Spaces:
Build error
Build error
import os | |
import sys | |
import evaluate | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from dotenv import find_dotenv, load_dotenv | |
found_dotenv = find_dotenv(".env") | |
if len(found_dotenv) == 0: | |
found_dotenv = find_dotenv(".env.example") | |
print(f"loading env vars from: {found_dotenv}") | |
load_dotenv(found_dotenv, override=False) | |
path = os.path.dirname(found_dotenv) | |
print(f"Adding {path} to sys.path") | |
sys.path.append(path) | |
from llm_toolkit.llm_utils import * | |
from llm_toolkit.translation_utils import * | |
from eval_modules.calc_repetitions_v2d import detect_repetitions | |
model_name = os.getenv("MODEL_NAME") or "microsoft/Phi-3.5-mini-instruct" | |
num_shots = int(os.getenv("NUM_SHOTS", 10)) | |
data_path = os.getenv("DATA_PATH") | |
comet = evaluate.load("comet", config_name="Unbabel/wmt22-cometkiwi-da", gpus=1) | |
meteor = evaluate.load("meteor") | |
bleu = evaluate.load("bleu") | |
rouge = evaluate.load("rouge") | |
def calc_perf_scores(prediction, source, reference, debug=False): | |
if debug: | |
print("prediction:", prediction) | |
print("source:", source) | |
print("reference:", reference) | |
if reference: | |
bleu_scores = bleu.compute( | |
predictions=[prediction], references=[reference], max_order=1 | |
) | |
rouge_scores = rouge.compute(predictions=[prediction], references=[reference]) | |
rouge_scores = rouge.compute(predictions=[prediction], references=[reference]) | |
meteor_scores = meteor.compute(predictions=[prediction], references=[reference]) | |
comet_metric = comet.compute( | |
predictions=[prediction], sources=[source], references=[reference] | |
) | |
result = {"bleu_scores": bleu_scores, "rouge_scores": rouge_scores, "meteor_scores":meteor_scores, "comet_scores": comet_metric} | |
if debug: | |
print("result:", result) | |
return result | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
client = InferenceClient(model_name) | |
datasets = load_translation_dataset(data_path) | |
print_row_details(datasets["test"].to_pandas()) | |
translation_prompt = get_few_shot_prompt(datasets["train"], num_shots) | |
examples = [[row["chinese"]] for row in datasets["test"]][:5] | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
source = message | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": translation_prompt.format(input=message)}) | |
partial_text = "" | |
finish_reason = None | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
frequency_penalty=None, # frequency_penalty, | |
presence_penalty=None, # presence_penalty, | |
top_p=top_p, | |
seed=42, | |
): | |
finish_reason = message.choices[0].finish_reason | |
# print("finish_reason:", finish_reason) | |
if finish_reason is None: | |
new_text = message.choices[0].delta.content | |
partial_text += new_text | |
yield partial_text | |
else: | |
break | |
answer = partial_text | |
(whitespace_score, repetition_score, total_repetitions) = detect_repetitions(answer, debug=True) | |
partial_text += "\n\nRepetition Metrics:\n" | |
partial_text += f"1. Whitespace Score: {whitespace_score:.3f}\n" | |
partial_text += f"1. Repetition Score: {repetition_score:.3f}\n" | |
partial_text += f"1. Total Repetitions: {total_repetitions:.3f}\n" | |
partial_text += ( | |
f"1. Non-Repetitive Ratio: {1 - total_repetitions / len(answer):.3f}\n" | |
) | |
partial_text += "\n\n Performance Metrics:\n" | |
if [source] in examples: | |
idx = examples.index([source]) | |
reference = datasets["test"]["english"][idx] | |
else: | |
reference = "" | |
scores = calc_perf_scores(answer, source, reference, debug=True) | |
partial_text += f'1. COMET: {scores["comet_scores"]["mean_score"]:.3f}\n' | |
if reference: | |
partial_text += f'1. METEOR: {scores["meteor_scores"]["meteor"]:.3f}\n' | |
partial_text += f'1. BLEU-1: {scores["bleu_scores"]["bleu"]:.3f}\n' | |
partial_text += f'1. RougeL: {scores["rouge_scores"]["rougeL"]:.3f}\n' | |
partial_text += f"\n\nGround truth: {reference}\n" | |
partial_text += f"\n\nThe text generation has ended because: {finish_reason}\n" | |
yield partial_text | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
examples=examples, | |
cache_examples=False, | |
textbox=gr.Textbox(placeholder="Enter your Chinese sentence for translation"), | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful assistant that translates Chinese to English.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |