 0: | |
continue | |
barplot.annotate( | |
f"{p.get_height():.2f}", | |
(p.get_x() + p.get_width() / 2.0, p.get_height()), | |
ha="center", | |
va="center", | |
xytext=(0, 10), | |
textcoords="offset points", | |
) | |
barplot.set(ylim=ylim, ylabel="Scores", xlabel="Metrics") | |
plt.legend(bbox_to_anchor=(0.5, -0.1), loc="upper center") | |
plt.show() | |
def plot_times(perf_df, ylim=0.421): | |
# Adjusted code to put "train-time" bars in red at the bottom | |
fig, ax1 = plt.subplots(figsize=(12, 10)) | |
color_train = "tab:red" | |
color_eval = "orange" | |
ax1.set_xlabel("Models") | |
ax1.set_ylabel("Time (mins)") | |
ax1.set_xticks(range(len(perf_df["model"]))) # Set x-ticks positions | |
ax1.set_xticklabels(perf_df["model"], rotation=90) | |
# Plot "train-time" first so it's at the bottom | |
ax1.bar( | |
perf_df["model"], | |
perf_df["train-time(mins)"], | |
color=color_train, | |
label="train-time", | |
) | |
# Then, plot "eval-time" on top of "train-time" | |
ax1.bar( | |
perf_df["model"], | |
perf_df["eval-time(mins)"], | |
bottom=perf_df["train-time(mins)"], | |
color=color_eval, | |
label="eval-time", | |
) | |
ax1.tick_params(axis="y") | |
ax1.legend(loc="upper left") | |
if "meteor" in perf_df.columns: | |
ax2 = ax1.twinx() | |
color_meteor = "tab:blue" | |
ax2.set_ylabel("METEOR", color=color_meteor) | |
ax2.plot( | |
perf_df["model"], | |
perf_df["meteor"], | |
color=color_meteor, | |
marker="o", | |
label="meteor", | |
) | |
ax2.tick_params(axis="y", labelcolor=color_meteor) | |
ax2.legend(loc="upper right") | |
ax2.set_ylim(ax2.get_ylim()[0], ylim) | |
# Show numbers in bars | |
for p in ax1.patches: | |
height = p.get_height() | |
if height == 0: # Skip bars with height 0 | |
continue | |
ax1.annotate( | |
f"{height:.2f}", | |
(p.get_x() + p.get_width() / 2.0, p.get_y() + height), | |
ha="center", | |
va="center", | |
xytext=(0, -10), | |
textcoords="offset points", | |
) | |
fig.tight_layout() | |
plt.show() | |
def translate_via_openai( | |
text, translation_prompt, max_tokens=None, model="gpt-4o-mini", base_url=None | |
): | |
llm = ChatOpenAI( | |
model=model, | |
temperature=0, | |
max_tokens=max_tokens, | |
timeout=None, | |
max_retries=2, | |
base_url=base_url, | |
) | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
( | |
"system", | |
"You are a helpful assistant that translates Chinese to English.", | |
), | |
( | |
"human", | |
translation_prompt, | |
), | |
] | |
) | |
chain = prompt | llm | |
response = chain.invoke( | |
{ | |
"input": text, | |
} | |
) | |
return response.content | |
def eval_openai(num_shots, datasets, model="gpt-4o-mini", max_new_tokens=300): | |
translation_prompt = get_few_shot_prompt(datasets["train"], num_shots=num_shots) | |
eval_dataset = datasets["test"] | |
total = len(eval_dataset) | |
predictions = [] | |
for i in tqdm(range(total)): | |
output = translate_via_openai( | |
eval_dataset["chinese"][i], | |
translation_prompt, | |
model=model, | |
max_tokens=max_new_tokens, | |
) | |
predictions.append(output) | |
return predictions | |
def convert_time_to_seconds(time_str): | |
# print(f"converting time_str: {time_str}") | |
# Split the time string into its components | |
time_parts = list(map(int, time_str.split(":"))) | |
# Initialize total minutes | |
total_seconds = 0 | |
# Calculate total minutes based on the number of parts | |
if len(time_parts) == 3: # HH:MM:SS | |
hours, minutes, seconds = time_parts | |
total_seconds = hours * 3600 + minutes * 60 + seconds | |
elif len(time_parts) == 2: # MM:SS | |
minutes, seconds = time_parts | |
total_seconds = minutes * 60 + seconds | |
elif len(time_parts) == 1: # SS | |
seconds = time_parts[0] | |
total_seconds = seconds | |
return total_seconds | |
time_pattern = re.compile(r"\[(.{5,10})<00:00") | |
metrics_pattern = re.compile(r"(.*)/shots-(.*) metrics:") | |
def process_log_file(log_file, total_entries): | |
model = [] | |
shots = [] | |
eval_time = [] | |
with open(log_file, "r") as f: | |
try: | |
for line in f: | |
matches = time_pattern.search(line) | |
if matches: | |
time_pattern_matches = matches | |
else: | |
matches = metrics_pattern.search(line) | |
if matches: | |
metrics_pattern_matches = matches | |
groups = metrics_pattern_matches.groups() | |
model.append(groups[0]) | |
shots.append(groups[1]) | |
groups = time_pattern_matches.groups() | |
time_str = groups[0] | |
eval_time.append( | |
convert_time_to_seconds(time_str) / total_entries | |
) | |
except Exception as e: | |
print(f"Error processing log file: {log_file}") | |
print(e) | |
df = pd.DataFrame( | |
{ | |
"model": model, | |
"shots": shots, | |
"eval_time": eval_time, | |
} | |
) | |
return df | |
def load_eval_times(logs_folder, total_entries=1133): | |
# Get a list of all files in the logs folder | |
log_files = glob.glob(os.path.join(logs_folder, "*")) | |
log_files.sort() | |
time_df = pd.DataFrame({"model": [], "shots": [], "eval_time": []}) | |
for log_file in log_files: | |
print(f"Loading content of {log_file}") | |
df = process_log_file(log_file, total_entries=total_entries) | |
time_df = pd.concat([time_df, df], ignore_index=True) | |
time_df["shots"] = time_df["shots"].apply(lambda x: int(x)) | |
return time_df | |
def load_alpaca_data(data_path): | |
alpaca_data_path = "data/alpaca_mac.json" | |
if os.path.exists(alpaca_data_path): | |
print("loading existing data from:", alpaca_data_path) | |
data = pd.read_json(alpaca_data_path, orient="records", lines=False) | |
return data | |
datasets = load_translation_dataset(data_path) | |
prompt_template = get_few_shot_prompt(datasets["train"], num_shots=0) | |
df_train = datasets["train"].to_pandas() | |
df_train["instruction"] = df_train.apply( | |
lambda x: prompt_template.format(input=x["chinese"]), axis=1 | |
) | |
df_alpaca = pd.DataFrame( | |
{ | |
"system": [system_prompt] * len(df_train), | |
"instruction": df_train["instruction"].to_list(), | |
"input": [""] * len(df_train), | |
"output": df_train["english"].to_list(), | |
} | |
) | |
df_alpaca.to_json(alpaca_data_path, orient="records", lines=False, indent=2) | |
return df_alpaca | |