diff --git "a/notebooks/07_tune-lf-py3.11.ipynb" "b/notebooks/07_tune-lf-py3.11.ipynb" new file mode 100644--- /dev/null +++ "b/notebooks/07_tune-lf-py3.11.ipynb" @@ -0,0 +1,7022 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": {}, + "inputWidgets": {}, + "nuid": "0ea8b46b-839b-445b-8043-ccdf4e920ace", + "showTitle": false, + "title": "" + } + }, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": {}, + "inputWidgets": {}, + "nuid": "6d394937-6c99-4a7c-9d32-7600a280032f", + "showTitle": false, + "title": "" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "workding dir: /home/inflaton/code/projects/courses/llm-finetuning\n" + ] + } + ], + "source": [ + "import os\n", + "import sys\n", + "from pathlib import Path\n", + "\n", + "workding_dir = str(Path.cwd().parent)\n", + "os.chdir(workding_dir)\n", + "sys.path.append(workding_dir)\n", + "print(\"workding dir:\", workding_dir)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": {}, + "inputWidgets": {}, + "nuid": "9f67ec60-2f24-411c-84eb-0dd664b44775", + "showTitle": false, + "title": "" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loading env vars from: /home/inflaton/code/projects/courses/llm-finetuning/.env\n" + ] + }, + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from dotenv import find_dotenv, load_dotenv\n", + "\n", + "found_dotenv = find_dotenv(\".env\")\n", + "\n", + "if len(found_dotenv) == 0:\n", + " found_dotenv = find_dotenv(\".env.example\")\n", + "print(f\"loading env vars from: {found_dotenv}\")\n", + "load_dotenv(found_dotenv, override=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "application/vnd.databricks.v1+cell": { + "cellMetadata": {}, + "inputWidgets": {}, + "nuid": "f1597656-8042-4878-9d3b-9ebfb8dd86dc", + "showTitle": false, + "title": "" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "('unsloth/Qwen2-0.5B-Instruct-bnb-4bit',\n", + " True,\n", + " None,\n", + " None,\n", + " 2048,\n", + " 10,\n", + " None,\n", + " 'datasets/mac/mac.tsv',\n", + " 'results/mac-results_lf.csv')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "\n", + "model_name = os.getenv(\"MODEL_NAME\")\n", + "token = os.getenv(\"HF_TOKEN\") or None\n", + "load_in_4bit = os.getenv(\"LOAD_IN_4BIT\") == \"true\"\n", + "local_model = os.getenv(\"LOCAL_MODEL\")\n", + "hub_model = os.getenv(\"HUB_MODEL\")\n", + "num_train_epochs = int(os.getenv(\"NUM_TRAIN_EPOCHS\") or 0)\n", + "data_path = os.getenv(\"DATA_PATH\")\n", + "results_path = os.getenv(\"RESULTS_PATH\")\n", + "\n", + "max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\n", + "dtype = (\n", + " None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+\n", + ")\n", + "\n", + "model_name, load_in_4bit, local_model, hub_model, max_seq_length, num_train_epochs, dtype, data_path, results_path" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sat Jun 29 17:26:00 2024 \n", + "+---------------------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 545.23.07 Driver Version: 546.12 CUDA Version: 12.3 |\n", + "|-----------------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|=========================================+======================+======================|\n", + "| 0 NVIDIA GeForce RTX 4080 ... On | 00000000:01:00.0 Off | N/A |\n", + "| N/A 50C P8 4W / 150W | 129MiB / 12282MiB | 0% Default |\n", + "| | | N/A |\n", + "+-----------------------------------------+----------------------+----------------------+\n", + " \n", + "+---------------------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=======================================================================================|\n", + "| No running processes found |\n", + "+---------------------------------------------------------------------------------------+\n" + ] + } + ], + "source": [ + "!nvidia-smi" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "๐Ÿฆฅ Unsloth: Will patch your computer to enable 2x faster free finetuning.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[nltk_data] Downloading package wordnet to /home/inflaton/nltk_data...\n", + "[nltk_data] Package wordnet is already up-to-date!\n", + "[nltk_data] Downloading package punkt to /home/inflaton/nltk_data...\n", + "[nltk_data] Package punkt is already up-to-date!\n", + "[nltk_data] Downloading package omw-1.4 to /home/inflaton/nltk_data...\n", + "[nltk_data] Package omw-1.4 is already up-to-date!\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "loading /home/inflaton/code/projects/courses/llm-finetuning/llm_toolkit/translation_engine.py\n", + "loading train/test data files\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fabc731ff8e5499a9c842ef6833f3e98", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Generating train split: 0 examples [00:00, ? examples/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "2e186baa65dc4dd1956fa2db0d83b4a1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Generating test split: 0 examples [00:00, ? examples/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DatasetDict({\n", + " train: Dataset({\n", + " features: ['chinese', 'english'],\n", + " num_rows: 4528\n", + " })\n", + " test: Dataset({\n", + " features: ['chinese', 'english'],\n", + " num_rows: 1133\n", + " })\n", + "})\n" + ] + } + ], + "source": [ + "from llm_toolkit.translation_engine import load_translation_dataset\n", + "\n", + "dataset = load_translation_dataset(data_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "df = dataset[\"train\"].to_pandas()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "\n", + "df_alpaca = pd.DataFrame({\"instruction\": [\"Please translate the following Chinese text into English and provide only the translated content, nothing else.\"]*len(df)})" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
instructioninputoutput
0Please translate the following Chinese text in...ๅ…จไป—็€็‹ไป™ๆญๆ•‘ใ€‚Because I was protected by a fox fairy.
1Please translate the following Chinese text in...่ฟ‡ๅŽ๏ผŒ่กจๅ“ฅๅ‘Š่ฏ‰ๅฅนไฟฉ๏ผŒ่ฟ™ไบบๆ˜ฏๅฏผๆผ”๏ฟฝ๏ฟฝๅœจๅค–ๅ›ฝ็•™่ฟ‡ๅญฆ็š„๏ผŒ่ฟ˜ไผš็ผ–ๅ‰ง๏ผŒไปŠๅคฉๆ‹็š„่ฟ™ๆˆ๏ผŒๅฐฑๆ˜ฏไป–่‡ช็ผ–่‡ชๅฏผ็š„ใ€‚He was the director, the cousin later told the...
2Please translate the following Chinese text in...่ฟ™ๅ‡คๅงๅฟฝ็„ถๆƒณ่ตทไธ€ไปถไบ‹ๆฅ๏ผŒไพฟๅ‘็ช—ๅค–ๅซ๏ผšโ€œ่“‰ๅ„ฟๅ›žๆฅ๏ผโ€Xi-feng suddenly seemed to remember something,...
3Please translate the following Chinese text in...ไธ‰ไธช่€็บขๅซๅ…ต่ตฐๅˆฐๅถๆ–‡ๆด้ขๅ‰๏ผŒ้ขๅฏน็€ๅฅน็ซ™ๆˆไบ†ไธ€ๆŽ’โ€”โ€”ๅฝ“ๅนด๏ผŒๅฅนไปฌไนŸๆ˜ฏ่ฟ™ๆ ท้ขๅฏนๅถๅ“ฒๆณฐ็š„โ€”โ€”่ฏ•ๅ›พๅ†็Žฐ...The three old Red Guards stood in front of Ye ...
4Please translate the following Chinese text in...็จ‹ๅ…ˆ็”Ÿ็…งๅ•ๅ…จๆ”ถ๏ผŒ้ƒฝๆ˜ฏไธ€ไธชโ€œ่ฐขโ€ๅญ—๏ผŒ็„ถๅŽ้—ฎ็Ž‹็ฆ็‘ถๆœ‰ไป€ไนˆ่ฏ่ฏดใ€‚Mr. Cheng accepted their toast with equanimity...
............
4523Please translate the following Chinese text in...ๅค–่พนๆœ‰ไธคๅผ ่…ฟๆญช้ข่ฃ‚็š„ๅ…ซไป™ๆกŒๅญ๏ผŒๆกŒๆ—่ƒกไนฑๆก็€ๅ‡ ๆก็‹ญ็ช„็š„ๆœจๅ‡ณใ€‚Two rickety tables with scarred tops and a few...
4524Please translate the following Chinese text in...่ดพ็‘žๅฌไบ†๏ผŒๅ–œ็š„ๆŠ“่€ณๆŒ ่…ฎใ€‚At this last remark Jia Rui positively scratch...
4525Please translate the following Chinese text in...ๅฌไบ†่ฟ™ๆ ท็š„่ฏ„ไปท๏ผŒๆˆ‘ไปฌๅฟƒๆƒ…ๆฟ€ๅŠจ๏ผŒๅ’Œๅคงๅฎถไธ€่ตทๆŒฏ่‡‚้ซ˜ๅ‘ผ๏ผšๆ‰“ๅ€’็Ž‹ไบŒ๏ผHearing comments like this, our emotions were ...
4526Please translate the following Chinese text in...ๆตท่€ๅ…ฌ้“๏ผšโ€œ่ฎฐไฝไบ†ๅ—๏ผŸโ€'Can you remember that?'
4527Please translate the following Chinese text in...ไธŠ้ข่ฏด๏ผŒ่ฟ™ๆ ทๅ†™็ผบๅฐ‘็ป†่Š‚ใ€‚This time the opinions from above said it need...
\n", + "

4528 rows ร— 3 columns

\n", + "
" + ], + "text/plain": [ + " instruction \\\n", + "0 Please translate the following Chinese text in... \n", + "1 Please translate the following Chinese text in... \n", + "2 Please translate the following Chinese text in... \n", + "3 Please translate the following Chinese text in... \n", + "4 Please translate the following Chinese text in... \n", + "... ... \n", + "4523 Please translate the following Chinese text in... \n", + "4524 Please translate the following Chinese text in... \n", + "4525 Please translate the following Chinese text in... \n", + "4526 Please translate the following Chinese text in... \n", + "4527 Please translate the following Chinese text in... \n", + "\n", + " input \\\n", + "0 ๅ…จไป—็€็‹ไป™ๆญๆ•‘ใ€‚ \n", + "1 ่ฟ‡ๅŽ๏ผŒ่กจๅ“ฅๅ‘Š่ฏ‰ๅฅนไฟฉ๏ผŒ่ฟ™ไบบๆ˜ฏๅฏผๆผ”๏ผŒๅœจๅค–ๅ›ฝ็•™่ฟ‡ๅญฆ็š„๏ผŒ่ฟ˜ไผš็ผ–ๅ‰ง๏ผŒไปŠๅคฉๆ‹็š„่ฟ™ๆˆ๏ผŒๅฐฑๆ˜ฏไป–่‡ช็ผ–่‡ชๅฏผ็š„ใ€‚ \n", + "2 ่ฟ™ๅ‡คๅงๅฟฝ็„ถๆƒณ่ตทไธ€ไปถไบ‹ๆฅ๏ผŒไพฟๅ‘็ช—ๅค–ๅซ๏ผšโ€œ่“‰ๅ„ฟๅ›žๆฅ๏ผโ€ \n", + "3 ไธ‰ไธช่€็บขๅซๅ…ต่ตฐๅˆฐๅถๆ–‡ๆด้ขๅ‰๏ผŒ้ขๅฏน็€ๅฅน็ซ™ๆˆไบ†ไธ€ๆŽ’โ€”โ€”ๅฝ“ๅนด๏ผŒๅฅนไปฌไนŸๆ˜ฏ่ฟ™ๆ ท้ขๅฏนๅถๅ“ฒๆณฐ็š„โ€”โ€”่ฏ•ๅ›พๅ†็Žฐ... \n", + "4 ็จ‹ๅ…ˆ็”Ÿ็…งๅ•ๅ…จๆ”ถ๏ผŒ้ƒฝๆ˜ฏไธ€ไธชโ€œ่ฐขโ€ๅญ—๏ผŒ็„ถๅŽ้—ฎ็Ž‹็ฆ็‘ถๆœ‰ไป€ไนˆ่ฏ่ฏดใ€‚ \n", + "... ... \n", + "4523 ๅค–่พนๆœ‰ไธคๅผ ่…ฟๆญช้ข่ฃ‚็š„ๅ…ซไป™ๆกŒๅญ๏ผŒๆกŒๆ—่ƒกไนฑๆก็€ๅ‡ ๆก็‹ญ็ช„็š„ๆœจๅ‡ณใ€‚ \n", + "4524 ่ดพ็‘žๅฌไบ†๏ผŒๅ–œ็š„ๆŠ“่€ณๆŒ ่…ฎใ€‚ \n", + "4525 ๏ฟฝ๏ฟฝ๏ฟฝไบ†่ฟ™ๆ ท็š„่ฏ„ไปท๏ผŒๆˆ‘ไปฌๅฟƒๆƒ…ๆฟ€ๅŠจ๏ผŒๅ’Œๅคงๅฎถไธ€่ตทๆŒฏ่‡‚้ซ˜ๅ‘ผ๏ผšๆ‰“ๅ€’็Ž‹ไบŒ๏ผ \n", + "4526 ๆตท่€ๅ…ฌ้“๏ผšโ€œ่ฎฐไฝไบ†ๅ—๏ผŸโ€ \n", + "4527 ไธŠ้ข่ฏด๏ผŒ่ฟ™ๆ ทๅ†™็ผบๅฐ‘็ป†่Š‚ใ€‚ \n", + "\n", + " output \n", + "0 Because I was protected by a fox fairy. \n", + "1 He was the director, the cousin later told the... \n", + "2 Xi-feng suddenly seemed to remember something,... \n", + "3 The three old Red Guards stood in front of Ye ... \n", + "4 Mr. Cheng accepted their toast with equanimity... \n", + "... ... \n", + "4523 Two rickety tables with scarred tops and a few... \n", + "4524 At this last remark Jia Rui positively scratch... \n", + "4525 Hearing comments like this, our emotions were ... \n", + "4526 'Can you remember that?' \n", + "4527 This time the opinions from above said it need... \n", + "\n", + "[4528 rows x 3 columns]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_alpaca[\"input\"] = df[\"chinese\"]\n", + "df_alpaca[\"output\"] = df[\"english\"]\n", + "df_alpaca" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "df_alpaca.to_json(\n", + " \"llama-factory/data/alpaca_mac.json\", orient=\"records\", lines=False, indent=2\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_json(\"llama-factory/data/alpaca_mac.json\", orient=\"records\", lines=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
instructioninputoutput
0Please translate the following Chinese text in...ๅ…จไป—็€็‹ไป™ๆญๆ•‘ใ€‚Because I was protected by a fox fairy.
1Please translate the following Chinese text in...่ฟ‡ๅŽ๏ผŒ่กจๅ“ฅๅ‘Š่ฏ‰ๅฅนไฟฉ๏ผŒ่ฟ™ไบบๆ˜ฏๅฏผๆผ”๏ผŒๅœจๅค–ๅ›ฝ็•™่ฟ‡ๅญฆ็š„๏ผŒ่ฟ˜ไผš็ผ–ๅ‰ง๏ผŒไปŠๅคฉๆ‹็š„่ฟ™ๆˆ๏ผŒๅฐฑๆ˜ฏไป–่‡ช็ผ–่‡ชๅฏผ็š„ใ€‚He was the director, the cousin later told the...
2Please translate the following Chinese text in...่ฟ™ๅ‡คๅงๅฟฝ็„ถๆƒณ่ตทไธ€ไปถไบ‹ๆฅ๏ผŒไพฟๅ‘็ช—ๅค–ๅซ๏ผšโ€œ่“‰ๅ„ฟๅ›žๆฅ๏ผโ€Xi-feng suddenly seemed to remember something,...
3Please translate the following Chinese text in...ไธ‰ไธช่€็บขๅซๅ…ต่ตฐๅˆฐๅถๆ–‡ๆด้ขๅ‰๏ผŒ้ขๅฏน็€ๅฅน็ซ™ๆˆไบ†ไธ€ๆŽ’โ€”โ€”ๅฝ“ๅนด๏ผŒๅฅนไปฌไนŸๆ˜ฏ่ฟ™ๆ ท้ขๅฏนๅถๅ“ฒๆณฐ็š„โ€”โ€”่ฏ•ๅ›พๅ†็Žฐ...The three old Red Guards stood in front of Ye ...
4Please translate the following Chinese text in...็จ‹ๅ…ˆ็”Ÿ็…งๅ•ๅ…จๆ”ถ๏ผŒ้ƒฝๆ˜ฏไธ€ไธชโ€œ่ฐขโ€ๅญ—๏ผŒ็„ถๅŽ้—ฎ็Ž‹็ฆ็‘ถๆœ‰ไป€ไนˆ่ฏ่ฏดใ€‚Mr. Cheng accepted their toast with equanimity...
\n", + "
" + ], + "text/plain": [ + " instruction \\\n", + "0 Please translate the following Chinese text in... \n", + "1 Please translate the following Chinese text in... \n", + "2 Please translate the following Chinese text in... \n", + "3 Please translate the following Chinese text in... \n", + "4 Please translate the following Chinese text in... \n", + "\n", + " input \\\n", + "0 ๅ…จไป—็€็‹ไป™ๆญๆ•‘ใ€‚ \n", + "1 ่ฟ‡ๅŽ๏ผŒ่กจๅ“ฅๅ‘Š่ฏ‰ๅฅนไฟฉ๏ผŒ่ฟ™ไบบๆ˜ฏๅฏผๆผ”๏ผŒๅœจๅค–ๅ›ฝ็•™่ฟ‡ๅญฆ็š„๏ผŒ่ฟ˜ไผš็ผ–ๅ‰ง๏ผŒไปŠๅคฉๆ‹็š„่ฟ™ๆˆ๏ผŒๅฐฑๆ˜ฏไป–่‡ช็ผ–่‡ชๅฏผ็š„ใ€‚ \n", + "2 ่ฟ™ๅ‡คๅงๅฟฝ็„ถๆƒณ่ตทไธ€ไปถไบ‹ๆฅ๏ผŒไพฟๅ‘็ช—ๅค–ๅซ๏ผšโ€œ่“‰ๅ„ฟๅ›žๆฅ๏ผโ€ \n", + "3 ไธ‰ไธช่€็บขๅซๅ…ต่ตฐๅˆฐๅถๆ–‡ๆด้ขๅ‰๏ผŒ้ขๅฏน็€ๅฅน็ซ™ๆˆไบ†ไธ€ๆŽ’โ€”โ€”ๅฝ“ๅนด๏ผŒๅฅนไปฌไนŸๆ˜ฏ่ฟ™ๆ ท้ขๅฏนๅถๅ“ฒๆณฐ็š„โ€”โ€”่ฏ•ๅ›พๅ†็Žฐ... \n", + "4 ็จ‹ๅ…ˆ็”Ÿ็…งๅ•ๅ…จๆ”ถ๏ผŒ้ƒฝๆ˜ฏไธ€ไธชโ€œ่ฐขโ€ๅญ—๏ผŒ็„ถๅŽ้—ฎ็Ž‹็ฆ็‘ถๆœ‰ไป€ไนˆ่ฏ่ฏดใ€‚ \n", + "\n", + " output \n", + "0 Because I was protected by a fox fairy. \n", + "1 He was the director, the cousin later told the... \n", + "2 Xi-feng suddenly seemed to remember something,... \n", + "3 The three old Red Guards stood in front of Ye ... \n", + "4 Mr. Cheng accepted their toast with equanimity... " + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Python 3.11.9\n", + "\u001b[33mWARNING: Package(s) not found: flash-attn\u001b[0m\u001b[33m\n", + "\u001b[0mCPU times: user 23.2 ms, sys: 3.38 ms, total: 26.6 ms\n", + "Wall time: 518 ms\n" + ] + } + ], + "source": [ + "%%time\n", + "!python --version\n", + "!pip show flash-attn" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current Directory:\n", + "/home/inflaton/code/projects/courses/llm-finetuning/llama-factory\n", + "06/29/2024 21:58:18 - INFO - llamafactory.hparams.parser - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: False, compute dtype: torch.bfloat16\n", + "[INFO|tokenization_utils_base.py:2161] 2024-06-29 21:58:18,444 >> loading file vocab.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/vocab.json\n", + "[INFO|tokenization_utils_base.py:2161] 2024-06-29 21:58:18,444 >> loading file merges.txt from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/merges.txt\n", + "[INFO|tokenization_utils_base.py:2161] 2024-06-29 21:58:18,444 >> loading file tokenizer.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/tokenizer.json\n", + "[INFO|tokenization_utils_base.py:2161] 2024-06-29 21:58:18,444 >> loading file added_tokens.json from cache at None\n", + "[INFO|tokenization_utils_base.py:2161] 2024-06-29 21:58:18,444 >> loading file special_tokens_map.json from cache at None\n", + "[INFO|tokenization_utils_base.py:2161] 2024-06-29 21:58:18,444 >> loading file tokenizer_config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/tokenizer_config.json\n", + "[WARNING|logging.py:313] 2024-06-29 21:58:18,572 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n", + "06/29/2024 21:58:18 - INFO - llamafactory.data.template - Replace eos token: <|im_end|>\n", + "06/29/2024 21:58:18 - INFO - llamafactory.data.template - Add <|im_start|> to stop words.\n", + "06/29/2024 21:58:18 - INFO - llamafactory.data.loader - Loading dataset alpaca_mac.json...\n", + "Converting format of dataset (num_proc=16): 100%|โ–ˆ| 4528/4528 [00:00<00:00, 1613\n", + "Running tokenizer on dataset (num_proc=16): 100%|โ–ˆ| 4528/4528 [00:01<00:00, 3159\n", + "input_ids:\n", + "[151644, 872, 198, 5501, 14683, 279, 2701, 8453, 1467, 1119, 6364, 323, 3410, 1172, 279, 24531, 2213, 11, 4302, 770, 624, 35987, 102895, 99164, 100324, 100717, 100095, 99509, 1773, 151645, 198, 151644, 77091, 198, 17949, 358, 572, 2617, 553, 264, 38835, 44486, 13, 151645]\n", + "inputs:\n", + "<|im_start|>user\n", + "Please translate the following Chinese text into English and provide only the translated content, nothing else.\n", + "ๅ…จไป—็€็‹ไป™ๆญๆ•‘ใ€‚<|im_end|>\n", + "<|im_start|>assistant\n", + "Because I was protected by a fox fairy.<|im_end|>\n", + "label_ids:\n", + "[-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 17949, 358, 572, 2617, 553, 264, 38835, 44486, 13, 151645]\n", + "labels:\n", + "Because I was protected by a fox fairy.<|im_end|>\n", + "[INFO|configuration_utils.py:733] 2024-06-29 21:58:21,872 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-29 21:58:21,873 >> Model config Qwen2Config {\n", + " \"_name_or_path\": \"Qwen/Qwen2-0.5B-Instruct\",\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 896,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 4864,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 24,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 14,\n", + " \"num_hidden_layers\": 24,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|modeling_utils.py:3556] 2024-06-29 21:58:21,942 >> loading weights file model.safetensors from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/model.safetensors\n", + "[INFO|modeling_utils.py:1531] 2024-06-29 21:58:24,477 >> Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.\n", + "[INFO|configuration_utils.py:1000] 2024-06-29 21:58:24,480 >> Generate config GenerationConfig {\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645\n", + "}\n", + "\n", + "[INFO|modeling_utils.py:4364] 2024-06-29 21:58:59,030 >> All model checkpoint weights were used when initializing Qwen2ForCausalLM.\n", + "\n", + "[INFO|modeling_utils.py:4372] 2024-06-29 21:58:59,030 >> All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at Qwen/Qwen2-0.5B-Instruct.\n", + "If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.\n", + "[INFO|configuration_utils.py:955] 2024-06-29 21:58:59,317 >> loading configuration file generation_config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/generation_config.json\n", + "[INFO|configuration_utils.py:1000] 2024-06-29 21:58:59,317 >> Generate config GenerationConfig {\n", + " \"bos_token_id\": 151643,\n", + " \"do_sample\": true,\n", + " \"eos_token_id\": [\n", + " 151645,\n", + " 151643\n", + " ],\n", + " \"pad_token_id\": 151643,\n", + " \"repetition_penalty\": 1.1,\n", + " \"temperature\": 0.7,\n", + " \"top_k\": 20,\n", + " \"top_p\": 0.8\n", + "}\n", + "\n", + "06/29/2024 21:58:59 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.\n", + "06/29/2024 21:58:59 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.\n", + "06/29/2024 21:58:59 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.\n", + "06/29/2024 21:58:59 - INFO - llamafactory.model.adapter - Fine-tuning method: LoRA\n", + "06/29/2024 21:58:59 - INFO - llamafactory.model.model_utils.misc - Found linear modules: q_proj,up_proj,k_proj,v_proj,gate_proj,down_proj,o_proj\n", + "06/29/2024 21:58:59 - INFO - llamafactory.model.loader - trainable params: 4,399,104 || all params: 498,431,872 || trainable%: 0.8826\n", + "[INFO|trainer.py:642] 2024-06-29 21:58:59,830 >> Using auto half precision backend\n", + "06/29/2024 21:58:59 - WARNING - llamafactory.train.callbacks - Previous trainer log in this folder will be deleted.\n", + "[INFO|trainer.py:2128] 2024-06-29 21:58:59,963 >> ***** Running training *****\n", + "[INFO|trainer.py:2129] 2024-06-29 21:58:59,963 >> Num examples = 4,482\n", + "[INFO|trainer.py:2130] 2024-06-29 21:58:59,963 >> Num Epochs = 10\n", + "[INFO|trainer.py:2131] 2024-06-29 21:58:59,963 >> Instantaneous batch size per device = 1\n", + "[INFO|trainer.py:2134] 2024-06-29 21:58:59,963 >> Total train batch size (w. parallel, distributed & accumulation) = 8\n", + "[INFO|trainer.py:2135] 2024-06-29 21:58:59,963 >> Gradient Accumulation steps = 8\n", + "[INFO|trainer.py:2136] 2024-06-29 21:58:59,963 >> Total optimization steps = 5,600\n", + "[INFO|trainer.py:2137] 2024-06-29 21:58:59,964 >> Number of trainable parameters = 4,399,104\n", + "{'loss': 2.5824, 'grad_norm': 3.00181245803833, 'learning_rate': 1.7857142857142857e-06, 'epoch': 0.02}\n", + "{'loss': 2.7043, 'grad_norm': 3.7918665409088135, 'learning_rate': 3.5714285714285714e-06, 'epoch': 0.04}\n", + "{'loss': 2.5845, 'grad_norm': 2.4548499584198, 'learning_rate': 5.357142857142857e-06, 'epoch': 0.05}\n", + "{'loss': 2.5238, 'grad_norm': 5.136275291442871, 'learning_rate': 7.142857142857143e-06, 'epoch': 0.07}\n", + "{'loss': 2.7407, 'grad_norm': 2.911478281021118, 'learning_rate': 8.92857142857143e-06, 'epoch': 0.09}\n", + "{'loss': 2.4438, 'grad_norm': 2.7009449005126953, 'learning_rate': 1.0714285714285714e-05, 'epoch': 0.11}\n", + "{'loss': 2.619, 'grad_norm': 2.6438188552856445, 'learning_rate': 1.25e-05, 'epoch': 0.12}\n", + "{'loss': 2.3602, 'grad_norm': 2.3748607635498047, 'learning_rate': 1.4285714285714285e-05, 'epoch': 0.14}\n", + "{'loss': 2.5023, 'grad_norm': 2.8664743900299072, 'learning_rate': 1.6071428571428572e-05, 'epoch': 0.16}\n", + "{'loss': 2.3225, 'grad_norm': 2.3505067825317383, 'learning_rate': 1.785714285714286e-05, 'epoch': 0.18}\n", + "{'loss': 2.3869, 'grad_norm': 3.261944532394409, 'learning_rate': 1.9642857142857145e-05, 'epoch': 0.2}\n", + "{'loss': 2.3922, 'grad_norm': 2.6836485862731934, 'learning_rate': 2.1428571428571428e-05, 'epoch': 0.21}\n", + "{'loss': 2.3024, 'grad_norm': 2.848069667816162, 'learning_rate': 2.3214285714285715e-05, 'epoch': 0.23}\n", + "{'loss': 2.3501, 'grad_norm': 3.22798752784729, 'learning_rate': 2.5e-05, 'epoch': 0.25}\n", + "{'loss': 2.2154, 'grad_norm': 2.441416025161743, 'learning_rate': 2.6785714285714288e-05, 'epoch': 0.27}\n", + "{'loss': 2.2651, 'grad_norm': 2.3891408443450928, 'learning_rate': 2.857142857142857e-05, 'epoch': 0.29}\n", + "{'loss': 2.333, 'grad_norm': 2.3359410762786865, 'learning_rate': 3.0357142857142857e-05, 'epoch': 0.3}\n", + "{'loss': 2.1135, 'grad_norm': 2.6461141109466553, 'learning_rate': 3.2142857142857144e-05, 'epoch': 0.32}\n", + "{'loss': 2.2379, 'grad_norm': 3.4454798698425293, 'learning_rate': 3.392857142857143e-05, 'epoch': 0.34}\n", + "{'loss': 2.4006, 'grad_norm': 2.9662983417510986, 'learning_rate': 3.571428571428572e-05, 'epoch': 0.36}\n", + "{'loss': 2.3065, 'grad_norm': 2.796970844268799, 'learning_rate': 3.7500000000000003e-05, 'epoch': 0.37}\n", + "{'loss': 2.2302, 'grad_norm': 3.6208152770996094, 'learning_rate': 3.928571428571429e-05, 'epoch': 0.39}\n", + "{'loss': 2.1966, 'grad_norm': 3.335953950881958, 'learning_rate': 4.107142857142857e-05, 'epoch': 0.41}\n", + "{'loss': 2.3829, 'grad_norm': 4.235249042510986, 'learning_rate': 4.2857142857142856e-05, 'epoch': 0.43}\n", + "{'loss': 2.2592, 'grad_norm': 3.228585720062256, 'learning_rate': 4.464285714285715e-05, 'epoch': 0.45}\n", + "{'loss': 2.2236, 'grad_norm': 3.2165491580963135, 'learning_rate': 4.642857142857143e-05, 'epoch': 0.46}\n", + "{'loss': 2.2113, 'grad_norm': 4.193121433258057, 'learning_rate': 4.8214285714285716e-05, 'epoch': 0.48}\n", + "{'loss': 2.3292, 'grad_norm': 4.554675579071045, 'learning_rate': 5e-05, 'epoch': 0.5}\n", + "{'loss': 2.1239, 'grad_norm': 2.7911994457244873, 'learning_rate': 5.1785714285714296e-05, 'epoch': 0.52}\n", + "{'loss': 2.2483, 'grad_norm': 3.6781301498413086, 'learning_rate': 5.3571428571428575e-05, 'epoch': 0.54}\n", + "{'loss': 2.2574, 'grad_norm': 4.210690021514893, 'learning_rate': 5.535714285714286e-05, 'epoch': 0.55}\n", + "{'loss': 2.0374, 'grad_norm': 6.651491165161133, 'learning_rate': 5.714285714285714e-05, 'epoch': 0.57}\n", + "{'loss': 2.1021, 'grad_norm': 5.034158706665039, 'learning_rate': 5.8928571428571435e-05, 'epoch': 0.59}\n", + "{'loss': 2.1575, 'grad_norm': 4.4245381355285645, 'learning_rate': 6.0714285714285715e-05, 'epoch': 0.61}\n", + "{'loss': 2.1584, 'grad_norm': 4.884017467498779, 'learning_rate': 6.25e-05, 'epoch': 0.62}\n", + "{'loss': 2.0592, 'grad_norm': 3.4757015705108643, 'learning_rate': 6.428571428571429e-05, 'epoch': 0.64}\n", + "{'loss': 2.2959, 'grad_norm': 4.756143093109131, 'learning_rate': 6.607142857142857e-05, 'epoch': 0.66}\n", + "{'loss': 2.2236, 'grad_norm': 3.61995005607605, 'learning_rate': 6.785714285714286e-05, 'epoch': 0.68}\n", + "{'loss': 1.9521, 'grad_norm': 3.775660991668701, 'learning_rate': 6.964285714285715e-05, 'epoch': 0.7}\n", + "{'loss': 2.1048, 'grad_norm': 3.84194016456604, 'learning_rate': 7.142857142857143e-05, 'epoch': 0.71}\n", + "{'loss': 2.2049, 'grad_norm': 3.697145462036133, 'learning_rate': 7.321428571428571e-05, 'epoch': 0.73}\n", + "{'loss': 2.2091, 'grad_norm': 3.071280002593994, 'learning_rate': 7.500000000000001e-05, 'epoch': 0.75}\n", + "{'loss': 2.1879, 'grad_norm': 3.8867111206054688, 'learning_rate': 7.67857142857143e-05, 'epoch': 0.77}\n", + "{'loss': 2.0959, 'grad_norm': 4.871102333068848, 'learning_rate': 7.857142857142858e-05, 'epoch': 0.79}\n", + "{'loss': 2.0237, 'grad_norm': 2.9602854251861572, 'learning_rate': 8.035714285714287e-05, 'epoch': 0.8}\n", + "{'loss': 2.12, 'grad_norm': 3.3257362842559814, 'learning_rate': 8.214285714285714e-05, 'epoch': 0.82}\n", + "{'loss': 2.1227, 'grad_norm': 5.4583024978637695, 'learning_rate': 8.392857142857144e-05, 'epoch': 0.84}\n", + "{'loss': 2.1448, 'grad_norm': 3.455509901046753, 'learning_rate': 8.571428571428571e-05, 'epoch': 0.86}\n", + "{'loss': 2.138, 'grad_norm': 2.953312397003174, 'learning_rate': 8.75e-05, 'epoch': 0.87}\n", + "{'loss': 2.3248, 'grad_norm': 3.1288394927978516, 'learning_rate': 8.92857142857143e-05, 'epoch': 0.89}\n", + "{'loss': 2.2541, 'grad_norm': 3.630788803100586, 'learning_rate': 9.107142857142857e-05, 'epoch': 0.91}\n", + "{'loss': 2.1579, 'grad_norm': 4.1369805335998535, 'learning_rate': 9.285714285714286e-05, 'epoch': 0.93}\n", + "{'loss': 2.1881, 'grad_norm': 3.945438861846924, 'learning_rate': 9.464285714285715e-05, 'epoch': 0.95}\n", + "{'loss': 2.1433, 'grad_norm': 3.308486223220825, 'learning_rate': 9.642857142857143e-05, 'epoch': 0.96}\n", + "{'loss': 2.1414, 'grad_norm': 3.59633207321167, 'learning_rate': 9.821428571428572e-05, 'epoch': 0.98}\n", + "{'loss': 2.1674, 'grad_norm': 3.1946074962615967, 'learning_rate': 0.0001, 'epoch': 1.0}\n", + " 10%|โ–ˆโ–ˆโ–ˆโ–Š | 560/5600 [11:54<1:46:21, 1.27s/it][INFO|trainer.py:3788] 2024-06-29 22:10:54,528 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-29 22:10:54,528 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-29 22:10:54,528 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-0.5b/lora/sft/checkpoint-560\n", + "[INFO|configuration_utils.py:733] 2024-06-29 22:10:57,646 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-29 22:10:57,646 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 896,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 4864,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 24,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 14,\n", + " \"num_hidden_layers\": 24,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-29 22:10:57,680 >> tokenizer config file saved in saves/qwen2-0.5b/lora/sft/checkpoint-560/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-29 22:10:57,680 >> Special tokens file saved in saves/qwen2-0.5b/lora/sft/checkpoint-560/special_tokens_map.json\n", + "{'loss': 2.0604, 'grad_norm': 3.1620354652404785, 'learning_rate': 9.999902864657691e-05, 'epoch': 1.02}\n", + "{'loss': 1.8643, 'grad_norm': 3.8117380142211914, 'learning_rate': 9.999611462404875e-05, 'epoch': 1.04}\n", + "{'loss': 2.0455, 'grad_norm': 3.2619926929473877, 'learning_rate': 9.999125804563732e-05, 'epoch': 1.05}\n", + "{'loss': 1.9864, 'grad_norm': 4.930575370788574, 'learning_rate': 9.998445910004082e-05, 'epoch': 1.07}\n", + "{'loss': 1.9508, 'grad_norm': 3.7913410663604736, 'learning_rate': 9.997571805142639e-05, 'epoch': 1.09}\n", + "{'loss': 1.9803, 'grad_norm': 4.443136215209961, 'learning_rate': 9.996503523941994e-05, 'epoch': 1.11}\n", + "{'loss': 1.9275, 'grad_norm': 3.6109349727630615, 'learning_rate': 9.99524110790929e-05, 'epoch': 1.12}\n", + "{'loss': 1.9954, 'grad_norm': 5.655592918395996, 'learning_rate': 9.993784606094612e-05, 'epoch': 1.14}\n", + "{'loss': 1.9877, 'grad_norm': 3.884321928024292, 'learning_rate': 9.992134075089084e-05, 'epoch': 1.16}\n", + "{'loss': 1.8812, 'grad_norm': 3.8242244720458984, 'learning_rate': 9.99028957902266e-05, 'epoch': 1.18}\n", + "{'loss': 1.8684, 'grad_norm': 2.90846586227417, 'learning_rate': 9.988251189561645e-05, 'epoch': 1.2}\n", + "{'loss': 1.993, 'grad_norm': 3.7888333797454834, 'learning_rate': 9.986018985905901e-05, 'epoch': 1.21}\n", + "{'loss': 1.8779, 'grad_norm': 4.632900714874268, 'learning_rate': 9.983593054785776e-05, 'epoch': 1.23}\n", + "{'loss': 1.999, 'grad_norm': 4.890506267547607, 'learning_rate': 9.980973490458728e-05, 'epoch': 1.25}\n", + "{'loss': 1.9202, 'grad_norm': 4.923672676086426, 'learning_rate': 9.978160394705668e-05, 'epoch': 1.27}\n", + "{'loss': 2.1275, 'grad_norm': 4.535311222076416, 'learning_rate': 9.975153876827008e-05, 'epoch': 1.29}\n", + "{'loss': 2.0239, 'grad_norm': 3.3138980865478516, 'learning_rate': 9.971954053638399e-05, 'epoch': 1.3}\n", + "{'loss': 2.0188, 'grad_norm': 3.4345853328704834, 'learning_rate': 9.968561049466214e-05, 'epoch': 1.32}\n", + "{'loss': 2.0142, 'grad_norm': 8.660140991210938, 'learning_rate': 9.964974996142698e-05, 'epoch': 1.34}\n", + "{'loss': 1.7658, 'grad_norm': 4.349238872528076, 'learning_rate': 9.961196033000861e-05, 'epoch': 1.36}\n", + "{'loss': 1.9781, 'grad_norm': 4.784688949584961, 'learning_rate': 9.957224306869053e-05, 'epoch': 1.37}\n", + "{'loss': 1.8478, 'grad_norm': 5.488619327545166, 'learning_rate': 9.953059972065265e-05, 'epoch': 1.39}\n", + "{'loss': 1.719, 'grad_norm': 3.712329387664795, 'learning_rate': 9.948703190391131e-05, 'epoch': 1.41}\n", + "{'loss': 2.0146, 'grad_norm': 4.957381248474121, 'learning_rate': 9.944154131125642e-05, 'epoch': 1.43}\n", + "{'loss': 1.8996, 'grad_norm': 4.802273273468018, 'learning_rate': 9.939412971018574e-05, 'epoch': 1.45}\n", + "{'loss': 1.9122, 'grad_norm': 3.6675291061401367, 'learning_rate': 9.934479894283606e-05, 'epoch': 1.46}\n", + "{'loss': 2.0716, 'grad_norm': 3.885627031326294, 'learning_rate': 9.92935509259118e-05, 'epoch': 1.48}\n", + "{'loss': 1.8866, 'grad_norm': 5.027438640594482, 'learning_rate': 9.924038765061042e-05, 'epoch': 1.5}\n", + "{'loss': 1.8188, 'grad_norm': 3.39078426361084, 'learning_rate': 9.918531118254507e-05, 'epoch': 1.52}\n", + "{'loss': 1.948, 'grad_norm': 4.390409469604492, 'learning_rate': 9.912832366166442e-05, 'epoch': 1.54}\n", + "{'loss': 1.9499, 'grad_norm': 5.019458770751953, 'learning_rate': 9.906942730216939e-05, 'epoch': 1.55}\n", + "{'loss': 1.8564, 'grad_norm': 3.9593818187713623, 'learning_rate': 9.900862439242719e-05, 'epoch': 1.57}\n", + "{'loss': 1.9739, 'grad_norm': 4.117242336273193, 'learning_rate': 9.894591729488242e-05, 'epoch': 1.59}\n", + "{'loss': 2.0614, 'grad_norm': 3.597482204437256, 'learning_rate': 9.888130844596524e-05, 'epoch': 1.61}\n", + "{'loss': 1.8292, 'grad_norm': 3.4714455604553223, 'learning_rate': 9.881480035599667e-05, 'epoch': 1.62}\n", + "{'loss': 1.8707, 'grad_norm': 3.4483628273010254, 'learning_rate': 9.874639560909117e-05, 'epoch': 1.64}\n", + "{'loss': 1.8787, 'grad_norm': 3.199208974838257, 'learning_rate': 9.867609686305617e-05, 'epoch': 1.66}\n", + "{'loss': 1.8856, 'grad_norm': 3.4779880046844482, 'learning_rate': 9.860390684928873e-05, 'epoch': 1.68}\n", + "{'loss': 1.8618, 'grad_norm': 5.559018135070801, 'learning_rate': 9.852982837266955e-05, 'epoch': 1.7}\n", + "{'loss': 1.864, 'grad_norm': 4.512182235717773, 'learning_rate': 9.84538643114539e-05, 'epoch': 1.71}\n", + "{'loss': 1.9054, 'grad_norm': 3.1477646827697754, 'learning_rate': 9.837601761715983e-05, 'epoch': 1.73}\n", + "{'loss': 2.0045, 'grad_norm': 3.805159091949463, 'learning_rate': 9.829629131445342e-05, 'epoch': 1.75}\n", + "{'loss': 1.9549, 'grad_norm': 3.356356143951416, 'learning_rate': 9.82146885010314e-05, 'epoch': 1.77}\n", + "{'loss': 1.8738, 'grad_norm': 4.890620231628418, 'learning_rate': 9.81312123475006e-05, 'epoch': 1.78}\n", + "{'loss': 1.906, 'grad_norm': 3.6688284873962402, 'learning_rate': 9.804586609725499e-05, 'epoch': 1.8}\n", + "{'loss': 1.8104, 'grad_norm': 3.987600564956665, 'learning_rate': 9.79586530663494e-05, 'epoch': 1.82}\n", + "{'loss': 1.7931, 'grad_norm': 3.517052173614502, 'learning_rate': 9.78695766433709e-05, 'epoch': 1.84}\n", + "{'loss': 1.984, 'grad_norm': 3.507730722427368, 'learning_rate': 9.777864028930705e-05, 'epoch': 1.86}\n", + "{'loss': 1.8427, 'grad_norm': 4.782810211181641, 'learning_rate': 9.768584753741134e-05, 'epoch': 1.87}\n", + "{'loss': 1.8765, 'grad_norm': 4.302423000335693, 'learning_rate': 9.759120199306613e-05, 'epoch': 1.89}\n", + "{'loss': 2.0702, 'grad_norm': 4.296674728393555, 'learning_rate': 9.74947073336423e-05, 'epoch': 1.91}\n", + "{'loss': 2.0158, 'grad_norm': 4.246646881103516, 'learning_rate': 9.73963673083566e-05, 'epoch': 1.93}\n", + "{'loss': 1.9104, 'grad_norm': 3.5928955078125, 'learning_rate': 9.72961857381258e-05, 'epoch': 1.95}\n", + "{'loss': 1.7656, 'grad_norm': 3.674893379211426, 'learning_rate': 9.719416651541839e-05, 'epoch': 1.96}\n", + "{'loss': 1.8906, 'grad_norm': 3.089376211166382, 'learning_rate': 9.709031360410318e-05, 'epoch': 1.98}\n", + "{'loss': 1.9109, 'grad_norm': 4.134565830230713, 'learning_rate': 9.698463103929542e-05, 'epoch': 2.0}\n", + " 20%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1120/5600 [23:38<1:33:12, 1.25s/it][INFO|trainer.py:3788] 2024-06-29 22:22:38,708 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-29 22:22:38,709 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-29 22:22:38,709 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-0.5b/lora/sft/checkpoint-1120\n", + "[INFO|configuration_utils.py:733] 2024-06-29 22:22:41,066 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-29 22:22:41,066 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 896,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 4864,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 24,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 14,\n", + " \"num_hidden_layers\": 24,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-29 22:22:41,093 >> tokenizer config file saved in saves/qwen2-0.5b/lora/sft/checkpoint-1120/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-29 22:22:41,093 >> Special tokens file saved in saves/qwen2-0.5b/lora/sft/checkpoint-1120/special_tokens_map.json\n", + "{'loss': 1.6353, 'grad_norm': 4.750072479248047, 'learning_rate': 9.687712292719997e-05, 'epoch': 2.02}\n", + "{'loss': 1.4907, 'grad_norm': 3.403005838394165, 'learning_rate': 9.67677934449517e-05, 'epoch': 2.03}\n", + "{'loss': 1.5814, 'grad_norm': 4.471570014953613, 'learning_rate': 9.665664684045333e-05, 'epoch': 2.05}\n", + "{'loss': 1.5284, 'grad_norm': 5.069768905639648, 'learning_rate': 9.654368743221022e-05, 'epoch': 2.07}\n", + "{'loss': 1.424, 'grad_norm': 3.740079641342163, 'learning_rate': 9.642891960916268e-05, 'epoch': 2.09}\n", + "{'loss': 1.5123, 'grad_norm': 3.6874232292175293, 'learning_rate': 9.631234783051544e-05, 'epoch': 2.11}\n", + "{'loss': 1.7386, 'grad_norm': 4.291646480560303, 'learning_rate': 9.619397662556435e-05, 'epoch': 2.12}\n", + "{'loss': 1.5025, 'grad_norm': 4.665364742279053, 'learning_rate': 9.607381059352038e-05, 'epoch': 2.14}\n", + "{'loss': 1.5494, 'grad_norm': 4.6409173011779785, 'learning_rate': 9.595185440333103e-05, 'epoch': 2.16}\n", + "{'loss': 1.596, 'grad_norm': 5.967792987823486, 'learning_rate': 9.582811279349882e-05, 'epoch': 2.18}\n", + "{'loss': 1.5333, 'grad_norm': 3.9247050285339355, 'learning_rate': 9.570259057189717e-05, 'epoch': 2.2}\n", + "{'loss': 1.5773, 'grad_norm': 5.318151950836182, 'learning_rate': 9.557529261558367e-05, 'epoch': 2.21}\n", + "{'loss': 1.6159, 'grad_norm': 5.290398120880127, 'learning_rate': 9.544622387061055e-05, 'epoch': 2.23}\n", + "{'loss': 1.6438, 'grad_norm': 4.89390230178833, 'learning_rate': 9.53153893518325e-05, 'epoch': 2.25}\n", + "{'loss': 1.486, 'grad_norm': 4.651273250579834, 'learning_rate': 9.518279414271183e-05, 'epoch': 2.27}\n", + "{'loss': 1.531, 'grad_norm': 5.672192573547363, 'learning_rate': 9.504844339512095e-05, 'epoch': 2.28}\n", + "{'loss': 1.5734, 'grad_norm': 3.6605958938598633, 'learning_rate': 9.491234232914221e-05, 'epoch': 2.3}\n", + "{'loss': 1.6449, 'grad_norm': 4.812197685241699, 'learning_rate': 9.477449623286505e-05, 'epoch': 2.32}\n", + "{'loss': 1.659, 'grad_norm': 4.542179584503174, 'learning_rate': 9.463491046218058e-05, 'epoch': 2.34}\n", + "{'loss': 1.6723, 'grad_norm': 4.588232517242432, 'learning_rate': 9.449359044057345e-05, 'epoch': 2.36}\n", + "{'loss': 1.619, 'grad_norm': 6.938955783843994, 'learning_rate': 9.435054165891109e-05, 'epoch': 2.37}\n", + "{'loss': 1.7966, 'grad_norm': 4.723308563232422, 'learning_rate': 9.420576967523049e-05, 'epoch': 2.39}\n", + "{'loss': 1.6444, 'grad_norm': 4.64656925201416, 'learning_rate': 9.405928011452211e-05, 'epoch': 2.41}\n", + "{'loss': 1.5322, 'grad_norm': 5.396662712097168, 'learning_rate': 9.391107866851143e-05, 'epoch': 2.43}\n", + "{'loss': 1.6074, 'grad_norm': 4.109992027282715, 'learning_rate': 9.376117109543769e-05, 'epoch': 2.45}\n", + "{'loss': 1.5129, 'grad_norm': 4.073942184448242, 'learning_rate': 9.360956321983028e-05, 'epoch': 2.46}\n", + "{'loss': 1.5839, 'grad_norm': 5.0658698081970215, 'learning_rate': 9.345626093228233e-05, 'epoch': 2.48}\n", + "{'loss': 1.726, 'grad_norm': 4.494250297546387, 'learning_rate': 9.330127018922194e-05, 'epoch': 2.5}\n", + "{'loss': 1.6129, 'grad_norm': 5.197183609008789, 'learning_rate': 9.314459701268065e-05, 'epoch': 2.52}\n", + "{'loss': 1.5691, 'grad_norm': 4.414649486541748, 'learning_rate': 9.298624749005951e-05, 'epoch': 2.53}\n", + "{'loss': 1.6516, 'grad_norm': 6.023291110992432, 'learning_rate': 9.282622777389258e-05, 'epoch': 2.55}\n", + "{'loss': 1.4793, 'grad_norm': 5.750635147094727, 'learning_rate': 9.266454408160779e-05, 'epoch': 2.57}\n", + "{'loss': 1.761, 'grad_norm': 6.335220813751221, 'learning_rate': 9.250120269528546e-05, 'epoch': 2.59}\n", + "{'loss': 1.5627, 'grad_norm': 6.77303409576416, 'learning_rate': 9.233620996141421e-05, 'epoch': 2.61}\n", + "{'loss': 1.656, 'grad_norm': 3.9022696018218994, 'learning_rate': 9.21695722906443e-05, 'epoch': 2.62}\n", + "{'loss': 1.5537, 'grad_norm': 3.297802209854126, 'learning_rate': 9.200129615753859e-05, 'epoch': 2.64}\n", + "{'loss': 1.5451, 'grad_norm': 4.561464309692383, 'learning_rate': 9.183138810032099e-05, 'epoch': 2.66}\n", + "{'loss': 1.7119, 'grad_norm': 5.242650508880615, 'learning_rate': 9.165985472062246e-05, 'epoch': 2.68}\n", + "{'loss': 1.499, 'grad_norm': 5.535559177398682, 'learning_rate': 9.148670268322438e-05, 'epoch': 2.7}\n", + "{'loss': 1.4735, 'grad_norm': 5.1633100509643555, 'learning_rate': 9.131193871579975e-05, 'epoch': 2.71}\n", + "{'loss': 1.7502, 'grad_norm': 5.2197184562683105, 'learning_rate': 9.113556960865167e-05, 'epoch': 2.73}\n", + "{'loss': 1.6312, 'grad_norm': 4.655239105224609, 'learning_rate': 9.09576022144496e-05, 'epoch': 2.75}\n", + "{'loss': 1.6455, 'grad_norm': 4.8979644775390625, 'learning_rate': 9.077804344796302e-05, 'epoch': 2.77}\n", + "{'loss': 1.6535, 'grad_norm': 4.097564220428467, 'learning_rate': 9.059690028579284e-05, 'epoch': 2.78}\n", + "{'loss': 1.5067, 'grad_norm': 3.5800154209136963, 'learning_rate': 9.041417976610027e-05, 'epoch': 2.8}\n", + "{'loss': 1.5709, 'grad_norm': 4.4109787940979, 'learning_rate': 9.022988898833342e-05, 'epoch': 2.82}\n", + "{'loss': 1.5517, 'grad_norm': 4.352450370788574, 'learning_rate': 9.004403511295141e-05, 'epoch': 2.84}\n", + "{'loss': 1.5259, 'grad_norm': 6.1658525466918945, 'learning_rate': 8.985662536114613e-05, 'epoch': 2.86}\n", + "{'loss': 1.7768, 'grad_norm': 4.468559265136719, 'learning_rate': 8.966766701456177e-05, 'epoch': 2.87}\n", + "{'loss': 1.5683, 'grad_norm': 4.119050979614258, 'learning_rate': 8.947716741501177e-05, 'epoch': 2.89}\n", + "{'loss': 1.5665, 'grad_norm': 5.216476917266846, 'learning_rate': 8.928513396419368e-05, 'epoch': 2.91}\n", + "{'loss': 1.524, 'grad_norm': 4.42177152633667, 'learning_rate': 8.90915741234015e-05, 'epoch': 2.93}\n", + "{'loss': 1.7169, 'grad_norm': 4.006609916687012, 'learning_rate': 8.889649541323574e-05, 'epoch': 2.95}\n", + "{'loss': 1.7248, 'grad_norm': 4.3928914070129395, 'learning_rate': 8.869990541331138e-05, 'epoch': 2.96}\n", + "{'loss': 1.5582, 'grad_norm': 5.347744464874268, 'learning_rate': 8.850181176196315e-05, 'epoch': 2.98}\n", + "{'loss': 1.6926, 'grad_norm': 4.4702019691467285, 'learning_rate': 8.83022221559489e-05, 'epoch': 3.0}\n", + " 30%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1680/5600 [35:12<1:20:28, 1.23s/it][INFO|trainer.py:3788] 2024-06-29 22:34:12,572 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-29 22:34:12,573 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-29 22:34:12,573 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-0.5b/lora/sft/checkpoint-1680\n", + "[INFO|configuration_utils.py:733] 2024-06-29 22:34:15,015 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-29 22:34:15,015 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 896,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 4864,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 24,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 14,\n", + " \"num_hidden_layers\": 24,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-29 22:34:15,046 >> tokenizer config file saved in saves/qwen2-0.5b/lora/sft/checkpoint-1680/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-29 22:34:15,047 >> Special tokens file saved in saves/qwen2-0.5b/lora/sft/checkpoint-1680/special_tokens_map.json\n", + "{'loss': 1.4704, 'grad_norm': 4.0504021644592285, 'learning_rate': 8.810114435015054e-05, 'epoch': 3.02}\n", + "{'loss': 1.1325, 'grad_norm': 4.55043363571167, 'learning_rate': 8.789858615727265e-05, 'epoch': 3.03}\n", + "{'loss': 1.3183, 'grad_norm': 5.89686393737793, 'learning_rate': 8.7694555447539e-05, 'epoch': 3.05}\n", + "{'loss': 1.2266, 'grad_norm': 6.354063510894775, 'learning_rate': 8.748906014838672e-05, 'epoch': 3.07}\n", + "{'loss': 1.2011, 'grad_norm': 5.328189849853516, 'learning_rate': 8.728210824415827e-05, 'epoch': 3.09}\n", + "{'loss': 1.3191, 'grad_norm': 5.733210563659668, 'learning_rate': 8.707370777579133e-05, 'epoch': 3.11}\n", + "{'loss': 1.242, 'grad_norm': 4.455051422119141, 'learning_rate': 8.68638668405062e-05, 'epoch': 3.12}\n", + "{'loss': 1.3565, 'grad_norm': 5.194347381591797, 'learning_rate': 8.665259359149132e-05, 'epoch': 3.14}\n", + "{'loss': 1.2447, 'grad_norm': 5.317370414733887, 'learning_rate': 8.643989623758643e-05, 'epoch': 3.16}\n", + "{'loss': 1.3055, 'grad_norm': 6.149751663208008, 'learning_rate': 8.622578304296364e-05, 'epoch': 3.18}\n", + "{'loss': 1.2915, 'grad_norm': 5.196756839752197, 'learning_rate': 8.601026232680634e-05, 'epoch': 3.2}\n", + "{'loss': 1.2714, 'grad_norm': 6.269302845001221, 'learning_rate': 8.579334246298593e-05, 'epoch': 3.21}\n", + "{'loss': 1.4645, 'grad_norm': 4.260131359100342, 'learning_rate': 8.557503187973651e-05, 'epoch': 3.23}\n", + "{'loss': 1.266, 'grad_norm': 4.698756217956543, 'learning_rate': 8.535533905932738e-05, 'epoch': 3.25}\n", + "{'loss': 1.242, 'grad_norm': 5.149835109710693, 'learning_rate': 8.513427253773346e-05, 'epoch': 3.27}\n", + "{'loss': 1.2025, 'grad_norm': 5.154805660247803, 'learning_rate': 8.491184090430364e-05, 'epoch': 3.28}\n", + "{'loss': 1.3668, 'grad_norm': 6.301427364349365, 'learning_rate': 8.468805280142709e-05, 'epoch': 3.3}\n", + "{'loss': 1.3626, 'grad_norm': 4.72573709487915, 'learning_rate': 8.446291692419736e-05, 'epoch': 3.32}\n", + "{'loss': 1.3326, 'grad_norm': 4.458547592163086, 'learning_rate': 8.423644202007467e-05, 'epoch': 3.34}\n", + "{'loss': 1.324, 'grad_norm': 4.596677303314209, 'learning_rate': 8.400863688854597e-05, 'epoch': 3.36}\n", + "{'loss': 1.3217, 'grad_norm': 5.230796813964844, 'learning_rate': 8.377951038078302e-05, 'epoch': 3.37}\n", + "{'loss': 1.2399, 'grad_norm': 4.330605983734131, 'learning_rate': 8.354907139929851e-05, 'epoch': 3.39}\n", + "{'loss': 1.2958, 'grad_norm': 5.9636945724487305, 'learning_rate': 8.33173288976002e-05, 'epoch': 3.41}\n", + "{'loss': 1.3935, 'grad_norm': 4.622984409332275, 'learning_rate': 8.308429187984297e-05, 'epoch': 3.43}\n", + "{'loss': 1.3421, 'grad_norm': 4.806463718414307, 'learning_rate': 8.284996940047903e-05, 'epoch': 3.44}\n", + "{'loss': 1.3621, 'grad_norm': 4.162802219390869, 'learning_rate': 8.261437056390606e-05, 'epoch': 3.46}\n", + "{'loss': 1.2849, 'grad_norm': 5.431687355041504, 'learning_rate': 8.237750452411353e-05, 'epoch': 3.48}\n", + "{'loss': 1.2827, 'grad_norm': 6.106764316558838, 'learning_rate': 8.213938048432697e-05, 'epoch': 3.5}\n", + "{'loss': 1.2381, 'grad_norm': 5.98523473739624, 'learning_rate': 8.190000769665044e-05, 'epoch': 3.52}\n", + "{'loss': 1.3037, 'grad_norm': 4.923933029174805, 'learning_rate': 8.1659395461707e-05, 'epoch': 3.53}\n", + "{'loss': 1.2708, 'grad_norm': 6.869691371917725, 'learning_rate': 8.141755312827736e-05, 'epoch': 3.55}\n", + "{'loss': 1.414, 'grad_norm': 4.601339340209961, 'learning_rate': 8.117449009293668e-05, 'epoch': 3.57}\n", + "{'loss': 1.1949, 'grad_norm': 4.767725944519043, 'learning_rate': 8.093021579968941e-05, 'epoch': 3.59}\n", + "{'loss': 1.2801, 'grad_norm': 4.9436211585998535, 'learning_rate': 8.068473973960238e-05, 'epoch': 3.61}\n", + "{'loss': 1.3493, 'grad_norm': 5.783080577850342, 'learning_rate': 8.043807145043604e-05, 'epoch': 3.62}\n", + "{'loss': 1.3132, 'grad_norm': 4.968575477600098, 'learning_rate': 8.019022051627388e-05, 'epoch': 3.64}\n", + "{'loss': 1.2486, 'grad_norm': 5.723098278045654, 'learning_rate': 7.994119656715002e-05, 'epoch': 3.66}\n", + "{'loss': 1.4033, 'grad_norm': 7.168787956237793, 'learning_rate': 7.969100927867507e-05, 'epoch': 3.68}\n", + "{'loss': 1.3969, 'grad_norm': 5.891693592071533, 'learning_rate': 7.943966837166023e-05, 'epoch': 3.69}\n", + "{'loss': 1.4086, 'grad_norm': 4.852097511291504, 'learning_rate': 7.91871836117395e-05, 'epoch': 3.71}\n", + "{'loss': 1.208, 'grad_norm': 5.643867015838623, 'learning_rate': 7.89335648089903e-05, 'epoch': 3.73}\n", + "{'loss': 1.3448, 'grad_norm': 5.375209808349609, 'learning_rate': 7.86788218175523e-05, 'epoch': 3.75}\n", + "{'loss': 1.316, 'grad_norm': 5.470929145812988, 'learning_rate': 7.842296453524463e-05, 'epoch': 3.77}\n", + "{'loss': 1.2369, 'grad_norm': 4.993719577789307, 'learning_rate': 7.81660029031811e-05, 'epoch': 3.78}\n", + "{'loss': 1.3265, 'grad_norm': 5.081270217895508, 'learning_rate': 7.79079469053842e-05, 'epoch': 3.8}\n", + "{'loss': 1.3366, 'grad_norm': 5.608216285705566, 'learning_rate': 7.764880656839696e-05, 'epoch': 3.82}\n", + "{'loss': 1.2876, 'grad_norm': 5.217581272125244, 'learning_rate': 7.738859196089358e-05, 'epoch': 3.84}\n", + "{'loss': 1.1134, 'grad_norm': 5.468497276306152, 'learning_rate': 7.712731319328798e-05, 'epoch': 3.86}\n", + "{'loss': 1.2106, 'grad_norm': 5.239170074462891, 'learning_rate': 7.68649804173412e-05, 'epoch': 3.87}\n", + "{'loss': 1.3169, 'grad_norm': 4.908669471740723, 'learning_rate': 7.660160382576683e-05, 'epoch': 3.89}\n", + "{'loss': 1.3074, 'grad_norm': 6.217924118041992, 'learning_rate': 7.633719365183504e-05, 'epoch': 3.91}\n", + "{'loss': 1.2273, 'grad_norm': 5.6632513999938965, 'learning_rate': 7.60717601689749e-05, 'epoch': 3.93}\n", + "{'loss': 1.0764, 'grad_norm': 4.552252769470215, 'learning_rate': 7.580531369037533e-05, 'epoch': 3.94}\n", + "{'loss': 1.5051, 'grad_norm': 5.1463823318481445, 'learning_rate': 7.553786456858429e-05, 'epoch': 3.96}\n", + "{'loss': 1.3593, 'grad_norm': 4.828197956085205, 'learning_rate': 7.526942319510655e-05, 'epoch': 3.98}\n", + "{'loss': 1.1506, 'grad_norm': 3.7453665733337402, 'learning_rate': 7.500000000000001e-05, 'epoch': 4.0}\n", + " 40%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Š | 2240/5600 [46:40<1:08:55, 1.23s/it][INFO|trainer.py:3788] 2024-06-29 22:45:40,494 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-29 22:45:40,495 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-29 22:45:40,495 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-0.5b/lora/sft/checkpoint-2240\n", + "[INFO|configuration_utils.py:733] 2024-06-29 22:45:42,919 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-29 22:45:42,919 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 896,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 4864,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 24,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 14,\n", + " \"num_hidden_layers\": 24,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-29 22:45:42,944 >> tokenizer config file saved in saves/qwen2-0.5b/lora/sft/checkpoint-2240/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-29 22:45:42,944 >> Special tokens file saved in saves/qwen2-0.5b/lora/sft/checkpoint-2240/special_tokens_map.json\n", + "{'loss': 1.0956, 'grad_norm': 3.8211286067962646, 'learning_rate': 7.472960545147038e-05, 'epoch': 4.02}\n", + "{'loss': 0.9704, 'grad_norm': 4.844677448272705, 'learning_rate': 7.445825005546448e-05, 'epoch': 4.03}\n", + "{'loss': 1.0473, 'grad_norm': 5.256546497344971, 'learning_rate': 7.4185944355262e-05, 'epoch': 4.05}\n", + "{'loss': 0.9475, 'grad_norm': 5.321354389190674, 'learning_rate': 7.391269893106592e-05, 'epoch': 4.07}\n", + "{'loss': 0.963, 'grad_norm': 5.462662220001221, 'learning_rate': 7.363852439959135e-05, 'epoch': 4.09}\n", + "{'loss': 1.1535, 'grad_norm': 4.1576056480407715, 'learning_rate': 7.33634314136531e-05, 'epoch': 4.11}\n", + "{'loss': 0.868, 'grad_norm': 5.811347484588623, 'learning_rate': 7.308743066175172e-05, 'epoch': 4.12}\n", + "{'loss': 0.9822, 'grad_norm': 4.920297145843506, 'learning_rate': 7.281053286765815e-05, 'epoch': 4.14}\n", + "{'loss': 1.0763, 'grad_norm': 4.794600963592529, 'learning_rate': 7.253274878999727e-05, 'epoch': 4.16}\n", + "{'loss': 0.9458, 'grad_norm': 5.9534010887146, 'learning_rate': 7.225408922182961e-05, 'epoch': 4.18}\n", + "{'loss': 0.9607, 'grad_norm': 5.4286298751831055, 'learning_rate': 7.197456499023225e-05, 'epoch': 4.19}\n", + "{'loss': 1.0148, 'grad_norm': 5.160229206085205, 'learning_rate': 7.169418695587791e-05, 'epoch': 4.21}\n", + "{'loss': 0.9381, 'grad_norm': 5.876075267791748, 'learning_rate': 7.141296601261314e-05, 'epoch': 4.23}\n", + "{'loss': 1.0924, 'grad_norm': 4.944575786590576, 'learning_rate': 7.113091308703498e-05, 'epoch': 4.25}\n", + "{'loss': 0.9265, 'grad_norm': 5.3727545738220215, 'learning_rate': 7.084803913806641e-05, 'epoch': 4.27}\n", + "{'loss': 0.9944, 'grad_norm': 7.851329803466797, 'learning_rate': 7.056435515653059e-05, 'epoch': 4.28}\n", + "{'loss': 1.0168, 'grad_norm': 4.633089542388916, 'learning_rate': 7.027987216472377e-05, 'epoch': 4.3}\n", + "{'loss': 0.8804, 'grad_norm': 5.784977912902832, 'learning_rate': 6.999460121598704e-05, 'epoch': 4.32}\n", + "{'loss': 1.0768, 'grad_norm': 8.059889793395996, 'learning_rate': 6.970855339427698e-05, 'epoch': 4.34}\n", + "{'loss': 0.9443, 'grad_norm': 6.03590726852417, 'learning_rate': 6.942173981373474e-05, 'epoch': 4.36}\n", + "{'loss': 0.9489, 'grad_norm': 12.74445915222168, 'learning_rate': 6.91341716182545e-05, 'epoch': 4.37}\n", + "{'loss': 1.049, 'grad_norm': 5.12004280090332, 'learning_rate': 6.884585998105026e-05, 'epoch': 4.39}\n", + "{'loss': 1.0488, 'grad_norm': 10.477398872375488, 'learning_rate': 6.855681610422189e-05, 'epoch': 4.41}\n", + "{'loss': 1.1279, 'grad_norm': 5.085097789764404, 'learning_rate': 6.826705121831976e-05, 'epoch': 4.43}\n", + "{'loss': 1.088, 'grad_norm': 5.412323474884033, 'learning_rate': 6.797657658190839e-05, 'epoch': 4.44}\n", + "{'loss': 0.9124, 'grad_norm': 11.975234985351562, 'learning_rate': 6.768540348112907e-05, 'epoch': 4.46}\n", + "{'loss': 1.1052, 'grad_norm': 4.589102745056152, 'learning_rate': 6.739354322926136e-05, 'epoch': 4.48}\n", + "{'loss': 1.0427, 'grad_norm': 5.322690963745117, 'learning_rate': 6.710100716628344e-05, 'epoch': 4.5}\n", + "{'loss': 1.0325, 'grad_norm': 5.0710577964782715, 'learning_rate': 6.680780665843155e-05, 'epoch': 4.52}\n", + "{'loss': 1.059, 'grad_norm': 5.193735122680664, 'learning_rate': 6.651395309775837e-05, 'epoch': 4.53}\n", + "{'loss': 1.0252, 'grad_norm': 6.584225177764893, 'learning_rate': 6.621945790169036e-05, 'epoch': 4.55}\n", + "{'loss': 0.9911, 'grad_norm': 6.5015435218811035, 'learning_rate': 6.592433251258423e-05, 'epoch': 4.57}\n", + "{'loss': 1.0211, 'grad_norm': 5.898025035858154, 'learning_rate': 6.562858839728223e-05, 'epoch': 4.59}\n", + "{'loss': 0.9131, 'grad_norm': 5.380829811096191, 'learning_rate': 6.533223704666672e-05, 'epoch': 4.61}\n", + "{'loss': 1.0094, 'grad_norm': 5.253726959228516, 'learning_rate': 6.503528997521366e-05, 'epoch': 4.62}\n", + "{'loss': 1.0349, 'grad_norm': 4.567104339599609, 'learning_rate': 6.473775872054521e-05, 'epoch': 4.64}\n", + "{'loss': 1.0492, 'grad_norm': 5.842156410217285, 'learning_rate': 6.44396548429815e-05, 'epoch': 4.66}\n", + "{'loss': 1.0739, 'grad_norm': 5.842441082000732, 'learning_rate': 6.414098992509138e-05, 'epoch': 4.68}\n", + "{'loss': 0.9745, 'grad_norm': 5.929434299468994, 'learning_rate': 6.384177557124247e-05, 'epoch': 4.69}\n", + "{'loss': 0.9974, 'grad_norm': 6.804376125335693, 'learning_rate': 6.354202340715026e-05, 'epoch': 4.71}\n", + "{'loss': 0.9628, 'grad_norm': 4.4478020668029785, 'learning_rate': 6.324174507942637e-05, 'epoch': 4.73}\n", + "{'loss': 0.9861, 'grad_norm': 4.888654708862305, 'learning_rate': 6.294095225512603e-05, 'epoch': 4.75}\n", + "{'loss': 1.0063, 'grad_norm': 5.920362949371338, 'learning_rate': 6.263965662129487e-05, 'epoch': 4.77}\n", + "{'loss': 1.0548, 'grad_norm': 5.524910926818848, 'learning_rate': 6.233786988451468e-05, 'epoch': 4.78}\n", + "{'loss': 1.0929, 'grad_norm': 4.255885601043701, 'learning_rate': 6.203560377044866e-05, 'epoch': 4.8}\n", + "{'loss': 0.9848, 'grad_norm': 6.053053379058838, 'learning_rate': 6.173287002338577e-05, 'epoch': 4.82}\n", + "{'loss': 0.9432, 'grad_norm': 5.0641655921936035, 'learning_rate': 6.142968040578449e-05, 'epoch': 4.84}\n", + "{'loss': 1.0374, 'grad_norm': 7.123205661773682, 'learning_rate': 6.112604669781572e-05, 'epoch': 4.85}\n", + "{'loss': 1.0961, 'grad_norm': 5.436131954193115, 'learning_rate': 6.0821980696905146e-05, 'epoch': 4.87}\n", + "{'loss': 1.0741, 'grad_norm': 5.909348964691162, 'learning_rate': 6.0517494217274794e-05, 'epoch': 4.89}\n", + "{'loss': 1.1491, 'grad_norm': 5.223842144012451, 'learning_rate': 6.021259908948402e-05, 'epoch': 4.91}\n", + "{'loss': 1.0061, 'grad_norm': 5.396011829376221, 'learning_rate': 5.9907307159969884e-05, 'epoch': 4.93}\n", + "{'loss': 1.1121, 'grad_norm': 5.92130184173584, 'learning_rate': 5.960163029058682e-05, 'epoch': 4.94}\n", + "{'loss': 1.1207, 'grad_norm': 8.12635326385498, 'learning_rate': 5.9295580358145744e-05, 'epoch': 4.96}\n", + "{'loss': 1.141, 'grad_norm': 6.187139511108398, 'learning_rate': 5.898916925395264e-05, 'epoch': 4.98}\n", + "{'loss': 1.0886, 'grad_norm': 5.036999702453613, 'learning_rate': 5.868240888334653e-05, 'epoch': 5.0}\n", + " 50%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 2800/5600 [59:01<1:00:22, 1.29s/it][INFO|trainer.py:3788] 2024-06-29 22:58:01,067 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-29 22:58:01,067 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-29 22:58:01,067 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-0.5b/lora/sft/checkpoint-2800\n", + "[INFO|configuration_utils.py:733] 2024-06-29 22:58:03,475 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-29 22:58:03,475 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 896,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 4864,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 24,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 14,\n", + " \"num_hidden_layers\": 24,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-29 22:58:03,501 >> tokenizer config file saved in saves/qwen2-0.5b/lora/sft/checkpoint-2800/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-29 22:58:03,501 >> Special tokens file saved in saves/qwen2-0.5b/lora/sft/checkpoint-2800/special_tokens_map.json\n", + "{'loss': 0.7949, 'grad_norm': 5.331892490386963, 'learning_rate': 5.837531116523682e-05, 'epoch': 5.02}\n", + "{'loss': 0.7411, 'grad_norm': 6.530398368835449, 'learning_rate': 5.806788803164034e-05, 'epoch': 5.03}\n", + "{'loss': 0.7875, 'grad_norm': 5.302547454833984, 'learning_rate': 5.7760151427217576e-05, 'epoch': 5.05}\n", + "{'loss': 0.7917, 'grad_norm': 5.69765567779541, 'learning_rate': 5.745211330880872e-05, 'epoch': 5.07}\n", + "{'loss': 0.8076, 'grad_norm': 4.74371862411499, 'learning_rate': 5.714378564496901e-05, 'epoch': 5.09}\n", + "{'loss': 0.9093, 'grad_norm': 5.205414772033691, 'learning_rate': 5.683518041550368e-05, 'epoch': 5.1}\n", + "{'loss': 0.6875, 'grad_norm': 5.478267192840576, 'learning_rate': 5.6526309611002594e-05, 'epoch': 5.12}\n", + "{'loss': 0.8528, 'grad_norm': 6.004168510437012, 'learning_rate': 5.621718523237427e-05, 'epoch': 5.14}\n", + "{'loss': 0.7398, 'grad_norm': 6.278602600097656, 'learning_rate': 5.590781929037965e-05, 'epoch': 5.16}\n", + "{'loss': 0.6957, 'grad_norm': 4.800085544586182, 'learning_rate': 5.559822380516539e-05, 'epoch': 5.18}\n", + "{'loss': 0.8193, 'grad_norm': 5.28222131729126, 'learning_rate': 5.5288410805796895e-05, 'epoch': 5.19}\n", + "{'loss': 0.825, 'grad_norm': 5.969717502593994, 'learning_rate': 5.497839232979084e-05, 'epoch': 5.21}\n", + "{'loss': 0.8286, 'grad_norm': 7.2066216468811035, 'learning_rate': 5.466818042264753e-05, 'epoch': 5.23}\n", + "{'loss': 0.8905, 'grad_norm': 5.272522449493408, 'learning_rate': 5.435778713738292e-05, 'epoch': 5.25}\n", + "{'loss': 0.7673, 'grad_norm': 4.872743606567383, 'learning_rate': 5.404722453406017e-05, 'epoch': 5.27}\n", + "{'loss': 0.7346, 'grad_norm': 7.293342113494873, 'learning_rate': 5.373650467932122e-05, 'epoch': 5.28}\n", + "{'loss': 0.737, 'grad_norm': 5.229869365692139, 'learning_rate': 5.3425639645917834e-05, 'epoch': 5.3}\n", + "{'loss': 0.7656, 'grad_norm': 4.550146579742432, 'learning_rate': 5.311464151224261e-05, 'epoch': 5.32}\n", + "{'loss': 0.7256, 'grad_norm': 4.5456223487854, 'learning_rate': 5.2803522361859594e-05, 'epoch': 5.34}\n", + "{'loss': 0.7886, 'grad_norm': 5.301971912384033, 'learning_rate': 5.249229428303486e-05, 'epoch': 5.35}\n", + "{'loss': 0.7801, 'grad_norm': 7.148138523101807, 'learning_rate': 5.218096936826681e-05, 'epoch': 5.37}\n", + "{'loss': 0.8076, 'grad_norm': 6.13567590713501, 'learning_rate': 5.18695597138163e-05, 'epoch': 5.39}\n", + "{'loss': 0.6323, 'grad_norm': 5.02504825592041, 'learning_rate': 5.155807741923666e-05, 'epoch': 5.41}\n", + "{'loss': 0.707, 'grad_norm': 6.629558563232422, 'learning_rate': 5.124653458690365e-05, 'epoch': 5.43}\n", + "{'loss': 0.7033, 'grad_norm': 6.333116054534912, 'learning_rate': 5.0934943321545115e-05, 'epoch': 5.44}\n", + "{'loss': 0.797, 'grad_norm': 10.160740852355957, 'learning_rate': 5.062331572977076e-05, 'epoch': 5.46}\n", + "{'loss': 0.9649, 'grad_norm': 5.644074440002441, 'learning_rate': 5.031166391960168e-05, 'epoch': 5.48}\n", + "{'loss': 0.7452, 'grad_norm': 5.57203483581543, 'learning_rate': 5e-05, 'epoch': 5.5}\n", + "{'loss': 0.7909, 'grad_norm': 6.231649875640869, 'learning_rate': 4.968833608039832e-05, 'epoch': 5.52}\n", + "{'loss': 0.8125, 'grad_norm': 6.369471073150635, 'learning_rate': 4.9376684270229254e-05, 'epoch': 5.53}\n", + "{'loss': 0.7572, 'grad_norm': 14.980217933654785, 'learning_rate': 4.9065056678454904e-05, 'epoch': 5.55}\n", + "{'loss': 0.9001, 'grad_norm': 6.943779468536377, 'learning_rate': 4.875346541309637e-05, 'epoch': 5.57}\n", + "{'loss': 0.8092, 'grad_norm': 6.565555572509766, 'learning_rate': 4.844192258076336e-05, 'epoch': 5.59}\n", + "{'loss': 0.9073, 'grad_norm': 8.527596473693848, 'learning_rate': 4.813044028618373e-05, 'epoch': 5.6}\n", + "{'loss': 0.8484, 'grad_norm': 5.995067119598389, 'learning_rate': 4.781903063173321e-05, 'epoch': 5.62}\n", + "{'loss': 0.7387, 'grad_norm': 16.719541549682617, 'learning_rate': 4.750770571696514e-05, 'epoch': 5.64}\n", + "{'loss': 0.8061, 'grad_norm': 5.842343807220459, 'learning_rate': 4.7196477638140404e-05, 'epoch': 5.66}\n", + "{'loss': 0.7958, 'grad_norm': 7.201180458068848, 'learning_rate': 4.68853584877574e-05, 'epoch': 5.68}\n", + "{'loss': 0.8338, 'grad_norm': 6.153838634490967, 'learning_rate': 4.657436035408217e-05, 'epoch': 5.69}\n", + "{'loss': 0.7411, 'grad_norm': 5.899301528930664, 'learning_rate': 4.626349532067879e-05, 'epoch': 5.71}\n", + "{'loss': 0.8199, 'grad_norm': 5.865950107574463, 'learning_rate': 4.595277546593984e-05, 'epoch': 5.73}\n", + "{'loss': 0.7367, 'grad_norm': 4.905264377593994, 'learning_rate': 4.564221286261709e-05, 'epoch': 5.75}\n", + "{'loss': 0.9049, 'grad_norm': 6.099426746368408, 'learning_rate': 4.5331819577352474e-05, 'epoch': 5.77}\n", + "{'loss': 0.7343, 'grad_norm': 7.31098747253418, 'learning_rate': 4.502160767020918e-05, 'epoch': 5.78}\n", + "{'loss': 0.7381, 'grad_norm': 5.501935958862305, 'learning_rate': 4.471158919420312e-05, 'epoch': 5.8}\n", + "{'loss': 0.7133, 'grad_norm': 7.434685707092285, 'learning_rate': 4.4401776194834613e-05, 'epoch': 5.82}\n", + "{'loss': 0.7352, 'grad_norm': 9.345376968383789, 'learning_rate': 4.409218070962036e-05, 'epoch': 5.84}\n", + "{'loss': 0.8973, 'grad_norm': 6.876387119293213, 'learning_rate': 4.378281476762576e-05, 'epoch': 5.85}\n", + "{'loss': 0.6906, 'grad_norm': 14.176045417785645, 'learning_rate': 4.347369038899744e-05, 'epoch': 5.87}\n", + "{'loss': 0.9098, 'grad_norm': 4.8011040687561035, 'learning_rate': 4.316481958449634e-05, 'epoch': 5.89}\n", + "{'loss': 0.7331, 'grad_norm': 5.1314697265625, 'learning_rate': 4.285621435503101e-05, 'epoch': 5.91}\n", + "{'loss': 0.8579, 'grad_norm': 7.106369495391846, 'learning_rate': 4.254788669119127e-05, 'epoch': 5.93}\n", + "{'loss': 0.748, 'grad_norm': 4.865246295928955, 'learning_rate': 4.223984857278242e-05, 'epoch': 5.94}\n", + "{'loss': 0.8392, 'grad_norm': 5.906892776489258, 'learning_rate': 4.1932111968359664e-05, 'epoch': 5.96}\n", + "{'loss': 0.8015, 'grad_norm': 5.705036163330078, 'learning_rate': 4.162468883476319e-05, 'epoch': 5.98}\n", + "{'loss': 0.8302, 'grad_norm': 5.603642463684082, 'learning_rate': 4.131759111665349e-05, 'epoch': 6.0}\n", + " 60%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 3360/5600 [1:11:19<47:06, 1.26s/it][INFO|trainer.py:3788] 2024-06-29 23:10:19,379 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-29 23:10:19,379 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-29 23:10:19,379 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-0.5b/lora/sft/checkpoint-3360\n", + "[INFO|configuration_utils.py:733] 2024-06-29 23:10:21,875 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-29 23:10:21,876 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 896,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 4864,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 24,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 14,\n", + " \"num_hidden_layers\": 24,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-29 23:10:21,913 >> tokenizer config file saved in saves/qwen2-0.5b/lora/sft/checkpoint-3360/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-29 23:10:21,914 >> Special tokens file saved in saves/qwen2-0.5b/lora/sft/checkpoint-3360/special_tokens_map.json\n", + "{'loss': 0.6066, 'grad_norm': 5.037189960479736, 'learning_rate': 4.101083074604737e-05, 'epoch': 6.02}\n", + "{'loss': 0.5565, 'grad_norm': 15.377517700195312, 'learning_rate': 4.0704419641854274e-05, 'epoch': 6.03}\n", + "{'loss': 0.5423, 'grad_norm': 5.809545516967773, 'learning_rate': 4.03983697094132e-05, 'epoch': 6.05}\n", + "{'loss': 0.6718, 'grad_norm': 6.553403377532959, 'learning_rate': 4.0092692840030134e-05, 'epoch': 6.07}\n", + "{'loss': 0.6391, 'grad_norm': 5.6180901527404785, 'learning_rate': 3.978740091051599e-05, 'epoch': 6.09}\n", + "{'loss': 0.6823, 'grad_norm': 5.028639793395996, 'learning_rate': 3.9482505782725224e-05, 'epoch': 6.1}\n", + "{'loss': 0.5271, 'grad_norm': 5.877006530761719, 'learning_rate': 3.917801930309486e-05, 'epoch': 6.12}\n", + "{'loss': 0.6207, 'grad_norm': 5.783533096313477, 'learning_rate': 3.887395330218429e-05, 'epoch': 6.14}\n", + "{'loss': 0.6231, 'grad_norm': 7.259427547454834, 'learning_rate': 3.857031959421553e-05, 'epoch': 6.16}\n", + "{'loss': 0.6113, 'grad_norm': 5.142063140869141, 'learning_rate': 3.8267129976614254e-05, 'epoch': 6.18}\n", + "{'loss': 0.6245, 'grad_norm': 6.205945014953613, 'learning_rate': 3.7964396229551364e-05, 'epoch': 6.19}\n", + "{'loss': 0.6885, 'grad_norm': 5.446501731872559, 'learning_rate': 3.7662130115485314e-05, 'epoch': 6.21}\n", + "{'loss': 0.6127, 'grad_norm': 5.06493616104126, 'learning_rate': 3.7360343378705124e-05, 'epoch': 6.23}\n", + "{'loss': 0.6773, 'grad_norm': 6.783751964569092, 'learning_rate': 3.705904774487396e-05, 'epoch': 6.25}\n", + "{'loss': 0.5281, 'grad_norm': 9.579876899719238, 'learning_rate': 3.675825492057364e-05, 'epoch': 6.27}\n", + "{'loss': 0.642, 'grad_norm': 5.472534656524658, 'learning_rate': 3.6457976592849754e-05, 'epoch': 6.28}\n", + "{'loss': 0.5956, 'grad_norm': 4.942157745361328, 'learning_rate': 3.6158224428757535e-05, 'epoch': 6.3}\n", + "{'loss': 0.6226, 'grad_norm': 4.671095848083496, 'learning_rate': 3.585901007490863e-05, 'epoch': 6.32}\n", + "{'loss': 0.6398, 'grad_norm': 7.523804664611816, 'learning_rate': 3.556034515701852e-05, 'epoch': 6.34}\n", + "{'loss': 0.5765, 'grad_norm': 5.049912929534912, 'learning_rate': 3.5262241279454785e-05, 'epoch': 6.35}\n", + "{'loss': 0.5686, 'grad_norm': 4.921656608581543, 'learning_rate': 3.4964710024786354e-05, 'epoch': 6.37}\n", + "{'loss': 0.5776, 'grad_norm': 4.165037155151367, 'learning_rate': 3.4667762953333295e-05, 'epoch': 6.39}\n", + "{'loss': 0.5287, 'grad_norm': 14.588775634765625, 'learning_rate': 3.4371411602717784e-05, 'epoch': 6.41}\n", + "{'loss': 0.6236, 'grad_norm': 4.320646286010742, 'learning_rate': 3.4075667487415785e-05, 'epoch': 6.43}\n", + "{'loss': 0.6174, 'grad_norm': 4.169257164001465, 'learning_rate': 3.3780542098309654e-05, 'epoch': 6.44}\n", + "{'loss': 0.6235, 'grad_norm': 3.5882270336151123, 'learning_rate': 3.3486046902241664e-05, 'epoch': 6.46}\n", + "{'loss': 0.6929, 'grad_norm': 5.139246940612793, 'learning_rate': 3.319219334156847e-05, 'epoch': 6.48}\n", + "{'loss': 0.6181, 'grad_norm': 6.403084754943848, 'learning_rate': 3.289899283371657e-05, 'epoch': 6.5}\n", + "{'loss': 0.702, 'grad_norm': 5.330471038818359, 'learning_rate': 3.2606456770738636e-05, 'epoch': 6.51}\n", + "{'loss': 0.558, 'grad_norm': 6.444238662719727, 'learning_rate': 3.231459651887093e-05, 'epoch': 6.53}\n", + "{'loss': 0.6338, 'grad_norm': 5.4946417808532715, 'learning_rate': 3.2023423418091626e-05, 'epoch': 6.55}\n", + "{'loss': 0.5606, 'grad_norm': 5.147060871124268, 'learning_rate': 3.173294878168025e-05, 'epoch': 6.57}\n", + "{'loss': 0.7059, 'grad_norm': 5.5029754638671875, 'learning_rate': 3.1443183895778105e-05, 'epoch': 6.59}\n", + "{'loss': 0.647, 'grad_norm': 5.451030731201172, 'learning_rate': 3.115414001894974e-05, 'epoch': 6.6}\n", + "{'loss': 0.6321, 'grad_norm': 5.880076885223389, 'learning_rate': 3.086582838174551e-05, 'epoch': 6.62}\n", + "{'loss': 0.6221, 'grad_norm': 12.090547561645508, 'learning_rate': 3.0578260186265265e-05, 'epoch': 6.64}\n", + "{'loss': 0.5515, 'grad_norm': 4.961390495300293, 'learning_rate': 3.029144660572304e-05, 'epoch': 6.66}\n", + "{'loss': 0.6303, 'grad_norm': 8.35487174987793, 'learning_rate': 3.000539878401296e-05, 'epoch': 6.68}\n", + "{'loss': 0.6175, 'grad_norm': 5.784793376922607, 'learning_rate': 2.9720127835276256e-05, 'epoch': 6.69}\n", + "{'loss': 0.6365, 'grad_norm': 5.296642780303955, 'learning_rate': 2.9435644843469436e-05, 'epoch': 6.71}\n", + "{'loss': 0.6053, 'grad_norm': 5.430149078369141, 'learning_rate': 2.9151960861933614e-05, 'epoch': 6.73}\n", + "{'loss': 0.6135, 'grad_norm': 5.0150980949401855, 'learning_rate': 2.886908691296504e-05, 'epoch': 6.75}\n", + "{'loss': 0.6041, 'grad_norm': 5.136585235595703, 'learning_rate': 2.858703398738686e-05, 'epoch': 6.76}\n", + "{'loss': 0.5429, 'grad_norm': 4.231466293334961, 'learning_rate': 2.8305813044122097e-05, 'epoch': 6.78}\n", + "{'loss': 0.5956, 'grad_norm': 5.151216983795166, 'learning_rate': 2.8025435009767747e-05, 'epoch': 6.8}\n", + "{'loss': 0.5732, 'grad_norm': 3.7542734146118164, 'learning_rate': 2.774591077817038e-05, 'epoch': 6.82}\n", + "{'loss': 0.6358, 'grad_norm': 6.12777042388916, 'learning_rate': 2.746725121000273e-05, 'epoch': 6.84}\n", + "{'loss': 0.5031, 'grad_norm': 11.638378143310547, 'learning_rate': 2.718946713234185e-05, 'epoch': 6.85}\n", + "{'loss': 0.6171, 'grad_norm': 9.199576377868652, 'learning_rate': 2.6912569338248315e-05, 'epoch': 6.87}\n", + "{'loss': 0.6104, 'grad_norm': 10.14255428314209, 'learning_rate': 2.66365685863469e-05, 'epoch': 6.89}\n", + "{'loss': 0.7077, 'grad_norm': 9.090829849243164, 'learning_rate': 2.636147560040866e-05, 'epoch': 6.91}\n", + "{'loss': 0.5531, 'grad_norm': 9.668030738830566, 'learning_rate': 2.6087301068934106e-05, 'epoch': 6.93}\n", + "{'loss': 0.6159, 'grad_norm': 6.352726936340332, 'learning_rate': 2.581405564473801e-05, 'epoch': 6.94}\n", + "{'loss': 0.6046, 'grad_norm': 5.168361663818359, 'learning_rate': 2.5541749944535554e-05, 'epoch': 6.96}\n", + "{'loss': 0.7733, 'grad_norm': 7.233384132385254, 'learning_rate': 2.527039454852963e-05, 'epoch': 6.98}\n", + "{'loss': 0.6154, 'grad_norm': 9.114374160766602, 'learning_rate': 2.500000000000001e-05, 'epoch': 7.0}\n", + " 70%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 3920/5600 [1:23:31<34:46, 1.24s/it][INFO|trainer.py:3788] 2024-06-29 23:22:31,824 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-29 23:22:31,824 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-29 23:22:31,824 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-0.5b/lora/sft/checkpoint-3920\n", + "[INFO|configuration_utils.py:733] 2024-06-29 23:22:34,201 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-29 23:22:34,202 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 896,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 4864,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 24,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 14,\n", + " \"num_hidden_layers\": 24,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-29 23:22:34,235 >> tokenizer config file saved in saves/qwen2-0.5b/lora/sft/checkpoint-3920/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-29 23:22:34,235 >> Special tokens file saved in saves/qwen2-0.5b/lora/sft/checkpoint-3920/special_tokens_map.json\n", + "{'loss': 0.4505, 'grad_norm': 4.652220726013184, 'learning_rate': 2.473057680489348e-05, 'epoch': 7.01}\n", + "{'loss': 0.385, 'grad_norm': 2.926722526550293, 'learning_rate': 2.4462135431415733e-05, 'epoch': 7.03}\n", + "{'loss': 0.4096, 'grad_norm': 6.222466468811035, 'learning_rate': 2.4194686309624663e-05, 'epoch': 7.05}\n", + "{'loss': 0.553, 'grad_norm': 3.829651117324829, 'learning_rate': 2.39282398310251e-05, 'epoch': 7.07}\n", + "{'loss': 0.403, 'grad_norm': 5.209712982177734, 'learning_rate': 2.366280634816496e-05, 'epoch': 7.09}\n", + "{'loss': 0.5494, 'grad_norm': 4.316225051879883, 'learning_rate': 2.3398396174233178e-05, 'epoch': 7.1}\n", + "{'loss': 0.4251, 'grad_norm': 5.665122985839844, 'learning_rate': 2.3135019582658802e-05, 'epoch': 7.12}\n", + "{'loss': 0.4833, 'grad_norm': 5.162817478179932, 'learning_rate': 2.2872686806712035e-05, 'epoch': 7.14}\n", + "{'loss': 0.4832, 'grad_norm': 4.767073631286621, 'learning_rate': 2.261140803910644e-05, 'epoch': 7.16}\n", + "{'loss': 0.4627, 'grad_norm': 6.984405994415283, 'learning_rate': 2.235119343160303e-05, 'epoch': 7.18}\n", + "{'loss': 0.48, 'grad_norm': 5.248043060302734, 'learning_rate': 2.2092053094615813e-05, 'epoch': 7.19}\n", + "{'loss': 0.4851, 'grad_norm': 5.531778812408447, 'learning_rate': 2.1833997096818898e-05, 'epoch': 7.21}\n", + "{'loss': 0.4751, 'grad_norm': 5.573154926300049, 'learning_rate': 2.157703546475539e-05, 'epoch': 7.23}\n", + "{'loss': 0.5816, 'grad_norm': 4.959446430206299, 'learning_rate': 2.132117818244771e-05, 'epoch': 7.25}\n", + "{'loss': 0.4175, 'grad_norm': 4.046441078186035, 'learning_rate': 2.1066435191009715e-05, 'epoch': 7.26}\n", + "{'loss': 0.5647, 'grad_norm': 7.062335968017578, 'learning_rate': 2.0812816388260518e-05, 'epoch': 7.28}\n", + "{'loss': 0.479, 'grad_norm': 4.6393914222717285, 'learning_rate': 2.056033162833977e-05, 'epoch': 7.3}\n", + "{'loss': 0.471, 'grad_norm': 5.455317497253418, 'learning_rate': 2.0308990721324927e-05, 'epoch': 7.32}\n", + "{'loss': 0.5885, 'grad_norm': 4.32041597366333, 'learning_rate': 2.0058803432849987e-05, 'epoch': 7.34}\n", + "{'loss': 0.4522, 'grad_norm': 4.541329383850098, 'learning_rate': 1.980977948372612e-05, 'epoch': 7.35}\n", + "{'loss': 0.4865, 'grad_norm': 5.104362964630127, 'learning_rate': 1.9561928549563968e-05, 'epoch': 7.37}\n", + "{'loss': 0.554, 'grad_norm': 5.151457786560059, 'learning_rate': 1.931526026039764e-05, 'epoch': 7.39}\n", + "{'loss': 0.4381, 'grad_norm': 5.234814643859863, 'learning_rate': 1.906978420031059e-05, 'epoch': 7.41}\n", + "{'loss': 0.5294, 'grad_norm': 6.009786128997803, 'learning_rate': 1.8825509907063327e-05, 'epoch': 7.43}\n", + "{'loss': 0.4886, 'grad_norm': 6.153667449951172, 'learning_rate': 1.8582446871722636e-05, 'epoch': 7.44}\n", + "{'loss': 0.5583, 'grad_norm': 5.528926849365234, 'learning_rate': 1.8340604538293015e-05, 'epoch': 7.46}\n", + "{'loss': 0.5186, 'grad_norm': 6.47043514251709, 'learning_rate': 1.8099992303349577e-05, 'epoch': 7.48}\n", + "{'loss': 0.4369, 'grad_norm': 4.640471458435059, 'learning_rate': 1.7860619515673033e-05, 'epoch': 7.5}\n", + "{'loss': 0.485, 'grad_norm': 4.996728420257568, 'learning_rate': 1.7622495475886487e-05, 'epoch': 7.51}\n", + "{'loss': 0.5824, 'grad_norm': 7.510169982910156, 'learning_rate': 1.738562943609396e-05, 'epoch': 7.53}\n", + "{'loss': 0.5401, 'grad_norm': 5.8573503494262695, 'learning_rate': 1.7150030599520984e-05, 'epoch': 7.55}\n", + "{'loss': 0.4099, 'grad_norm': 4.604180335998535, 'learning_rate': 1.691570812015704e-05, 'epoch': 7.57}\n", + "{'loss': 0.4631, 'grad_norm': 9.454184532165527, 'learning_rate': 1.6682671102399805e-05, 'epoch': 7.59}\n", + "{'loss': 0.4046, 'grad_norm': 3.9995360374450684, 'learning_rate': 1.6450928600701504e-05, 'epoch': 7.6}\n", + "{'loss': 0.3599, 'grad_norm': 5.843255043029785, 'learning_rate': 1.622048961921699e-05, 'epoch': 7.62}\n", + "{'loss': 0.5126, 'grad_norm': 5.647862434387207, 'learning_rate': 1.599136311145402e-05, 'epoch': 7.64}\n", + "{'loss': 0.6103, 'grad_norm': 6.46891450881958, 'learning_rate': 1.5763557979925324e-05, 'epoch': 7.66}\n", + "{'loss': 0.5807, 'grad_norm': 6.223480224609375, 'learning_rate': 1.553708307580265e-05, 'epoch': 7.68}\n", + "{'loss': 0.5201, 'grad_norm': 4.753687381744385, 'learning_rate': 1.531194719857292e-05, 'epoch': 7.69}\n", + "{'loss': 0.3547, 'grad_norm': 5.846710681915283, 'learning_rate': 1.5088159095696363e-05, 'epoch': 7.71}\n", + "{'loss': 0.5295, 'grad_norm': 5.13261079788208, 'learning_rate': 1.4865727462266543e-05, 'epoch': 7.73}\n", + "{'loss': 0.5368, 'grad_norm': 4.849207401275635, 'learning_rate': 1.4644660940672627e-05, 'epoch': 7.75}\n", + "{'loss': 0.5151, 'grad_norm': 4.458810806274414, 'learning_rate': 1.4424968120263504e-05, 'epoch': 7.76}\n", + "{'loss': 0.4958, 'grad_norm': 7.0515360832214355, 'learning_rate': 1.4206657537014079e-05, 'epoch': 7.78}\n", + "{'loss': 0.5166, 'grad_norm': 6.9797258377075195, 'learning_rate': 1.398973767319368e-05, 'epoch': 7.8}\n", + "{'loss': 0.5007, 'grad_norm': 8.272122383117676, 'learning_rate': 1.3774216957036367e-05, 'epoch': 7.82}\n", + "{'loss': 0.4178, 'grad_norm': 5.713352203369141, 'learning_rate': 1.3560103762413584e-05, 'epoch': 7.84}\n", + "{'loss': 0.4001, 'grad_norm': 7.498878479003906, 'learning_rate': 1.3347406408508695e-05, 'epoch': 7.85}\n", + "{'loss': 0.5782, 'grad_norm': 6.81415319442749, 'learning_rate': 1.3136133159493802e-05, 'epoch': 7.87}\n", + "{'loss': 0.493, 'grad_norm': 5.0307936668396, 'learning_rate': 1.2926292224208664e-05, 'epoch': 7.89}\n", + "{'loss': 0.4523, 'grad_norm': 4.477788925170898, 'learning_rate': 1.2717891755841722e-05, 'epoch': 7.91}\n", + "{'loss': 0.496, 'grad_norm': 5.846407413482666, 'learning_rate': 1.2510939851613285e-05, 'epoch': 7.93}\n", + "{'loss': 0.5292, 'grad_norm': 7.384892463684082, 'learning_rate': 1.230544455246101e-05, 'epoch': 7.94}\n", + "{'loss': 0.425, 'grad_norm': 6.020524978637695, 'learning_rate': 1.2101413842727345e-05, 'epoch': 7.96}\n", + "{'loss': 0.5331, 'grad_norm': 5.7436699867248535, 'learning_rate': 1.1898855649849461e-05, 'epoch': 7.98}\n", + "{'loss': 0.3988, 'grad_norm': 4.166412353515625, 'learning_rate': 1.1697777844051105e-05, 'epoch': 8.0}\n", + " 80%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 4480/5600 [1:35:21<23:03, 1.24s/it][INFO|trainer.py:3788] 2024-06-29 23:34:21,043 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-29 23:34:21,043 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-29 23:34:21,043 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-0.5b/lora/sft/checkpoint-4480\n", + "[INFO|configuration_utils.py:733] 2024-06-29 23:34:23,861 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-29 23:34:23,861 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 896,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 4864,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 24,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 14,\n", + " \"num_hidden_layers\": 24,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-29 23:34:23,897 >> tokenizer config file saved in saves/qwen2-0.5b/lora/sft/checkpoint-4480/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-29 23:34:23,898 >> Special tokens file saved in saves/qwen2-0.5b/lora/sft/checkpoint-4480/special_tokens_map.json\n", + "{'loss': 0.3943, 'grad_norm': 3.8637747764587402, 'learning_rate': 1.1498188238036861e-05, 'epoch': 8.01}\n", + "{'loss': 0.3449, 'grad_norm': 4.5357465744018555, 'learning_rate': 1.130009458668863e-05, 'epoch': 8.03}\n", + "{'loss': 0.4843, 'grad_norm': 4.340099334716797, 'learning_rate': 1.1103504586764263e-05, 'epoch': 8.05}\n", + "{'loss': 0.3624, 'grad_norm': 5.39348030090332, 'learning_rate': 1.090842587659851e-05, 'epoch': 8.07}\n", + "{'loss': 0.3457, 'grad_norm': 5.173300743103027, 'learning_rate': 1.0714866035806326e-05, 'epoch': 8.09}\n", + "{'loss': 0.4419, 'grad_norm': 3.9911515712738037, 'learning_rate': 1.0522832584988234e-05, 'epoch': 8.1}\n", + "{'loss': 0.344, 'grad_norm': 4.810797214508057, 'learning_rate': 1.0332332985438248e-05, 'epoch': 8.12}\n", + "{'loss': 0.4852, 'grad_norm': 4.6731462478637695, 'learning_rate': 1.0143374638853891e-05, 'epoch': 8.14}\n", + "{'loss': 0.3417, 'grad_norm': 4.519662857055664, 'learning_rate': 9.955964887048607e-06, 'epoch': 8.16}\n", + "{'loss': 0.3707, 'grad_norm': 6.008825302124023, 'learning_rate': 9.770111011666583e-06, 'epoch': 8.17}\n", + "{'loss': 0.4661, 'grad_norm': 4.404787540435791, 'learning_rate': 9.58582023389974e-06, 'epoch': 8.19}\n", + "{'loss': 0.4659, 'grad_norm': 3.959002733230591, 'learning_rate': 9.403099714207175e-06, 'epoch': 8.21}\n", + "{'loss': 0.4714, 'grad_norm': 5.200716972351074, 'learning_rate': 9.221956552036992e-06, 'epoch': 8.23}\n", + "{'loss': 0.4455, 'grad_norm': 4.942255973815918, 'learning_rate': 9.042397785550405e-06, 'epoch': 8.25}\n", + "{'loss': 0.4403, 'grad_norm': 5.782726764678955, 'learning_rate': 8.864430391348332e-06, 'epoch': 8.26}\n", + "{'loss': 0.3306, 'grad_norm': 3.7129645347595215, 'learning_rate': 8.688061284200266e-06, 'epoch': 8.28}\n", + "{'loss': 0.407, 'grad_norm': 8.037576675415039, 'learning_rate': 8.513297316775625e-06, 'epoch': 8.3}\n", + "{'loss': 0.3798, 'grad_norm': 5.382339000701904, 'learning_rate': 8.34014527937756e-06, 'epoch': 8.32}\n", + "{'loss': 0.4849, 'grad_norm': 4.840189456939697, 'learning_rate': 8.168611899679013e-06, 'epoch': 8.34}\n", + "{'loss': 0.417, 'grad_norm': 5.7303619384765625, 'learning_rate': 7.998703842461431e-06, 'epoch': 8.35}\n", + "{'loss': 0.4589, 'grad_norm': 6.085827350616455, 'learning_rate': 7.830427709355725e-06, 'epoch': 8.37}\n", + "{'loss': 0.4225, 'grad_norm': 4.722183704376221, 'learning_rate': 7.663790038585793e-06, 'epoch': 8.39}\n", + "{'loss': 0.3773, 'grad_norm': 5.256956100463867, 'learning_rate': 7.498797304714544e-06, 'epoch': 8.41}\n", + "{'loss': 0.4246, 'grad_norm': 5.674898624420166, 'learning_rate': 7.33545591839222e-06, 'epoch': 8.42}\n", + "{'loss': 0.4219, 'grad_norm': 4.489896774291992, 'learning_rate': 7.173772226107434e-06, 'epoch': 8.44}\n", + "{'loss': 0.4486, 'grad_norm': 5.115447521209717, 'learning_rate': 7.013752509940485e-06, 'epoch': 8.46}\n", + "{'loss': 0.4512, 'grad_norm': 4.548392295837402, 'learning_rate': 6.855402987319348e-06, 'epoch': 8.48}\n", + "{'loss': 0.3836, 'grad_norm': 6.2048258781433105, 'learning_rate': 6.698729810778065e-06, 'epoch': 8.5}\n", + "{'loss': 0.3778, 'grad_norm': 4.5989766120910645, 'learning_rate': 6.54373906771768e-06, 'epoch': 8.51}\n", + "{'loss': 0.4007, 'grad_norm': 5.147210121154785, 'learning_rate': 6.390436780169734e-06, 'epoch': 8.53}\n", + "{'loss': 0.4504, 'grad_norm': 4.499249458312988, 'learning_rate': 6.238828904562316e-06, 'epoch': 8.55}\n", + "{'loss': 0.4176, 'grad_norm': 4.788080215454102, 'learning_rate': 6.088921331488568e-06, 'epoch': 8.57}\n", + "{'loss': 0.2845, 'grad_norm': 3.5535483360290527, 'learning_rate': 5.94071988547788e-06, 'epoch': 8.59}\n", + "{'loss': 0.3807, 'grad_norm': 4.653518199920654, 'learning_rate': 5.794230324769517e-06, 'epoch': 8.6}\n", + "{'loss': 0.3348, 'grad_norm': 4.7170915603637695, 'learning_rate': 5.649458341088915e-06, 'epoch': 8.62}\n", + "{'loss': 0.3807, 'grad_norm': 17.9665584564209, 'learning_rate': 5.506409559426573e-06, 'epoch': 8.64}\n", + "{'loss': 0.4922, 'grad_norm': 4.38849401473999, 'learning_rate': 5.365089537819434e-06, 'epoch': 8.66}\n", + "{'loss': 0.4016, 'grad_norm': 4.990530967712402, 'learning_rate': 5.2255037671349535e-06, 'epoch': 8.67}\n", + "{'loss': 0.4209, 'grad_norm': 4.245598793029785, 'learning_rate': 5.087657670857798e-06, 'epoch': 8.69}\n", + "{'loss': 0.3529, 'grad_norm': 3.6876637935638428, 'learning_rate': 4.951556604879048e-06, 'epoch': 8.71}\n", + "{'loss': 0.4205, 'grad_norm': 6.267766952514648, 'learning_rate': 4.8172058572881765e-06, 'epoch': 8.73}\n", + "{'loss': 0.391, 'grad_norm': 4.628519535064697, 'learning_rate': 4.684610648167503e-06, 'epoch': 8.75}\n", + "{'loss': 0.4038, 'grad_norm': 5.335127353668213, 'learning_rate': 4.5537761293894535e-06, 'epoch': 8.76}\n", + "{'loss': 0.4519, 'grad_norm': 5.06191349029541, 'learning_rate': 4.424707384416344e-06, 'epoch': 8.78}\n", + "{'loss': 0.4043, 'grad_norm': 3.3718318939208984, 'learning_rate': 4.29740942810285e-06, 'epoch': 8.8}\n", + "{'loss': 0.4329, 'grad_norm': 5.270512104034424, 'learning_rate': 4.1718872065011904e-06, 'epoch': 8.82}\n", + "{'loss': 0.4345, 'grad_norm': 4.938543796539307, 'learning_rate': 4.048145596668967e-06, 'epoch': 8.84}\n", + "{'loss': 0.4661, 'grad_norm': 4.726830005645752, 'learning_rate': 3.9261894064796135e-06, 'epoch': 8.85}\n", + "{'loss': 0.4037, 'grad_norm': 4.747579574584961, 'learning_rate': 3.8060233744356633e-06, 'epoch': 8.87}\n", + "{'loss': 0.3594, 'grad_norm': 3.65122652053833, 'learning_rate': 3.687652169484568e-06, 'epoch': 8.89}\n", + "{'loss': 0.3756, 'grad_norm': 3.7553329467773438, 'learning_rate': 3.5710803908373224e-06, 'epoch': 8.91}\n", + "{'loss': 0.4363, 'grad_norm': 6.1218132972717285, 'learning_rate': 3.4563125677897932e-06, 'epoch': 8.92}\n", + "{'loss': 0.5039, 'grad_norm': 6.221901893615723, 'learning_rate': 3.343353159546675e-06, 'epoch': 8.94}\n", + "{'loss': 0.4145, 'grad_norm': 4.449114799499512, 'learning_rate': 3.2322065550483007e-06, 'epoch': 8.96}\n", + "{'loss': 0.3358, 'grad_norm': 3.244713306427002, 'learning_rate': 3.1228770728000455e-06, 'epoch': 8.98}\n", + "{'loss': 0.3726, 'grad_norm': 5.383361339569092, 'learning_rate': 3.0153689607045845e-06, 'epoch': 9.0}\n", + " 90%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 5040/5600 [1:47:11<11:48, 1.26s/it][INFO|trainer.py:3788] 2024-06-29 23:46:11,764 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-29 23:46:11,764 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-29 23:46:11,764 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-0.5b/lora/sft/checkpoint-5040\n", + "[INFO|configuration_utils.py:733] 2024-06-29 23:46:14,139 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-29 23:46:14,139 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 896,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 4864,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 24,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 14,\n", + " \"num_hidden_layers\": 24,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-29 23:46:14,173 >> tokenizer config file saved in saves/qwen2-0.5b/lora/sft/checkpoint-5040/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-29 23:46:14,173 >> Special tokens file saved in saves/qwen2-0.5b/lora/sft/checkpoint-5040/special_tokens_map.json\n", + "{'loss': 0.3451, 'grad_norm': 5.190840244293213, 'learning_rate': 2.9096863958968268e-06, 'epoch': 9.01}\n", + "{'loss': 0.33, 'grad_norm': 3.5857107639312744, 'learning_rate': 2.8058334845816213e-06, 'epoch': 9.03}\n", + "{'loss': 0.3675, 'grad_norm': 4.7077860832214355, 'learning_rate': 2.7038142618741992e-06, 'epoch': 9.05}\n", + "{'loss': 0.4356, 'grad_norm': 4.774041175842285, 'learning_rate': 2.603632691643415e-06, 'epoch': 9.07}\n", + "{'loss': 0.3459, 'grad_norm': 3.2734451293945312, 'learning_rate': 2.5052926663577e-06, 'epoch': 9.09}\n", + "{'loss': 0.3926, 'grad_norm': 5.444535732269287, 'learning_rate': 2.408798006933882e-06, 'epoch': 9.1}\n", + "{'loss': 0.295, 'grad_norm': 4.564394474029541, 'learning_rate': 2.314152462588659e-06, 'epoch': 9.12}\n", + "{'loss': 0.3274, 'grad_norm': 3.5276427268981934, 'learning_rate': 2.221359710692961e-06, 'epoch': 9.14}\n", + "{'loss': 0.3454, 'grad_norm': 4.8225603103637695, 'learning_rate': 2.1304233566290964e-06, 'epoch': 9.16}\n", + "{'loss': 0.2982, 'grad_norm': 3.1064751148223877, 'learning_rate': 2.041346933650612e-06, 'epoch': 9.17}\n", + "{'loss': 0.3529, 'grad_norm': 3.431065082550049, 'learning_rate': 1.9541339027450256e-06, 'epoch': 9.19}\n", + "{'loss': 0.4354, 'grad_norm': 4.004822254180908, 'learning_rate': 1.8687876524993987e-06, 'epoch': 9.21}\n", + "{'loss': 0.3608, 'grad_norm': 5.244897842407227, 'learning_rate': 1.785311498968617e-06, 'epoch': 9.23}\n", + "{'loss': 0.3693, 'grad_norm': 4.393815517425537, 'learning_rate': 1.70370868554659e-06, 'epoch': 9.25}\n", + "{'loss': 0.3802, 'grad_norm': 4.819892883300781, 'learning_rate': 1.6239823828401945e-06, 'epoch': 9.26}\n", + "{'loss': 0.3838, 'grad_norm': 3.781949996948242, 'learning_rate': 1.5461356885461075e-06, 'epoch': 9.28}\n", + "{'loss': 0.4715, 'grad_norm': 4.076176166534424, 'learning_rate': 1.4701716273304521e-06, 'epoch': 9.3}\n", + "{'loss': 0.3256, 'grad_norm': 4.226771354675293, 'learning_rate': 1.3960931507112752e-06, 'epoch': 9.32}\n", + "{'loss': 0.3638, 'grad_norm': 3.562203884124756, 'learning_rate': 1.3239031369438326e-06, 'epoch': 9.34}\n", + "{'loss': 0.3687, 'grad_norm': 4.55058479309082, 'learning_rate': 1.2536043909088191e-06, 'epoch': 9.35}\n", + "{'loss': 0.3869, 'grad_norm': 4.373401165008545, 'learning_rate': 1.1851996440033319e-06, 'epoch': 9.37}\n", + "{'loss': 0.3151, 'grad_norm': 4.085133075714111, 'learning_rate': 1.118691554034773e-06, 'epoch': 9.39}\n", + "{'loss': 0.3557, 'grad_norm': 4.491430282592773, 'learning_rate': 1.0540827051175818e-06, 'epoch': 9.41}\n", + "{'loss': 0.405, 'grad_norm': 4.82833194732666, 'learning_rate': 9.913756075728087e-07, 'epoch': 9.42}\n", + "{'loss': 0.2972, 'grad_norm': 2.666112184524536, 'learning_rate': 9.305726978306173e-07, 'epoch': 9.44}\n", + "{'loss': 0.3194, 'grad_norm': 4.029996871948242, 'learning_rate': 8.716763383355864e-07, 'epoch': 9.46}\n", + "{'loss': 0.3984, 'grad_norm': 3.864152193069458, 'learning_rate': 8.146888174549339e-07, 'epoch': 9.48}\n", + "{'loss': 0.3483, 'grad_norm': 4.201892375946045, 'learning_rate': 7.596123493895991e-07, 'epoch': 9.5}\n", + "{'loss': 0.4642, 'grad_norm': 4.560868740081787, 'learning_rate': 7.064490740882057e-07, 'epoch': 9.51}\n", + "{'loss': 0.379, 'grad_norm': 4.305575370788574, 'learning_rate': 6.552010571639456e-07, 'epoch': 9.53}\n", + "{'loss': 0.445, 'grad_norm': 5.4909772872924805, 'learning_rate': 6.058702898142643e-07, 'epoch': 9.55}\n", + "{'loss': 0.3116, 'grad_norm': 4.831486225128174, 'learning_rate': 5.584586887435739e-07, 'epoch': 9.57}\n", + "{'loss': 0.3896, 'grad_norm': 4.905820846557617, 'learning_rate': 5.129680960887007e-07, 'epoch': 9.59}\n", + "{'loss': 0.3798, 'grad_norm': 3.7179861068725586, 'learning_rate': 4.6940027934735954e-07, 'epoch': 9.6}\n", + "{'loss': 0.3401, 'grad_norm': 4.62000036239624, 'learning_rate': 4.277569313094809e-07, 'epoch': 9.62}\n", + "{'loss': 0.4521, 'grad_norm': 4.725619792938232, 'learning_rate': 3.8803966999139684e-07, 'epoch': 9.64}\n", + "{'loss': 0.4075, 'grad_norm': 3.523742914199829, 'learning_rate': 3.50250038573019e-07, 'epoch': 9.66}\n", + "{'loss': 0.3438, 'grad_norm': 3.7823429107666016, 'learning_rate': 3.143895053378698e-07, 'epoch': 9.67}\n", + "{'loss': 0.2996, 'grad_norm': 3.2718749046325684, 'learning_rate': 2.8045946361601183e-07, 'epoch': 9.69}\n", + "{'loss': 0.4503, 'grad_norm': 5.158358097076416, 'learning_rate': 2.4846123172992954e-07, 'epoch': 9.71}\n", + "{'loss': 0.3938, 'grad_norm': 3.8553905487060547, 'learning_rate': 2.1839605294330933e-07, 'epoch': 9.73}\n", + "{'loss': 0.4459, 'grad_norm': 4.788202285766602, 'learning_rate': 1.9026509541272275e-07, 'epoch': 9.75}\n", + "{'loss': 0.3762, 'grad_norm': 4.024471759796143, 'learning_rate': 1.640694521422459e-07, 'epoch': 9.76}\n", + "{'loss': 0.4065, 'grad_norm': 5.944757461547852, 'learning_rate': 1.3981014094099353e-07, 'epoch': 9.78}\n", + "{'loss': 0.3105, 'grad_norm': 3.0800580978393555, 'learning_rate': 1.1748810438355628e-07, 'epoch': 9.8}\n", + "{'loss': 0.4782, 'grad_norm': 3.273432731628418, 'learning_rate': 9.710420977340762e-08, 'epoch': 9.82}\n", + "{'loss': 0.3914, 'grad_norm': 4.411673069000244, 'learning_rate': 7.865924910916977e-08, 'epoch': 9.83}\n", + "{'loss': 0.3274, 'grad_norm': 4.555184364318848, 'learning_rate': 6.215393905388278e-08, 'epoch': 9.85}\n", + "{'loss': 0.289, 'grad_norm': 5.107693672180176, 'learning_rate': 4.7588920907110094e-08, 'epoch': 9.87}\n", + "{'loss': 0.3202, 'grad_norm': 4.9626617431640625, 'learning_rate': 3.496476058006959e-08, 'epoch': 9.89}\n", + "{'loss': 0.433, 'grad_norm': 5.598171234130859, 'learning_rate': 2.4281948573617874e-08, 'epoch': 9.91}\n", + "{'loss': 0.4018, 'grad_norm': 4.289453029632568, 'learning_rate': 1.5540899959187727e-08, 'epoch': 9.92}\n", + "{'loss': 0.3691, 'grad_norm': 4.765395641326904, 'learning_rate': 8.741954362678772e-09, 'epoch': 9.94}\n", + "{'loss': 0.3645, 'grad_norm': 5.474503993988037, 'learning_rate': 3.885375951256931e-09, 'epoch': 9.96}\n", + "{'loss': 0.4003, 'grad_norm': 3.922280788421631, 'learning_rate': 9.713534230904041e-10, 'epoch': 9.98}\n", + "{'loss': 0.382, 'grad_norm': 4.276446342468262, 'learning_rate': 0.0, 'epoch': 10.0}\n", + "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 5600/5600 [1:59:00<00:00, 1.26s/it][INFO|trainer.py:3788] 2024-06-29 23:58:00,034 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-29 23:58:00,034 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-29 23:58:00,034 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-0.5b/lora/sft/checkpoint-5600\n", + "[INFO|configuration_utils.py:733] 2024-06-29 23:58:02,446 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-29 23:58:02,446 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 896,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 4864,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 24,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 14,\n", + " \"num_hidden_layers\": 24,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-29 23:58:02,476 >> tokenizer config file saved in saves/qwen2-0.5b/lora/sft/checkpoint-5600/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-29 23:58:02,476 >> Special tokens file saved in saves/qwen2-0.5b/lora/sft/checkpoint-5600/special_tokens_map.json\n", + "[INFO|trainer.py:2383] 2024-06-29 23:58:02,637 >> \n", + "\n", + "Training completed. Do not forget to share your model on huggingface.co/models =)\n", + "\n", + "\n", + "{'train_runtime': 7142.6727, 'train_samples_per_second': 6.275, 'train_steps_per_second': 0.784, 'train_loss': 1.0784291120512144, 'epoch': 10.0}\n", + "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 5600/5600 [1:59:02<00:00, 1.28s/it]\n", + "[INFO|trainer.py:3478] 2024-06-29 23:58:02,640 >> Saving model checkpoint to saves/qwen2-0.5b/lora/sft\n", + "[INFO|configuration_utils.py:733] 2024-06-29 23:58:03,159 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-0.5B-Instruct/snapshots/c291d6fce4804a1d39305f388dd32897d1f7acc4/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-29 23:58:03,160 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 896,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 4864,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 24,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 14,\n", + " \"num_hidden_layers\": 24,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-29 23:58:03,220 >> tokenizer config file saved in saves/qwen2-0.5b/lora/sft/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-29 23:58:03,220 >> Special tokens file saved in saves/qwen2-0.5b/lora/sft/special_tokens_map.json\n", + "***** train metrics *****\n", + " epoch = 9.9955\n", + " total_flos = 7657006GF\n", + " train_loss = 1.0784\n", + " train_runtime = 1:59:02.67\n", + " train_samples_per_second = 6.275\n", + " train_steps_per_second = 0.784\n", + "Figure saved at: saves/qwen2-0.5b/lora/sft/training_loss.png\n", + "Figure saved at: saves/qwen2-0.5b/lora/sft/training_eval_loss.png\n", + "[INFO|trainer.py:3788] 2024-06-29 23:58:03,541 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-29 23:58:03,541 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-29 23:58:03,541 >> Batch size = 1\n", + "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 46/46 [00:01<00:00, 25.51it/s]\n", + "***** eval metrics *****\n", + " epoch = 9.9955\n", + " eval_loss = 3.4661\n", + " eval_runtime = 0:00:01.85\n", + " eval_samples_per_second = 24.833\n", + " eval_steps_per_second = 24.833\n", + "[INFO|modelcard.py:449] 2024-06-29 23:58:05,395 >> Dropping the following result as it does not have all the necessary fields:\n", + "{'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}\n", + "CPU times: user 1min 32s, sys: 30.2 s, total: 2min 2s\n", + "Wall time: 1h 59min 52s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "!./scripts/tune-lf.sh config/qwen2_0.5b_lora_sft.yaml" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current Directory:\n", + "/home/inflaton/code/projects/courses/llm-finetuning/llama-factory\n", + "06/30/2024 06:14:31 - INFO - llamafactory.hparams.parser - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: False, compute dtype: torch.bfloat16\n", + "[INFO|tokenization_utils_base.py:2161] 2024-06-30 06:14:31,888 >> loading file vocab.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/vocab.json\n", + "[INFO|tokenization_utils_base.py:2161] 2024-06-30 06:14:31,888 >> loading file merges.txt from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/merges.txt\n", + "[INFO|tokenization_utils_base.py:2161] 2024-06-30 06:14:31,888 >> loading file tokenizer.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/tokenizer.json\n", + "[INFO|tokenization_utils_base.py:2161] 2024-06-30 06:14:31,888 >> loading file added_tokens.json from cache at None\n", + "[INFO|tokenization_utils_base.py:2161] 2024-06-30 06:14:31,888 >> loading file special_tokens_map.json from cache at None\n", + "[INFO|tokenization_utils_base.py:2161] 2024-06-30 06:14:31,888 >> loading file tokenizer_config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/tokenizer_config.json\n", + "[WARNING|logging.py:313] 2024-06-30 06:14:32,031 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n", + "06/30/2024 06:14:32 - INFO - llamafactory.data.template - Replace eos token: <|im_end|>\n", + "06/30/2024 06:14:32 - INFO - llamafactory.data.template - Add <|im_start|> to stop words.\n", + "06/30/2024 06:14:32 - INFO - llamafactory.data.loader - Loading dataset alpaca_mac.json...\n", + "Converting format of dataset (num_proc=16): 100%|โ–ˆ| 4528/4528 [00:00<00:00, 1488\n", + "Running tokenizer on dataset (num_proc=16): 100%|โ–ˆ| 4528/4528 [00:01<00:00, 3433\n", + "input_ids:\n", + "[151644, 872, 198, 5501, 14683, 279, 2701, 8453, 1467, 1119, 6364, 323, 3410, 1172, 279, 24531, 2213, 11, 4302, 770, 624, 35987, 102895, 99164, 100324, 100717, 100095, 99509, 1773, 151645, 198, 151644, 77091, 198, 17949, 358, 572, 2617, 553, 264, 38835, 44486, 13, 151645]\n", + "inputs:\n", + "<|im_start|>user\n", + "Please translate the following Chinese text into English and provide only the translated content, nothing else.\n", + "ๅ…จไป—็€็‹ไป™ๆญๆ•‘ใ€‚<|im_end|>\n", + "<|im_start|>assistant\n", + "Because I was protected by a fox fairy.<|im_end|>\n", + "label_ids:\n", + "[-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 17949, 358, 572, 2617, 553, 264, 38835, 44486, 13, 151645]\n", + "labels:\n", + "Because I was protected by a fox fairy.<|im_end|>\n", + "[INFO|configuration_utils.py:733] 2024-06-30 06:14:35,044 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-30 06:14:35,045 >> Model config Qwen2Config {\n", + " \"_name_or_path\": \"Qwen/Qwen2-1.5B-Instruct\",\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 1536,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 8960,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 28,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 28,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|modeling_utils.py:3556] 2024-06-30 06:14:35,702 >> loading weights file model.safetensors from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/model.safetensors\n", + "[INFO|modeling_utils.py:1531] 2024-06-30 06:14:37,609 >> Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.\n", + "[INFO|configuration_utils.py:1000] 2024-06-30 06:14:37,613 >> Generate config GenerationConfig {\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645\n", + "}\n", + "\n", + "[INFO|modeling_utils.py:4364] 2024-06-30 06:16:33,749 >> All model checkpoint weights were used when initializing Qwen2ForCausalLM.\n", + "\n", + "[INFO|modeling_utils.py:4372] 2024-06-30 06:16:33,749 >> All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at Qwen/Qwen2-1.5B-Instruct.\n", + "If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.\n", + "[INFO|configuration_utils.py:955] 2024-06-30 06:16:34,027 >> loading configuration file generation_config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/generation_config.json\n", + "[INFO|configuration_utils.py:1000] 2024-06-30 06:16:34,027 >> Generate config GenerationConfig {\n", + " \"bos_token_id\": 151643,\n", + " \"do_sample\": true,\n", + " \"eos_token_id\": [\n", + " 151645,\n", + " 151643\n", + " ],\n", + " \"pad_token_id\": 151643,\n", + " \"repetition_penalty\": 1.1,\n", + " \"temperature\": 0.7,\n", + " \"top_k\": 20,\n", + " \"top_p\": 0.8\n", + "}\n", + "\n", + "06/30/2024 06:16:34 - INFO - llamafactory.model.model_utils.checkpointing - Gradient checkpointing enabled.\n", + "06/30/2024 06:16:34 - INFO - llamafactory.model.model_utils.attention - Using torch SDPA for faster training and inference.\n", + "06/30/2024 06:16:34 - INFO - llamafactory.model.adapter - Upcasting trainable params to float32.\n", + "06/30/2024 06:16:34 - INFO - llamafactory.model.adapter - Fine-tuning method: LoRA\n", + "06/30/2024 06:16:34 - INFO - llamafactory.model.model_utils.misc - Found linear modules: k_proj,q_proj,v_proj,gate_proj,up_proj,o_proj,down_proj\n", + "06/30/2024 06:16:34 - INFO - llamafactory.model.loader - trainable params: 9,232,384 || all params: 1,552,946,688 || trainable%: 0.5945\n", + "[INFO|trainer.py:642] 2024-06-30 06:16:34,928 >> Using auto half precision backend\n", + "[INFO|trainer.py:2128] 2024-06-30 06:16:35,081 >> ***** Running training *****\n", + "[INFO|trainer.py:2129] 2024-06-30 06:16:35,081 >> Num examples = 4,482\n", + "[INFO|trainer.py:2130] 2024-06-30 06:16:35,081 >> Num Epochs = 10\n", + "[INFO|trainer.py:2131] 2024-06-30 06:16:35,081 >> Instantaneous batch size per device = 1\n", + "[INFO|trainer.py:2134] 2024-06-30 06:16:35,081 >> Total train batch size (w. parallel, distributed & accumulation) = 8\n", + "[INFO|trainer.py:2135] 2024-06-30 06:16:35,081 >> Gradient Accumulation steps = 8\n", + "[INFO|trainer.py:2136] 2024-06-30 06:16:35,081 >> Total optimization steps = 5,600\n", + "[INFO|trainer.py:2137] 2024-06-30 06:16:35,083 >> Number of trainable parameters = 9,232,384\n", + "{'loss': 2.1598, 'grad_norm': 1.7301031351089478, 'learning_rate': 1.7857142857142857e-06, 'epoch': 0.02}\n", + "{'loss': 2.2894, 'grad_norm': 1.9221487045288086, 'learning_rate': 3.5714285714285714e-06, 'epoch': 0.04}\n", + "{'loss': 2.152, 'grad_norm': 1.5344856977462769, 'learning_rate': 5.357142857142857e-06, 'epoch': 0.05}\n", + "{'loss': 2.1602, 'grad_norm': 3.0139236450195312, 'learning_rate': 7.142857142857143e-06, 'epoch': 0.07}\n", + "{'loss': 2.3519, 'grad_norm': 1.501677393913269, 'learning_rate': 8.92857142857143e-06, 'epoch': 0.09}\n", + "{'loss': 2.05, 'grad_norm': 1.680209994316101, 'learning_rate': 1.0714285714285714e-05, 'epoch': 0.11}\n", + "{'loss': 2.1875, 'grad_norm': 1.694694995880127, 'learning_rate': 1.25e-05, 'epoch': 0.12}\n", + "{'loss': 1.9546, 'grad_norm': 1.5895333290100098, 'learning_rate': 1.4285714285714285e-05, 'epoch': 0.14}\n", + "{'loss': 2.075, 'grad_norm': 2.115245819091797, 'learning_rate': 1.6071428571428572e-05, 'epoch': 0.16}\n", + "{'loss': 1.9713, 'grad_norm': 1.3625324964523315, 'learning_rate': 1.785714285714286e-05, 'epoch': 0.18}\n", + "{'loss': 2.0099, 'grad_norm': 1.7853630781173706, 'learning_rate': 1.9642857142857145e-05, 'epoch': 0.2}\n", + "{'loss': 1.9603, 'grad_norm': 1.3131749629974365, 'learning_rate': 2.1428571428571428e-05, 'epoch': 0.21}\n", + "{'loss': 1.9619, 'grad_norm': 1.6807270050048828, 'learning_rate': 2.3214285714285715e-05, 'epoch': 0.23}\n", + "{'loss': 1.9889, 'grad_norm': 2.136683464050293, 'learning_rate': 2.5e-05, 'epoch': 0.25}\n", + "{'loss': 1.8445, 'grad_norm': 1.5379092693328857, 'learning_rate': 2.6785714285714288e-05, 'epoch': 0.27}\n", + "{'loss': 1.8162, 'grad_norm': 1.4818131923675537, 'learning_rate': 2.857142857142857e-05, 'epoch': 0.29}\n", + "{'loss': 1.9681, 'grad_norm': 1.3765653371810913, 'learning_rate': 3.0357142857142857e-05, 'epoch': 0.3}\n", + "{'loss': 1.7704, 'grad_norm': 1.7519148588180542, 'learning_rate': 3.2142857142857144e-05, 'epoch': 0.32}\n", + "{'loss': 1.8997, 'grad_norm': 2.2547669410705566, 'learning_rate': 3.392857142857143e-05, 'epoch': 0.34}\n", + "{'loss': 2.0083, 'grad_norm': 1.9038093090057373, 'learning_rate': 3.571428571428572e-05, 'epoch': 0.36}\n", + "{'loss': 1.9641, 'grad_norm': 1.864136815071106, 'learning_rate': 3.7500000000000003e-05, 'epoch': 0.37}\n", + "{'loss': 1.8745, 'grad_norm': 2.456977605819702, 'learning_rate': 3.928571428571429e-05, 'epoch': 0.39}\n", + "{'loss': 1.8564, 'grad_norm': 2.0037779808044434, 'learning_rate': 4.107142857142857e-05, 'epoch': 0.41}\n", + "{'loss': 2.0248, 'grad_norm': 2.459550619125366, 'learning_rate': 4.2857142857142856e-05, 'epoch': 0.43}\n", + "{'loss': 1.9225, 'grad_norm': 2.4255712032318115, 'learning_rate': 4.464285714285715e-05, 'epoch': 0.45}\n", + "{'loss': 1.8559, 'grad_norm': 2.2272531986236572, 'learning_rate': 4.642857142857143e-05, 'epoch': 0.46}\n", + "{'loss': 1.916, 'grad_norm': 3.067957878112793, 'learning_rate': 4.8214285714285716e-05, 'epoch': 0.48}\n", + "{'loss': 1.9695, 'grad_norm': 2.689528226852417, 'learning_rate': 5e-05, 'epoch': 0.5}\n", + "{'loss': 1.7267, 'grad_norm': 1.640542984008789, 'learning_rate': 5.1785714285714296e-05, 'epoch': 0.52}\n", + "{'loss': 1.8751, 'grad_norm': 2.6767070293426514, 'learning_rate': 5.3571428571428575e-05, 'epoch': 0.54}\n", + "{'loss': 1.8821, 'grad_norm': 2.2540671825408936, 'learning_rate': 5.535714285714286e-05, 'epoch': 0.55}\n", + "{'loss': 1.7133, 'grad_norm': 3.7877705097198486, 'learning_rate': 5.714285714285714e-05, 'epoch': 0.57}\n", + "{'loss': 1.7552, 'grad_norm': 2.7244925498962402, 'learning_rate': 5.8928571428571435e-05, 'epoch': 0.59}\n", + "{'loss': 1.8089, 'grad_norm': 2.4050076007843018, 'learning_rate': 6.0714285714285715e-05, 'epoch': 0.61}\n", + "{'loss': 1.8102, 'grad_norm': 3.4505980014801025, 'learning_rate': 6.25e-05, 'epoch': 0.62}\n", + "{'loss': 1.7452, 'grad_norm': 1.8404840230941772, 'learning_rate': 6.428571428571429e-05, 'epoch': 0.64}\n", + "{'loss': 1.9171, 'grad_norm': 2.923614025115967, 'learning_rate': 6.607142857142857e-05, 'epoch': 0.66}\n", + "{'loss': 1.8893, 'grad_norm': 2.2417802810668945, 'learning_rate': 6.785714285714286e-05, 'epoch': 0.68}\n", + "{'loss': 1.6041, 'grad_norm': 1.8358319997787476, 'learning_rate': 6.964285714285715e-05, 'epoch': 0.7}\n", + "{'loss': 1.7782, 'grad_norm': 2.7531838417053223, 'learning_rate': 7.142857142857143e-05, 'epoch': 0.71}\n", + "{'loss': 1.8365, 'grad_norm': 2.2503859996795654, 'learning_rate': 7.321428571428571e-05, 'epoch': 0.73}\n", + "{'loss': 1.863, 'grad_norm': 1.8987295627593994, 'learning_rate': 7.500000000000001e-05, 'epoch': 0.75}\n", + "{'loss': 1.8407, 'grad_norm': 2.950441598892212, 'learning_rate': 7.67857142857143e-05, 'epoch': 0.77}\n", + "{'loss': 1.7695, 'grad_norm': 3.3668158054351807, 'learning_rate': 7.857142857142858e-05, 'epoch': 0.79}\n", + "{'loss': 1.6759, 'grad_norm': 1.843374252319336, 'learning_rate': 8.035714285714287e-05, 'epoch': 0.8}\n", + "{'loss': 1.7465, 'grad_norm': 2.3402576446533203, 'learning_rate': 8.214285714285714e-05, 'epoch': 0.82}\n", + "{'loss': 1.7852, 'grad_norm': 3.2396647930145264, 'learning_rate': 8.392857142857144e-05, 'epoch': 0.84}\n", + "{'loss': 1.7626, 'grad_norm': 2.432474136352539, 'learning_rate': 8.571428571428571e-05, 'epoch': 0.86}\n", + "{'loss': 1.8173, 'grad_norm': 1.9021589756011963, 'learning_rate': 8.75e-05, 'epoch': 0.87}\n", + "{'loss': 1.9716, 'grad_norm': 1.968782901763916, 'learning_rate': 8.92857142857143e-05, 'epoch': 0.89}\n", + "{'loss': 1.8814, 'grad_norm': 2.0488665103912354, 'learning_rate': 9.107142857142857e-05, 'epoch': 0.91}\n", + "{'loss': 1.7689, 'grad_norm': 2.5687661170959473, 'learning_rate': 9.285714285714286e-05, 'epoch': 0.93}\n", + "{'loss': 1.8, 'grad_norm': 3.141063690185547, 'learning_rate': 9.464285714285715e-05, 'epoch': 0.95}\n", + "{'loss': 1.8067, 'grad_norm': 2.3366873264312744, 'learning_rate': 9.642857142857143e-05, 'epoch': 0.96}\n", + "{'loss': 1.7689, 'grad_norm': 2.356125831604004, 'learning_rate': 9.821428571428572e-05, 'epoch': 0.98}\n", + "{'loss': 1.7444, 'grad_norm': 1.962470293045044, 'learning_rate': 0.0001, 'epoch': 1.0}\n", + " 10%|โ–ˆโ–ˆโ–ˆโ–Š | 560/5600 [15:11<2:19:14, 1.66s/it][INFO|trainer.py:3788] 2024-06-30 06:31:46,942 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-30 06:31:46,942 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-30 06:31:46,942 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-1.5b/lora/sft/checkpoint-560\n", + "[INFO|configuration_utils.py:733] 2024-06-30 06:31:50,591 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-30 06:31:50,592 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 1536,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 8960,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 28,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 28,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-30 06:31:50,659 >> tokenizer config file saved in saves/qwen2-1.5b/lora/sft/checkpoint-560/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-30 06:31:50,660 >> Special tokens file saved in saves/qwen2-1.5b/lora/sft/checkpoint-560/special_tokens_map.json\n", + "{'loss': 1.6815, 'grad_norm': 2.0423543453216553, 'learning_rate': 9.999902864657691e-05, 'epoch': 1.02}\n", + "{'loss': 1.5142, 'grad_norm': 3.1950676441192627, 'learning_rate': 9.999611462404875e-05, 'epoch': 1.04}\n", + "{'loss': 1.6976, 'grad_norm': 2.1450624465942383, 'learning_rate': 9.999125804563732e-05, 'epoch': 1.05}\n", + "{'loss': 1.636, 'grad_norm': 2.6176905632019043, 'learning_rate': 9.998445910004082e-05, 'epoch': 1.07}\n", + "{'loss': 1.6114, 'grad_norm': 2.9323713779449463, 'learning_rate': 9.997571805142639e-05, 'epoch': 1.09}\n", + "{'loss': 1.6291, 'grad_norm': 2.9673070907592773, 'learning_rate': 9.996503523941994e-05, 'epoch': 1.11}\n", + "{'loss': 1.6302, 'grad_norm': 2.463287591934204, 'learning_rate': 9.99524110790929e-05, 'epoch': 1.12}\n", + "{'loss': 1.6341, 'grad_norm': 4.124421119689941, 'learning_rate': 9.993784606094612e-05, 'epoch': 1.14}\n", + "{'loss': 1.6547, 'grad_norm': 2.851663589477539, 'learning_rate': 9.992134075089084e-05, 'epoch': 1.16}\n", + "{'loss': 1.5286, 'grad_norm': 2.5066659450531006, 'learning_rate': 9.99028957902266e-05, 'epoch': 1.18}\n", + "{'loss': 1.4801, 'grad_norm': 2.078930139541626, 'learning_rate': 9.988251189561645e-05, 'epoch': 1.2}\n", + "{'loss': 1.6318, 'grad_norm': 3.086003065109253, 'learning_rate': 9.986018985905901e-05, 'epoch': 1.21}\n", + "{'loss': 1.5591, 'grad_norm': 3.057227849960327, 'learning_rate': 9.983593054785776e-05, 'epoch': 1.23}\n", + "{'loss': 1.6401, 'grad_norm': 3.679922342300415, 'learning_rate': 9.980973490458728e-05, 'epoch': 1.25}\n", + "{'loss': 1.6262, 'grad_norm': 3.8075058460235596, 'learning_rate': 9.978160394705668e-05, 'epoch': 1.27}\n", + "{'loss': 1.7599, 'grad_norm': 3.5445713996887207, 'learning_rate': 9.975153876827008e-05, 'epoch': 1.29}\n", + "{'loss': 1.6814, 'grad_norm': 2.6588189601898193, 'learning_rate': 9.971954053638399e-05, 'epoch': 1.3}\n", + "{'loss': 1.6972, 'grad_norm': 2.6084141731262207, 'learning_rate': 9.968561049466214e-05, 'epoch': 1.32}\n", + "{'loss': 1.6675, 'grad_norm': 3.312152147293091, 'learning_rate': 9.964974996142698e-05, 'epoch': 1.34}\n", + "{'loss': 1.4381, 'grad_norm': 3.4132375717163086, 'learning_rate': 9.961196033000861e-05, 'epoch': 1.36}\n", + "{'loss': 1.6732, 'grad_norm': 3.6682002544403076, 'learning_rate': 9.957224306869053e-05, 'epoch': 1.37}\n", + "{'loss': 1.5185, 'grad_norm': 4.421182155609131, 'learning_rate': 9.953059972065265e-05, 'epoch': 1.39}\n", + "{'loss': 1.3911, 'grad_norm': 2.5544440746307373, 'learning_rate': 9.948703190391131e-05, 'epoch': 1.41}\n", + "{'loss': 1.6939, 'grad_norm': 3.4235222339630127, 'learning_rate': 9.944154131125642e-05, 'epoch': 1.43}\n", + "{'loss': 1.5821, 'grad_norm': 3.2818450927734375, 'learning_rate': 9.939412971018574e-05, 'epoch': 1.45}\n", + "{'loss': 1.551, 'grad_norm': 3.252692461013794, 'learning_rate': 9.934479894283606e-05, 'epoch': 1.46}\n", + "{'loss': 1.7187, 'grad_norm': 2.9500677585601807, 'learning_rate': 9.92935509259118e-05, 'epoch': 1.48}\n", + "{'loss': 1.5578, 'grad_norm': 3.451415538787842, 'learning_rate': 9.924038765061042e-05, 'epoch': 1.5}\n", + "{'loss': 1.4891, 'grad_norm': 2.3982598781585693, 'learning_rate': 9.918531118254507e-05, 'epoch': 1.52}\n", + "{'loss': 1.6728, 'grad_norm': 3.524627685546875, 'learning_rate': 9.912832366166442e-05, 'epoch': 1.54}\n", + "{'loss': 1.6112, 'grad_norm': 3.316537857055664, 'learning_rate': 9.906942730216939e-05, 'epoch': 1.55}\n", + "{'loss': 1.547, 'grad_norm': 2.789212465286255, 'learning_rate': 9.900862439242719e-05, 'epoch': 1.57}\n", + "{'loss': 1.6212, 'grad_norm': 3.1522133350372314, 'learning_rate': 9.894591729488242e-05, 'epoch': 1.59}\n", + "{'loss': 1.7589, 'grad_norm': 2.6350767612457275, 'learning_rate': 9.888130844596524e-05, 'epoch': 1.61}\n", + "{'loss': 1.5101, 'grad_norm': 2.931504487991333, 'learning_rate': 9.881480035599667e-05, 'epoch': 1.62}\n", + "{'loss': 1.6024, 'grad_norm': 2.5779600143432617, 'learning_rate': 9.874639560909117e-05, 'epoch': 1.64}\n", + "{'loss': 1.5994, 'grad_norm': 3.0192410945892334, 'learning_rate': 9.867609686305617e-05, 'epoch': 1.66}\n", + "{'loss': 1.5899, 'grad_norm': 2.50893497467041, 'learning_rate': 9.860390684928873e-05, 'epoch': 1.68}\n", + "{'loss': 1.5526, 'grad_norm': 3.570330858230591, 'learning_rate': 9.852982837266955e-05, 'epoch': 1.7}\n", + "{'loss': 1.5617, 'grad_norm': 4.337871074676514, 'learning_rate': 9.84538643114539e-05, 'epoch': 1.71}\n", + "{'loss': 1.5299, 'grad_norm': 2.3411428928375244, 'learning_rate': 9.837601761715983e-05, 'epoch': 1.73}\n", + "{'loss': 1.6652, 'grad_norm': 2.955780029296875, 'learning_rate': 9.829629131445342e-05, 'epoch': 1.75}\n", + "{'loss': 1.651, 'grad_norm': 2.441587209701538, 'learning_rate': 9.82146885010314e-05, 'epoch': 1.77}\n", + "{'loss': 1.5477, 'grad_norm': 2.947199821472168, 'learning_rate': 9.81312123475006e-05, 'epoch': 1.78}\n", + "{'loss': 1.5604, 'grad_norm': 2.740534543991089, 'learning_rate': 9.804586609725499e-05, 'epoch': 1.8}\n", + "{'loss': 1.5216, 'grad_norm': 2.7406256198883057, 'learning_rate': 9.79586530663494e-05, 'epoch': 1.82}\n", + "{'loss': 1.4901, 'grad_norm': 2.576497793197632, 'learning_rate': 9.78695766433709e-05, 'epoch': 1.84}\n", + "{'loss': 1.6326, 'grad_norm': 2.4222359657287598, 'learning_rate': 9.777864028930705e-05, 'epoch': 1.86}\n", + "{'loss': 1.4982, 'grad_norm': 3.2682604789733887, 'learning_rate': 9.768584753741134e-05, 'epoch': 1.87}\n", + "{'loss': 1.5688, 'grad_norm': 2.756934642791748, 'learning_rate': 9.759120199306613e-05, 'epoch': 1.89}\n", + "{'loss': 1.6835, 'grad_norm': 3.1586759090423584, 'learning_rate': 9.74947073336423e-05, 'epoch': 1.91}\n", + "{'loss': 1.7065, 'grad_norm': 3.218165874481201, 'learning_rate': 9.73963673083566e-05, 'epoch': 1.93}\n", + "{'loss': 1.6155, 'grad_norm': 2.732252836227417, 'learning_rate': 9.72961857381258e-05, 'epoch': 1.95}\n", + "{'loss': 1.5021, 'grad_norm': 2.702173948287964, 'learning_rate': 9.719416651541839e-05, 'epoch': 1.96}\n", + "{'loss': 1.6002, 'grad_norm': 2.3407227993011475, 'learning_rate': 9.709031360410318e-05, 'epoch': 1.98}\n", + "{'loss': 1.5955, 'grad_norm': 3.0833232402801514, 'learning_rate': 9.698463103929542e-05, 'epoch': 2.0}\n", + " 20%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ– | 1120/5600 [30:57<2:03:57, 1.66s/it][INFO|trainer.py:3788] 2024-06-30 06:47:32,631 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-30 06:47:32,631 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-30 06:47:32,631 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-1.5b/lora/sft/checkpoint-1120\n", + "[INFO|configuration_utils.py:733] 2024-06-30 06:47:35,643 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-30 06:47:35,644 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 1536,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 8960,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 28,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 28,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-30 06:47:35,688 >> tokenizer config file saved in saves/qwen2-1.5b/lora/sft/checkpoint-1120/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-30 06:47:35,688 >> Special tokens file saved in saves/qwen2-1.5b/lora/sft/checkpoint-1120/special_tokens_map.json\n", + "{'loss': 1.2986, 'grad_norm': 6.459508895874023, 'learning_rate': 9.687712292719997e-05, 'epoch': 2.02}\n", + "{'loss': 1.1686, 'grad_norm': 2.6047580242156982, 'learning_rate': 9.67677934449517e-05, 'epoch': 2.03}\n", + "{'loss': 1.2613, 'grad_norm': 4.400974273681641, 'learning_rate': 9.665664684045333e-05, 'epoch': 2.05}\n", + "{'loss': 1.1817, 'grad_norm': 3.368881940841675, 'learning_rate': 9.654368743221022e-05, 'epoch': 2.07}\n", + "{'loss': 1.1255, 'grad_norm': 2.8357393741607666, 'learning_rate': 9.642891960916268e-05, 'epoch': 2.09}\n", + "{'loss': 1.2003, 'grad_norm': 2.8627848625183105, 'learning_rate': 9.631234783051544e-05, 'epoch': 2.11}\n", + "{'loss': 1.3588, 'grad_norm': 4.006772041320801, 'learning_rate': 9.619397662556435e-05, 'epoch': 2.12}\n", + "{'loss': 1.1791, 'grad_norm': 3.8697452545166016, 'learning_rate': 9.607381059352038e-05, 'epoch': 2.14}\n", + "{'loss': 1.1847, 'grad_norm': 4.039665222167969, 'learning_rate': 9.595185440333103e-05, 'epoch': 2.16}\n", + "{'loss': 1.1875, 'grad_norm': 4.559266567230225, 'learning_rate': 9.582811279349882e-05, 'epoch': 2.18}\n", + "{'loss': 1.2245, 'grad_norm': 3.3498127460479736, 'learning_rate': 9.570259057189717e-05, 'epoch': 2.2}\n", + "{'loss': 1.2361, 'grad_norm': 4.742955684661865, 'learning_rate': 9.557529261558367e-05, 'epoch': 2.21}\n", + "{'loss': 1.2929, 'grad_norm': 5.568743705749512, 'learning_rate': 9.544622387061055e-05, 'epoch': 2.23}\n", + "{'loss': 1.2945, 'grad_norm': 5.399260997772217, 'learning_rate': 9.53153893518325e-05, 'epoch': 2.25}\n", + "{'loss': 1.1725, 'grad_norm': 3.5391037464141846, 'learning_rate': 9.518279414271183e-05, 'epoch': 2.27}\n", + "{'loss': 1.1956, 'grad_norm': 4.30355978012085, 'learning_rate': 9.504844339512095e-05, 'epoch': 2.28}\n", + "{'loss': 1.2378, 'grad_norm': 3.2837555408477783, 'learning_rate': 9.491234232914221e-05, 'epoch': 2.3}\n", + "{'loss': 1.2634, 'grad_norm': 4.105693340301514, 'learning_rate': 9.477449623286505e-05, 'epoch': 2.32}\n", + "{'loss': 1.3589, 'grad_norm': 3.694589614868164, 'learning_rate': 9.463491046218058e-05, 'epoch': 2.34}\n", + "{'loss': 1.3134, 'grad_norm': 3.689924716949463, 'learning_rate': 9.449359044057345e-05, 'epoch': 2.36}\n", + "{'loss': 1.2572, 'grad_norm': 4.2927374839782715, 'learning_rate': 9.435054165891109e-05, 'epoch': 2.37}\n", + "{'loss': 1.4522, 'grad_norm': 4.005749225616455, 'learning_rate': 9.420576967523049e-05, 'epoch': 2.39}\n", + "{'loss': 1.343, 'grad_norm': 4.006478309631348, 'learning_rate': 9.405928011452211e-05, 'epoch': 2.41}\n", + "{'loss': 1.181, 'grad_norm': 4.455829620361328, 'learning_rate': 9.391107866851143e-05, 'epoch': 2.43}\n", + "{'loss': 1.2442, 'grad_norm': 3.436230421066284, 'learning_rate': 9.376117109543769e-05, 'epoch': 2.45}\n", + "{'loss': 1.2157, 'grad_norm': 3.515488386154175, 'learning_rate': 9.360956321983028e-05, 'epoch': 2.46}\n", + "{'loss': 1.2723, 'grad_norm': 3.4698567390441895, 'learning_rate': 9.345626093228233e-05, 'epoch': 2.48}\n", + "{'loss': 1.3747, 'grad_norm': 4.542730808258057, 'learning_rate': 9.330127018922194e-05, 'epoch': 2.5}\n", + "{'loss': 1.2685, 'grad_norm': 3.6365323066711426, 'learning_rate': 9.314459701268065e-05, 'epoch': 2.52}\n", + "{'loss': 1.2574, 'grad_norm': 3.8041131496429443, 'learning_rate': 9.298624749005951e-05, 'epoch': 2.53}\n", + "{'loss': 1.3031, 'grad_norm': 3.81734037399292, 'learning_rate': 9.282622777389258e-05, 'epoch': 2.55}\n", + "{'loss': 1.168, 'grad_norm': 4.677352428436279, 'learning_rate': 9.266454408160779e-05, 'epoch': 2.57}\n", + "{'loss': 1.3771, 'grad_norm': 5.038273811340332, 'learning_rate': 9.250120269528546e-05, 'epoch': 2.59}\n", + "{'loss': 1.2421, 'grad_norm': 5.5514702796936035, 'learning_rate': 9.233620996141421e-05, 'epoch': 2.61}\n", + "{'loss': 1.2833, 'grad_norm': 3.1367263793945312, 'learning_rate': 9.21695722906443e-05, 'epoch': 2.62}\n", + "{'loss': 1.2831, 'grad_norm': 2.603522539138794, 'learning_rate': 9.200129615753859e-05, 'epoch': 2.64}\n", + "{'loss': 1.2421, 'grad_norm': 3.707820177078247, 'learning_rate': 9.183138810032099e-05, 'epoch': 2.66}\n", + "{'loss': 1.3674, 'grad_norm': 3.9344961643218994, 'learning_rate': 9.165985472062246e-05, 'epoch': 2.68}\n", + "{'loss': 1.1452, 'grad_norm': 4.652283668518066, 'learning_rate': 9.148670268322438e-05, 'epoch': 2.7}\n", + "{'loss': 1.1737, 'grad_norm': 4.732541084289551, 'learning_rate': 9.131193871579975e-05, 'epoch': 2.71}\n", + "{'loss': 1.4043, 'grad_norm': 3.7013778686523438, 'learning_rate': 9.113556960865167e-05, 'epoch': 2.73}\n", + "{'loss': 1.334, 'grad_norm': 3.8859188556671143, 'learning_rate': 9.09576022144496e-05, 'epoch': 2.75}\n", + "{'loss': 1.2964, 'grad_norm': 3.6818110942840576, 'learning_rate': 9.077804344796302e-05, 'epoch': 2.77}\n", + "{'loss': 1.3015, 'grad_norm': 3.5502216815948486, 'learning_rate': 9.059690028579284e-05, 'epoch': 2.78}\n", + "{'loss': 1.1433, 'grad_norm': 3.0337369441986084, 'learning_rate': 9.041417976610027e-05, 'epoch': 2.8}\n", + "{'loss': 1.2503, 'grad_norm': 3.4227890968322754, 'learning_rate': 9.022988898833342e-05, 'epoch': 2.82}\n", + "{'loss': 1.2781, 'grad_norm': 3.566080093383789, 'learning_rate': 9.004403511295141e-05, 'epoch': 2.84}\n", + "{'loss': 1.2557, 'grad_norm': 4.064306735992432, 'learning_rate': 8.985662536114613e-05, 'epoch': 2.86}\n", + "{'loss': 1.4121, 'grad_norm': 3.106153726577759, 'learning_rate': 8.966766701456177e-05, 'epoch': 2.87}\n", + "{'loss': 1.2789, 'grad_norm': 3.873041868209839, 'learning_rate': 8.947716741501177e-05, 'epoch': 2.89}\n", + "{'loss': 1.2759, 'grad_norm': 3.9415042400360107, 'learning_rate': 8.928513396419368e-05, 'epoch': 2.91}\n", + "{'loss': 1.2078, 'grad_norm': 3.456357002258301, 'learning_rate': 8.90915741234015e-05, 'epoch': 2.93}\n", + "{'loss': 1.3886, 'grad_norm': 3.5346779823303223, 'learning_rate': 8.889649541323574e-05, 'epoch': 2.95}\n", + "{'loss': 1.33, 'grad_norm': 3.6706087589263916, 'learning_rate': 8.869990541331138e-05, 'epoch': 2.96}\n", + "{'loss': 1.2564, 'grad_norm': 4.235021591186523, 'learning_rate': 8.850181176196315e-05, 'epoch': 2.98}\n", + "{'loss': 1.3518, 'grad_norm': 3.6379354000091553, 'learning_rate': 8.83022221559489e-05, 'epoch': 3.0}\n", + " 30%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 1680/5600 [46:41<1:48:23, 1.66s/it][INFO|trainer.py:3788] 2024-06-30 07:03:16,574 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-30 07:03:16,574 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-30 07:03:16,574 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-1.5b/lora/sft/checkpoint-1680\n", + "[INFO|configuration_utils.py:733] 2024-06-30 07:03:19,590 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-30 07:03:19,590 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 1536,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 8960,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 28,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 28,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-30 07:03:19,633 >> tokenizer config file saved in saves/qwen2-1.5b/lora/sft/checkpoint-1680/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-30 07:03:19,633 >> Special tokens file saved in saves/qwen2-1.5b/lora/sft/checkpoint-1680/special_tokens_map.json\n", + "{'loss': 1.15, 'grad_norm': 3.3373215198516846, 'learning_rate': 8.810114435015054e-05, 'epoch': 3.02}\n", + "{'loss': 0.8154, 'grad_norm': 4.1678571701049805, 'learning_rate': 8.789858615727265e-05, 'epoch': 3.03}\n", + "{'loss': 1.0096, 'grad_norm': 7.9504194259643555, 'learning_rate': 8.7694555447539e-05, 'epoch': 3.05}\n", + "{'loss': 0.9017, 'grad_norm': 3.666703462600708, 'learning_rate': 8.748906014838672e-05, 'epoch': 3.07}\n", + "{'loss': 0.8374, 'grad_norm': 3.569261312484741, 'learning_rate': 8.728210824415827e-05, 'epoch': 3.09}\n", + "{'loss': 0.9234, 'grad_norm': 5.156108856201172, 'learning_rate': 8.707370777579133e-05, 'epoch': 3.11}\n", + "{'loss': 0.8894, 'grad_norm': 3.83931827545166, 'learning_rate': 8.68638668405062e-05, 'epoch': 3.12}\n", + "{'loss': 0.9901, 'grad_norm': 4.340090274810791, 'learning_rate': 8.665259359149132e-05, 'epoch': 3.14}\n", + "{'loss': 0.8987, 'grad_norm': 5.530636310577393, 'learning_rate': 8.643989623758643e-05, 'epoch': 3.16}\n", + "{'loss': 0.94, 'grad_norm': 4.701400279998779, 'learning_rate': 8.622578304296364e-05, 'epoch': 3.18}\n", + "{'loss': 0.9471, 'grad_norm': 5.912676811218262, 'learning_rate': 8.601026232680634e-05, 'epoch': 3.2}\n", + "{'loss': 0.8883, 'grad_norm': 5.244345188140869, 'learning_rate': 8.579334246298593e-05, 'epoch': 3.21}\n", + "{'loss': 1.1187, 'grad_norm': 3.5720531940460205, 'learning_rate': 8.557503187973651e-05, 'epoch': 3.23}\n", + "{'loss': 0.8993, 'grad_norm': 4.100275993347168, 'learning_rate': 8.535533905932738e-05, 'epoch': 3.25}\n", + "{'loss': 0.9287, 'grad_norm': 3.9435741901397705, 'learning_rate': 8.513427253773346e-05, 'epoch': 3.27}\n", + "{'loss': 0.8239, 'grad_norm': 4.083703994750977, 'learning_rate': 8.491184090430364e-05, 'epoch': 3.28}\n", + "{'loss': 1.0248, 'grad_norm': 4.739283084869385, 'learning_rate': 8.468805280142709e-05, 'epoch': 3.3}\n", + "{'loss': 1.0099, 'grad_norm': 4.6722493171691895, 'learning_rate': 8.446291692419736e-05, 'epoch': 3.32}\n", + "{'loss': 0.9861, 'grad_norm': 3.677231550216675, 'learning_rate': 8.423644202007467e-05, 'epoch': 3.34}\n", + "{'loss': 0.9352, 'grad_norm': 3.738945245742798, 'learning_rate': 8.400863688854597e-05, 'epoch': 3.36}\n", + "{'loss': 1.0084, 'grad_norm': 4.615973949432373, 'learning_rate': 8.377951038078302e-05, 'epoch': 3.37}\n", + "{'loss': 0.8946, 'grad_norm': 4.280567169189453, 'learning_rate': 8.354907139929851e-05, 'epoch': 3.39}\n", + "{'loss': 0.9536, 'grad_norm': 5.548139572143555, 'learning_rate': 8.33173288976002e-05, 'epoch': 3.41}\n", + "{'loss': 1.032, 'grad_norm': 4.183009147644043, 'learning_rate': 8.308429187984297e-05, 'epoch': 3.43}\n", + "{'loss': 0.9905, 'grad_norm': 4.598621368408203, 'learning_rate': 8.284996940047903e-05, 'epoch': 3.44}\n", + "{'loss': 1.0168, 'grad_norm': 3.7102458477020264, 'learning_rate': 8.261437056390606e-05, 'epoch': 3.46}\n", + "{'loss': 0.9419, 'grad_norm': 3.9970738887786865, 'learning_rate': 8.237750452411353e-05, 'epoch': 3.48}\n", + "{'loss': 0.945, 'grad_norm': 5.531300067901611, 'learning_rate': 8.213938048432697e-05, 'epoch': 3.5}\n", + "{'loss': 0.8867, 'grad_norm': 5.528501510620117, 'learning_rate': 8.190000769665044e-05, 'epoch': 3.52}\n", + "{'loss': 0.9773, 'grad_norm': 5.0458807945251465, 'learning_rate': 8.1659395461707e-05, 'epoch': 3.53}\n", + "{'loss': 0.9484, 'grad_norm': 7.089639663696289, 'learning_rate': 8.141755312827736e-05, 'epoch': 3.55}\n", + "{'loss': 1.0592, 'grad_norm': 5.28053617477417, 'learning_rate': 8.117449009293668e-05, 'epoch': 3.57}\n", + "{'loss': 0.8727, 'grad_norm': 3.750885009765625, 'learning_rate': 8.093021579968941e-05, 'epoch': 3.59}\n", + "{'loss': 0.9438, 'grad_norm': 3.9763479232788086, 'learning_rate': 8.068473973960238e-05, 'epoch': 3.61}\n", + "{'loss': 1.0057, 'grad_norm': 8.926958084106445, 'learning_rate': 8.043807145043604e-05, 'epoch': 3.62}\n", + "{'loss': 0.9272, 'grad_norm': 4.707141399383545, 'learning_rate': 8.019022051627388e-05, 'epoch': 3.64}\n", + "{'loss': 0.9354, 'grad_norm': 4.845958232879639, 'learning_rate': 7.994119656715002e-05, 'epoch': 3.66}\n", + "{'loss': 1.0041, 'grad_norm': 6.272175312042236, 'learning_rate': 7.969100927867507e-05, 'epoch': 3.68}\n", + "{'loss': 1.0257, 'grad_norm': 5.634955883026123, 'learning_rate': 7.943966837166023e-05, 'epoch': 3.69}\n", + "{'loss': 1.0411, 'grad_norm': 4.726901054382324, 'learning_rate': 7.91871836117395e-05, 'epoch': 3.71}\n", + "{'loss': 0.8919, 'grad_norm': 5.341351509094238, 'learning_rate': 7.89335648089903e-05, 'epoch': 3.73}\n", + "{'loss': 0.9918, 'grad_norm': 4.697306156158447, 'learning_rate': 7.86788218175523e-05, 'epoch': 3.75}\n", + "{'loss': 1.0214, 'grad_norm': 7.20255708694458, 'learning_rate': 7.842296453524463e-05, 'epoch': 3.77}\n", + "{'loss': 0.8907, 'grad_norm': 4.981348037719727, 'learning_rate': 7.81660029031811e-05, 'epoch': 3.78}\n", + "{'loss': 0.9927, 'grad_norm': 4.630974292755127, 'learning_rate': 7.79079469053842e-05, 'epoch': 3.8}\n", + "{'loss': 0.9723, 'grad_norm': 4.9225921630859375, 'learning_rate': 7.764880656839696e-05, 'epoch': 3.82}\n", + "{'loss': 0.9968, 'grad_norm': 5.320995807647705, 'learning_rate': 7.738859196089358e-05, 'epoch': 3.84}\n", + "{'loss': 0.8093, 'grad_norm': 4.394636154174805, 'learning_rate': 7.712731319328798e-05, 'epoch': 3.86}\n", + "{'loss': 0.9058, 'grad_norm': 4.045576572418213, 'learning_rate': 7.68649804173412e-05, 'epoch': 3.87}\n", + "{'loss': 1.0048, 'grad_norm': 3.463576316833496, 'learning_rate': 7.660160382576683e-05, 'epoch': 3.89}\n", + "{'loss': 0.9774, 'grad_norm': 6.120863914489746, 'learning_rate': 7.633719365183504e-05, 'epoch': 3.91}\n", + "{'loss': 0.8715, 'grad_norm': 4.576050758361816, 'learning_rate': 7.60717601689749e-05, 'epoch': 3.93}\n", + "{'loss': 0.7799, 'grad_norm': 3.344226360321045, 'learning_rate': 7.580531369037533e-05, 'epoch': 3.94}\n", + "{'loss': 1.1199, 'grad_norm': 4.684515476226807, 'learning_rate': 7.553786456858429e-05, 'epoch': 3.96}\n", + "{'loss': 1.0056, 'grad_norm': 3.8074159622192383, 'learning_rate': 7.526942319510655e-05, 'epoch': 3.98}\n", + "{'loss': 0.8473, 'grad_norm': 3.2416229248046875, 'learning_rate': 7.500000000000001e-05, 'epoch': 4.0}\n", + " 40%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 2240/5600 [1:02:28<1:32:15, 1.65s/it][INFO|trainer.py:3788] 2024-06-30 07:19:03,748 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-30 07:19:03,748 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-30 07:19:03,748 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-1.5b/lora/sft/checkpoint-2240\n", + "[INFO|configuration_utils.py:733] 2024-06-30 07:19:06,736 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-30 07:19:06,736 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 1536,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 8960,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 28,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 28,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-30 07:19:06,775 >> tokenizer config file saved in saves/qwen2-1.5b/lora/sft/checkpoint-2240/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-30 07:19:06,776 >> Special tokens file saved in saves/qwen2-1.5b/lora/sft/checkpoint-2240/special_tokens_map.json\n", + "{'loss': 0.7957, 'grad_norm': 4.7848052978515625, 'learning_rate': 7.472960545147038e-05, 'epoch': 4.02}\n", + "{'loss': 0.631, 'grad_norm': 4.0633649826049805, 'learning_rate': 7.445825005546448e-05, 'epoch': 4.03}\n", + "{'loss': 0.7215, 'grad_norm': 4.579054832458496, 'learning_rate': 7.4185944355262e-05, 'epoch': 4.05}\n", + "{'loss': 0.6143, 'grad_norm': 4.206972122192383, 'learning_rate': 7.391269893106592e-05, 'epoch': 4.07}\n", + "{'loss': 0.6206, 'grad_norm': 4.568854808807373, 'learning_rate': 7.363852439959135e-05, 'epoch': 4.09}\n", + "{'loss': 0.7532, 'grad_norm': 4.556376934051514, 'learning_rate': 7.33634314136531e-05, 'epoch': 4.11}\n", + "{'loss': 0.5763, 'grad_norm': 5.614088535308838, 'learning_rate': 7.308743066175172e-05, 'epoch': 4.12}\n", + "{'loss': 0.6721, 'grad_norm': 9.883162498474121, 'learning_rate': 7.281053286765815e-05, 'epoch': 4.14}\n", + "{'loss': 0.7292, 'grad_norm': 4.348223686218262, 'learning_rate': 7.253274878999727e-05, 'epoch': 4.16}\n", + "{'loss': 0.6231, 'grad_norm': 3.8863847255706787, 'learning_rate': 7.225408922182961e-05, 'epoch': 4.18}\n", + "{'loss': 0.6226, 'grad_norm': 8.888066291809082, 'learning_rate': 7.197456499023225e-05, 'epoch': 4.19}\n", + "{'loss': 0.6884, 'grad_norm': 4.336313247680664, 'learning_rate': 7.169418695587791e-05, 'epoch': 4.21}\n", + "{'loss': 0.6207, 'grad_norm': 4.8345112800598145, 'learning_rate': 7.141296601261314e-05, 'epoch': 4.23}\n", + "{'loss': 0.7374, 'grad_norm': 5.926130771636963, 'learning_rate': 7.113091308703498e-05, 'epoch': 4.25}\n", + "{'loss': 0.6514, 'grad_norm': 5.482864856719971, 'learning_rate': 7.084803913806641e-05, 'epoch': 4.27}\n", + "{'loss': 0.6823, 'grad_norm': 6.955780029296875, 'learning_rate': 7.056435515653059e-05, 'epoch': 4.28}\n", + "{'loss': 0.6645, 'grad_norm': 10.101131439208984, 'learning_rate': 7.027987216472377e-05, 'epoch': 4.3}\n", + "{'loss': 0.5592, 'grad_norm': 5.433172225952148, 'learning_rate': 6.999460121598704e-05, 'epoch': 4.32}\n", + "{'loss': 0.7167, 'grad_norm': 6.796948432922363, 'learning_rate': 6.970855339427698e-05, 'epoch': 4.34}\n", + "{'loss': 0.6169, 'grad_norm': 3.863734006881714, 'learning_rate': 6.942173981373474e-05, 'epoch': 4.36}\n", + "{'loss': 0.6398, 'grad_norm': 3.5763421058654785, 'learning_rate': 6.91341716182545e-05, 'epoch': 4.37}\n", + "{'loss': 0.7066, 'grad_norm': 4.580504894256592, 'learning_rate': 6.884585998105026e-05, 'epoch': 4.39}\n", + "{'loss': 0.647, 'grad_norm': 5.605465412139893, 'learning_rate': 6.855681610422189e-05, 'epoch': 4.41}\n", + "{'loss': 0.7305, 'grad_norm': 3.584751605987549, 'learning_rate': 6.826705121831976e-05, 'epoch': 4.43}\n", + "{'loss': 0.7089, 'grad_norm': 6.16217041015625, 'learning_rate': 6.797657658190839e-05, 'epoch': 4.44}\n", + "{'loss': 0.5937, 'grad_norm': 3.5875444412231445, 'learning_rate': 6.768540348112907e-05, 'epoch': 4.46}\n", + "{'loss': 0.7547, 'grad_norm': 4.757628917694092, 'learning_rate': 6.739354322926136e-05, 'epoch': 4.48}\n", + "{'loss': 0.6766, 'grad_norm': 5.012269020080566, 'learning_rate': 6.710100716628344e-05, 'epoch': 4.5}\n", + "{'loss': 0.6572, 'grad_norm': 5.2274861335754395, 'learning_rate': 6.680780665843155e-05, 'epoch': 4.52}\n", + "{'loss': 0.7324, 'grad_norm': 5.329851150512695, 'learning_rate': 6.651395309775837e-05, 'epoch': 4.53}\n", + "{'loss': 0.7048, 'grad_norm': 6.628935813903809, 'learning_rate': 6.621945790169036e-05, 'epoch': 4.55}\n", + "{'loss': 0.683, 'grad_norm': 5.611133575439453, 'learning_rate': 6.592433251258423e-05, 'epoch': 4.57}\n", + "{'loss': 0.678, 'grad_norm': 5.939394950866699, 'learning_rate': 6.562858839728223e-05, 'epoch': 4.59}\n", + "{'loss': 0.5917, 'grad_norm': 10.7606201171875, 'learning_rate': 6.533223704666672e-05, 'epoch': 4.61}\n", + "{'loss': 0.6841, 'grad_norm': 6.9346089363098145, 'learning_rate': 6.503528997521366e-05, 'epoch': 4.62}\n", + "{'loss': 0.7123, 'grad_norm': 5.5321364402771, 'learning_rate': 6.473775872054521e-05, 'epoch': 4.64}\n", + "{'loss': 0.6863, 'grad_norm': 4.588550567626953, 'learning_rate': 6.44396548429815e-05, 'epoch': 4.66}\n", + "{'loss': 0.6828, 'grad_norm': 4.912098407745361, 'learning_rate': 6.414098992509138e-05, 'epoch': 4.68}\n", + "{'loss': 0.6467, 'grad_norm': 7.303658485412598, 'learning_rate': 6.384177557124247e-05, 'epoch': 4.69}\n", + "{'loss': 0.6986, 'grad_norm': 4.651421546936035, 'learning_rate': 6.354202340715026e-05, 'epoch': 4.71}\n", + "{'loss': 0.6532, 'grad_norm': 4.812668800354004, 'learning_rate': 6.324174507942637e-05, 'epoch': 4.73}\n", + "{'loss': 0.6688, 'grad_norm': 4.208662509918213, 'learning_rate': 6.294095225512603e-05, 'epoch': 4.75}\n", + "{'loss': 0.674, 'grad_norm': 5.573670387268066, 'learning_rate': 6.263965662129487e-05, 'epoch': 4.77}\n", + "{'loss': 0.7383, 'grad_norm': 4.292681694030762, 'learning_rate': 6.233786988451468e-05, 'epoch': 4.78}\n", + "{'loss': 0.7485, 'grad_norm': 4.01066255569458, 'learning_rate': 6.203560377044866e-05, 'epoch': 4.8}\n", + "{'loss': 0.6504, 'grad_norm': 4.865781307220459, 'learning_rate': 6.173287002338577e-05, 'epoch': 4.82}\n", + "{'loss': 0.6004, 'grad_norm': 3.7839431762695312, 'learning_rate': 6.142968040578449e-05, 'epoch': 4.84}\n", + "{'loss': 0.6536, 'grad_norm': 7.742762565612793, 'learning_rate': 6.112604669781572e-05, 'epoch': 4.85}\n", + "{'loss': 0.7322, 'grad_norm': 5.1467719078063965, 'learning_rate': 6.0821980696905146e-05, 'epoch': 4.87}\n", + "{'loss': 0.7393, 'grad_norm': 6.317329406738281, 'learning_rate': 6.0517494217274794e-05, 'epoch': 4.89}\n", + "{'loss': 0.7548, 'grad_norm': 5.456260681152344, 'learning_rate': 6.021259908948402e-05, 'epoch': 4.91}\n", + "{'loss': 0.6722, 'grad_norm': 5.673567771911621, 'learning_rate': 5.9907307159969884e-05, 'epoch': 4.93}\n", + "{'loss': 0.7384, 'grad_norm': 4.8718366622924805, 'learning_rate': 5.960163029058682e-05, 'epoch': 4.94}\n", + "{'loss': 0.7634, 'grad_norm': 5.771657943725586, 'learning_rate': 5.9295580358145744e-05, 'epoch': 4.96}\n", + "{'loss': 0.7871, 'grad_norm': 4.919590473175049, 'learning_rate': 5.898916925395264e-05, 'epoch': 4.98}\n", + "{'loss': 0.7701, 'grad_norm': 4.445159912109375, 'learning_rate': 5.868240888334653e-05, 'epoch': 5.0}\n", + " 50%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 2800/5600 [1:18:09<1:20:41, 1.73s/it][INFO|trainer.py:3788] 2024-06-30 07:34:44,634 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-30 07:34:44,634 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-30 07:34:44,634 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-1.5b/lora/sft/checkpoint-2800\n", + "[INFO|configuration_utils.py:733] 2024-06-30 07:34:47,846 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-30 07:34:47,846 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 1536,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 8960,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 28,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 28,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-30 07:34:47,887 >> tokenizer config file saved in saves/qwen2-1.5b/lora/sft/checkpoint-2800/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-30 07:34:47,887 >> Special tokens file saved in saves/qwen2-1.5b/lora/sft/checkpoint-2800/special_tokens_map.json\n", + "{'loss': 0.5161, 'grad_norm': 3.8078582286834717, 'learning_rate': 5.837531116523682e-05, 'epoch': 5.02}\n", + "{'loss': 0.4045, 'grad_norm': 4.426279544830322, 'learning_rate': 5.806788803164034e-05, 'epoch': 5.03}\n", + "{'loss': 0.4832, 'grad_norm': 6.388131618499756, 'learning_rate': 5.7760151427217576e-05, 'epoch': 5.05}\n", + "{'loss': 0.4554, 'grad_norm': 4.689113616943359, 'learning_rate': 5.745211330880872e-05, 'epoch': 5.07}\n", + "{'loss': 0.4532, 'grad_norm': 4.104332447052002, 'learning_rate': 5.714378564496901e-05, 'epoch': 5.09}\n", + "{'loss': 0.5509, 'grad_norm': 4.345515727996826, 'learning_rate': 5.683518041550368e-05, 'epoch': 5.1}\n", + "{'loss': 0.4002, 'grad_norm': 6.301547527313232, 'learning_rate': 5.6526309611002594e-05, 'epoch': 5.12}\n", + "{'loss': 0.4822, 'grad_norm': 5.300792217254639, 'learning_rate': 5.621718523237427e-05, 'epoch': 5.14}\n", + "{'loss': 0.4324, 'grad_norm': 4.0373311042785645, 'learning_rate': 5.590781929037965e-05, 'epoch': 5.16}\n", + "{'loss': 0.4274, 'grad_norm': 6.742273330688477, 'learning_rate': 5.559822380516539e-05, 'epoch': 5.18}\n", + "{'loss': 0.494, 'grad_norm': 6.803271293640137, 'learning_rate': 5.5288410805796895e-05, 'epoch': 5.19}\n", + "{'loss': 0.4682, 'grad_norm': 3.1775426864624023, 'learning_rate': 5.497839232979084e-05, 'epoch': 5.21}\n", + "{'loss': 0.4614, 'grad_norm': 3.7366745471954346, 'learning_rate': 5.466818042264753e-05, 'epoch': 5.23}\n", + "{'loss': 0.5448, 'grad_norm': 5.096468448638916, 'learning_rate': 5.435778713738292e-05, 'epoch': 5.25}\n", + "{'loss': 0.4847, 'grad_norm': 4.3523712158203125, 'learning_rate': 5.404722453406017e-05, 'epoch': 5.27}\n", + "{'loss': 0.4473, 'grad_norm': 4.652655601501465, 'learning_rate': 5.373650467932122e-05, 'epoch': 5.28}\n", + "{'loss': 0.4453, 'grad_norm': 4.760082244873047, 'learning_rate': 5.3425639645917834e-05, 'epoch': 5.3}\n", + "{'loss': 0.4814, 'grad_norm': 5.638540267944336, 'learning_rate': 5.311464151224261e-05, 'epoch': 5.32}\n", + "{'loss': 0.4013, 'grad_norm': 3.9371888637542725, 'learning_rate': 5.2803522361859594e-05, 'epoch': 5.34}\n", + "{'loss': 0.4984, 'grad_norm': 4.2124152183532715, 'learning_rate': 5.249229428303486e-05, 'epoch': 5.35}\n", + "{'loss': 0.4914, 'grad_norm': 6.735795974731445, 'learning_rate': 5.218096936826681e-05, 'epoch': 5.37}\n", + "{'loss': 0.464, 'grad_norm': 4.825798988342285, 'learning_rate': 5.18695597138163e-05, 'epoch': 5.39}\n", + "{'loss': 0.3474, 'grad_norm': 4.686152458190918, 'learning_rate': 5.155807741923666e-05, 'epoch': 5.41}\n", + "{'loss': 0.3999, 'grad_norm': 4.344501972198486, 'learning_rate': 5.124653458690365e-05, 'epoch': 5.43}\n", + "{'loss': 0.3818, 'grad_norm': 3.8981587886810303, 'learning_rate': 5.0934943321545115e-05, 'epoch': 5.44}\n", + "{'loss': 0.4732, 'grad_norm': 8.811891555786133, 'learning_rate': 5.062331572977076e-05, 'epoch': 5.46}\n", + "{'loss': 0.609, 'grad_norm': 4.967749118804932, 'learning_rate': 5.031166391960168e-05, 'epoch': 5.48}\n", + "{'loss': 0.4442, 'grad_norm': 4.958866596221924, 'learning_rate': 5e-05, 'epoch': 5.5}\n", + "{'loss': 0.4474, 'grad_norm': 4.941844940185547, 'learning_rate': 4.968833608039832e-05, 'epoch': 5.52}\n", + "{'loss': 0.5222, 'grad_norm': 4.754947662353516, 'learning_rate': 4.9376684270229254e-05, 'epoch': 5.53}\n", + "{'loss': 0.4465, 'grad_norm': 4.058730125427246, 'learning_rate': 4.9065056678454904e-05, 'epoch': 5.55}\n", + "{'loss': 0.5767, 'grad_norm': 5.571474552154541, 'learning_rate': 4.875346541309637e-05, 'epoch': 5.57}\n", + "{'loss': 0.4737, 'grad_norm': 4.0056939125061035, 'learning_rate': 4.844192258076336e-05, 'epoch': 5.59}\n", + "{'loss': 0.5223, 'grad_norm': 5.950839042663574, 'learning_rate': 4.813044028618373e-05, 'epoch': 5.6}\n", + "{'loss': 0.5301, 'grad_norm': 4.6719255447387695, 'learning_rate': 4.781903063173321e-05, 'epoch': 5.62}\n", + "{'loss': 0.4188, 'grad_norm': 4.333907127380371, 'learning_rate': 4.750770571696514e-05, 'epoch': 5.64}\n", + "{'loss': 0.4934, 'grad_norm': 6.121321678161621, 'learning_rate': 4.7196477638140404e-05, 'epoch': 5.66}\n", + "{'loss': 0.4343, 'grad_norm': 5.436617374420166, 'learning_rate': 4.68853584877574e-05, 'epoch': 5.68}\n", + "{'loss': 0.4969, 'grad_norm': 5.086023330688477, 'learning_rate': 4.657436035408217e-05, 'epoch': 5.69}\n", + "{'loss': 0.4571, 'grad_norm': 5.212259769439697, 'learning_rate': 4.626349532067879e-05, 'epoch': 5.71}\n", + "{'loss': 0.5086, 'grad_norm': 4.355545997619629, 'learning_rate': 4.595277546593984e-05, 'epoch': 5.73}\n", + "{'loss': 0.4502, 'grad_norm': 3.553330421447754, 'learning_rate': 4.564221286261709e-05, 'epoch': 5.75}\n", + "{'loss': 0.5377, 'grad_norm': 4.984807014465332, 'learning_rate': 4.5331819577352474e-05, 'epoch': 5.77}\n", + "{'loss': 0.4203, 'grad_norm': 10.004477500915527, 'learning_rate': 4.502160767020918e-05, 'epoch': 5.78}\n", + "{'loss': 0.4515, 'grad_norm': 4.771313190460205, 'learning_rate': 4.471158919420312e-05, 'epoch': 5.8}\n", + "{'loss': 0.4102, 'grad_norm': 3.963116407394409, 'learning_rate': 4.4401776194834613e-05, 'epoch': 5.82}\n", + "{'loss': 0.4378, 'grad_norm': 5.920322895050049, 'learning_rate': 4.409218070962036e-05, 'epoch': 5.84}\n", + "{'loss': 0.5433, 'grad_norm': 5.597177505493164, 'learning_rate': 4.378281476762576e-05, 'epoch': 5.85}\n", + "{'loss': 0.3711, 'grad_norm': 10.070011138916016, 'learning_rate': 4.347369038899744e-05, 'epoch': 5.87}\n", + "{'loss': 0.5813, 'grad_norm': 3.5711491107940674, 'learning_rate': 4.316481958449634e-05, 'epoch': 5.89}\n", + "{'loss': 0.4328, 'grad_norm': 4.168658256530762, 'learning_rate': 4.285621435503101e-05, 'epoch': 5.91}\n", + "{'loss': 0.5556, 'grad_norm': 10.734298706054688, 'learning_rate': 4.254788669119127e-05, 'epoch': 5.93}\n", + "{'loss': 0.4497, 'grad_norm': 4.482186794281006, 'learning_rate': 4.223984857278242e-05, 'epoch': 5.94}\n", + "{'loss': 0.5173, 'grad_norm': 5.7400054931640625, 'learning_rate': 4.1932111968359664e-05, 'epoch': 5.96}\n", + "{'loss': 0.5062, 'grad_norm': 4.264299392700195, 'learning_rate': 4.162468883476319e-05, 'epoch': 5.98}\n", + "{'loss': 0.4793, 'grad_norm': 9.265963554382324, 'learning_rate': 4.131759111665349e-05, 'epoch': 6.0}\n", + " 60%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ | 3360/5600 [1:33:57<1:02:06, 1.66s/it][INFO|trainer.py:3788] 2024-06-30 07:50:32,520 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-30 07:50:32,520 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-30 07:50:32,520 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-1.5b/lora/sft/checkpoint-3360\n", + "[INFO|configuration_utils.py:733] 2024-06-30 07:50:35,897 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-30 07:50:35,897 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 1536,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 8960,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 28,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 28,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-30 07:50:35,949 >> tokenizer config file saved in saves/qwen2-1.5b/lora/sft/checkpoint-3360/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-30 07:50:35,949 >> Special tokens file saved in saves/qwen2-1.5b/lora/sft/checkpoint-3360/special_tokens_map.json\n", + "{'loss': 0.3304, 'grad_norm': 3.7002038955688477, 'learning_rate': 4.101083074604737e-05, 'epoch': 6.02}\n", + "{'loss': 0.2771, 'grad_norm': 4.872511863708496, 'learning_rate': 4.0704419641854274e-05, 'epoch': 6.03}\n", + "{'loss': 0.297, 'grad_norm': 3.524137020111084, 'learning_rate': 4.03983697094132e-05, 'epoch': 6.05}\n", + "{'loss': 0.3305, 'grad_norm': 1.7784379720687866, 'learning_rate': 4.0092692840030134e-05, 'epoch': 6.07}\n", + "{'loss': 0.3112, 'grad_norm': 4.346820831298828, 'learning_rate': 3.978740091051599e-05, 'epoch': 6.09}\n", + "{'loss': 0.349, 'grad_norm': 3.382376194000244, 'learning_rate': 3.9482505782725224e-05, 'epoch': 6.1}\n", + "{'loss': 0.256, 'grad_norm': 5.693515300750732, 'learning_rate': 3.917801930309486e-05, 'epoch': 6.12}\n", + "{'loss': 0.3141, 'grad_norm': 4.295924186706543, 'learning_rate': 3.887395330218429e-05, 'epoch': 6.14}\n", + "{'loss': 0.3338, 'grad_norm': 6.968880653381348, 'learning_rate': 3.857031959421553e-05, 'epoch': 6.16}\n", + "{'loss': 0.3056, 'grad_norm': 5.941532135009766, 'learning_rate': 3.8267129976614254e-05, 'epoch': 6.18}\n", + "{'loss': 0.3486, 'grad_norm': 3.909396171569824, 'learning_rate': 3.7964396229551364e-05, 'epoch': 6.19}\n", + "{'loss': 0.3718, 'grad_norm': 3.2766306400299072, 'learning_rate': 3.7662130115485314e-05, 'epoch': 6.21}\n", + "{'loss': 0.3308, 'grad_norm': 2.8996589183807373, 'learning_rate': 3.7360343378705124e-05, 'epoch': 6.23}\n", + "{'loss': 0.3928, 'grad_norm': 3.5176424980163574, 'learning_rate': 3.705904774487396e-05, 'epoch': 6.25}\n", + "{'loss': 0.2392, 'grad_norm': 10.349823951721191, 'learning_rate': 3.675825492057364e-05, 'epoch': 6.27}\n", + "{'loss': 0.3343, 'grad_norm': 7.081973552703857, 'learning_rate': 3.6457976592849754e-05, 'epoch': 6.28}\n", + "{'loss': 0.3097, 'grad_norm': 4.772485733032227, 'learning_rate': 3.6158224428757535e-05, 'epoch': 6.3}\n", + "{'loss': 0.3416, 'grad_norm': 3.539324998855591, 'learning_rate': 3.585901007490863e-05, 'epoch': 6.32}\n", + "{'loss': 0.34, 'grad_norm': 3.7091081142425537, 'learning_rate': 3.556034515701852e-05, 'epoch': 6.34}\n", + "{'loss': 0.3241, 'grad_norm': 5.218664646148682, 'learning_rate': 3.5262241279454785e-05, 'epoch': 6.35}\n", + "{'loss': 0.297, 'grad_norm': 3.1589152812957764, 'learning_rate': 3.4964710024786354e-05, 'epoch': 6.37}\n", + "{'loss': 0.3073, 'grad_norm': 2.8222711086273193, 'learning_rate': 3.4667762953333295e-05, 'epoch': 6.39}\n", + "{'loss': 0.2632, 'grad_norm': 5.614787578582764, 'learning_rate': 3.4371411602717784e-05, 'epoch': 6.41}\n", + "{'loss': 0.3375, 'grad_norm': 3.49419903755188, 'learning_rate': 3.4075667487415785e-05, 'epoch': 6.43}\n", + "{'loss': 0.323, 'grad_norm': 3.6888363361358643, 'learning_rate': 3.3780542098309654e-05, 'epoch': 6.44}\n", + "{'loss': 0.384, 'grad_norm': 2.8714163303375244, 'learning_rate': 3.3486046902241664e-05, 'epoch': 6.46}\n", + "{'loss': 0.36, 'grad_norm': 3.664397716522217, 'learning_rate': 3.319219334156847e-05, 'epoch': 6.48}\n", + "{'loss': 0.3239, 'grad_norm': 6.702901840209961, 'learning_rate': 3.289899283371657e-05, 'epoch': 6.5}\n", + "{'loss': 0.4023, 'grad_norm': 4.371044158935547, 'learning_rate': 3.2606456770738636e-05, 'epoch': 6.51}\n", + "{'loss': 0.2967, 'grad_norm': 7.265868663787842, 'learning_rate': 3.231459651887093e-05, 'epoch': 6.53}\n", + "{'loss': 0.3192, 'grad_norm': 4.020201683044434, 'learning_rate': 3.2023423418091626e-05, 'epoch': 6.55}\n", + "{'loss': 0.2575, 'grad_norm': 4.1831374168396, 'learning_rate': 3.173294878168025e-05, 'epoch': 6.57}\n", + "{'loss': 0.4101, 'grad_norm': 3.9656155109405518, 'learning_rate': 3.1443183895778105e-05, 'epoch': 6.59}\n", + "{'loss': 0.3168, 'grad_norm': 4.220931053161621, 'learning_rate': 3.115414001894974e-05, 'epoch': 6.6}\n", + "{'loss': 0.3144, 'grad_norm': 5.018192768096924, 'learning_rate': 3.086582838174551e-05, 'epoch': 6.62}\n", + "{'loss': 0.3115, 'grad_norm': 5.038303852081299, 'learning_rate': 3.0578260186265265e-05, 'epoch': 6.64}\n", + "{'loss': 0.2704, 'grad_norm': 2.8466811180114746, 'learning_rate': 3.029144660572304e-05, 'epoch': 6.66}\n", + "{'loss': 0.3401, 'grad_norm': 6.789051055908203, 'learning_rate': 3.000539878401296e-05, 'epoch': 6.68}\n", + "{'loss': 0.3225, 'grad_norm': 4.522548198699951, 'learning_rate': 2.9720127835276256e-05, 'epoch': 6.69}\n", + "{'loss': 0.3306, 'grad_norm': 3.3021113872528076, 'learning_rate': 2.9435644843469436e-05, 'epoch': 6.71}\n", + "{'loss': 0.3113, 'grad_norm': 6.549985885620117, 'learning_rate': 2.9151960861933614e-05, 'epoch': 6.73}\n", + "{'loss': 0.3258, 'grad_norm': 5.234971523284912, 'learning_rate': 2.886908691296504e-05, 'epoch': 6.75}\n", + "{'loss': 0.3151, 'grad_norm': 11.139360427856445, 'learning_rate': 2.858703398738686e-05, 'epoch': 6.76}\n", + "{'loss': 0.2697, 'grad_norm': 4.061713695526123, 'learning_rate': 2.8305813044122097e-05, 'epoch': 6.78}\n", + "{'loss': 0.2933, 'grad_norm': 5.231247425079346, 'learning_rate': 2.8025435009767747e-05, 'epoch': 6.8}\n", + "{'loss': 0.3019, 'grad_norm': 4.183421611785889, 'learning_rate': 2.774591077817038e-05, 'epoch': 6.82}\n", + "{'loss': 0.3599, 'grad_norm': 3.7946386337280273, 'learning_rate': 2.746725121000273e-05, 'epoch': 6.84}\n", + "{'loss': 0.2529, 'grad_norm': 4.079517364501953, 'learning_rate': 2.718946713234185e-05, 'epoch': 6.85}\n", + "{'loss': 0.3049, 'grad_norm': 4.9091033935546875, 'learning_rate': 2.6912569338248315e-05, 'epoch': 6.87}\n", + "{'loss': 0.3128, 'grad_norm': 4.097899436950684, 'learning_rate': 2.66365685863469e-05, 'epoch': 6.89}\n", + "{'loss': 0.3901, 'grad_norm': 5.156275749206543, 'learning_rate': 2.636147560040866e-05, 'epoch': 6.91}\n", + "{'loss': 0.2444, 'grad_norm': 4.529239177703857, 'learning_rate': 2.6087301068934106e-05, 'epoch': 6.93}\n", + "{'loss': 0.3085, 'grad_norm': 2.783036470413208, 'learning_rate': 2.581405564473801e-05, 'epoch': 6.94}\n", + "{'loss': 0.3202, 'grad_norm': 5.854332447052002, 'learning_rate': 2.5541749944535554e-05, 'epoch': 6.96}\n", + "{'loss': 0.3932, 'grad_norm': 5.028692722320557, 'learning_rate': 2.527039454852963e-05, 'epoch': 6.98}\n", + "{'loss': 0.2907, 'grad_norm': 7.342068672180176, 'learning_rate': 2.500000000000001e-05, 'epoch': 7.0}\n", + " 70%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‰ | 3920/5600 [1:49:46<47:02, 1.68s/it][INFO|trainer.py:3788] 2024-06-30 08:06:21,782 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-30 08:06:21,782 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-30 08:06:21,782 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-1.5b/lora/sft/checkpoint-3920\n", + "[INFO|configuration_utils.py:733] 2024-06-30 08:06:24,921 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-30 08:06:24,921 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 1536,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 8960,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 28,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 28,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-30 08:06:24,969 >> tokenizer config file saved in saves/qwen2-1.5b/lora/sft/checkpoint-3920/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-30 08:06:24,969 >> Special tokens file saved in saves/qwen2-1.5b/lora/sft/checkpoint-3920/special_tokens_map.json\n", + "{'loss': 0.173, 'grad_norm': 2.5581254959106445, 'learning_rate': 2.473057680489348e-05, 'epoch': 7.01}\n", + "{'loss': 0.155, 'grad_norm': 1.571964144706726, 'learning_rate': 2.4462135431415733e-05, 'epoch': 7.03}\n", + "{'loss': 0.1707, 'grad_norm': 4.100607872009277, 'learning_rate': 2.4194686309624663e-05, 'epoch': 7.05}\n", + "{'loss': 0.2566, 'grad_norm': 3.124080181121826, 'learning_rate': 2.39282398310251e-05, 'epoch': 7.07}\n", + "{'loss': 0.1927, 'grad_norm': 2.3269150257110596, 'learning_rate': 2.366280634816496e-05, 'epoch': 7.09}\n", + "{'loss': 0.2814, 'grad_norm': 2.976987838745117, 'learning_rate': 2.3398396174233178e-05, 'epoch': 7.1}\n", + "{'loss': 0.1816, 'grad_norm': 7.45166015625, 'learning_rate': 2.3135019582658802e-05, 'epoch': 7.12}\n", + "{'loss': 0.2094, 'grad_norm': 3.6462252140045166, 'learning_rate': 2.2872686806712035e-05, 'epoch': 7.14}\n", + "{'loss': 0.1964, 'grad_norm': 4.667559623718262, 'learning_rate': 2.261140803910644e-05, 'epoch': 7.16}\n", + "{'loss': 0.2011, 'grad_norm': 1.900875449180603, 'learning_rate': 2.235119343160303e-05, 'epoch': 7.18}\n", + "{'loss': 0.1984, 'grad_norm': 3.4627413749694824, 'learning_rate': 2.2092053094615813e-05, 'epoch': 7.19}\n", + "{'loss': 0.2214, 'grad_norm': 3.783445358276367, 'learning_rate': 2.1833997096818898e-05, 'epoch': 7.21}\n", + "{'loss': 0.2047, 'grad_norm': 3.812368154525757, 'learning_rate': 2.157703546475539e-05, 'epoch': 7.23}\n", + "{'loss': 0.2822, 'grad_norm': 4.192997455596924, 'learning_rate': 2.132117818244771e-05, 'epoch': 7.25}\n", + "{'loss': 0.1728, 'grad_norm': 2.5023624897003174, 'learning_rate': 2.1066435191009715e-05, 'epoch': 7.26}\n", + "{'loss': 0.257, 'grad_norm': 7.863531589508057, 'learning_rate': 2.0812816388260518e-05, 'epoch': 7.28}\n", + "{'loss': 0.1866, 'grad_norm': 3.7875170707702637, 'learning_rate': 2.056033162833977e-05, 'epoch': 7.3}\n", + "{'loss': 0.1975, 'grad_norm': 1.9177666902542114, 'learning_rate': 2.0308990721324927e-05, 'epoch': 7.32}\n", + "{'loss': 0.2784, 'grad_norm': 3.343583345413208, 'learning_rate': 2.0058803432849987e-05, 'epoch': 7.34}\n", + "{'loss': 0.1964, 'grad_norm': 4.66720724105835, 'learning_rate': 1.980977948372612e-05, 'epoch': 7.35}\n", + "{'loss': 0.2273, 'grad_norm': 4.310459136962891, 'learning_rate': 1.9561928549563968e-05, 'epoch': 7.37}\n", + "{'loss': 0.2671, 'grad_norm': 3.40097975730896, 'learning_rate': 1.931526026039764e-05, 'epoch': 7.39}\n", + "{'loss': 0.1796, 'grad_norm': 4.316131591796875, 'learning_rate': 1.906978420031059e-05, 'epoch': 7.41}\n", + "{'loss': 0.2422, 'grad_norm': 3.5017640590667725, 'learning_rate': 1.8825509907063327e-05, 'epoch': 7.43}\n", + "{'loss': 0.2054, 'grad_norm': 3.1226840019226074, 'learning_rate': 1.8582446871722636e-05, 'epoch': 7.44}\n", + "{'loss': 0.2701, 'grad_norm': 3.492358684539795, 'learning_rate': 1.8340604538293015e-05, 'epoch': 7.46}\n", + "{'loss': 0.2063, 'grad_norm': 3.7369136810302734, 'learning_rate': 1.8099992303349577e-05, 'epoch': 7.48}\n", + "{'loss': 0.2125, 'grad_norm': 2.5832254886627197, 'learning_rate': 1.7860619515673033e-05, 'epoch': 7.5}\n", + "{'loss': 0.2224, 'grad_norm': 4.129978179931641, 'learning_rate': 1.7622495475886487e-05, 'epoch': 7.51}\n", + "{'loss': 0.2496, 'grad_norm': 3.395150661468506, 'learning_rate': 1.738562943609396e-05, 'epoch': 7.53}\n", + "{'loss': 0.2337, 'grad_norm': 3.5454814434051514, 'learning_rate': 1.7150030599520984e-05, 'epoch': 7.55}\n", + "{'loss': 0.166, 'grad_norm': 4.08375883102417, 'learning_rate': 1.691570812015704e-05, 'epoch': 7.57}\n", + "{'loss': 0.1812, 'grad_norm': 2.692218542098999, 'learning_rate': 1.6682671102399805e-05, 'epoch': 7.59}\n", + "{'loss': 0.1598, 'grad_norm': 4.0160231590271, 'learning_rate': 1.6450928600701504e-05, 'epoch': 7.6}\n", + "{'loss': 0.1428, 'grad_norm': 3.891842842102051, 'learning_rate': 1.622048961921699e-05, 'epoch': 7.62}\n", + "{'loss': 0.2096, 'grad_norm': 4.69844913482666, 'learning_rate': 1.599136311145402e-05, 'epoch': 7.64}\n", + "{'loss': 0.3205, 'grad_norm': 3.1264488697052, 'learning_rate': 1.5763557979925324e-05, 'epoch': 7.66}\n", + "{'loss': 0.2708, 'grad_norm': 4.53989315032959, 'learning_rate': 1.553708307580265e-05, 'epoch': 7.68}\n", + "{'loss': 0.2095, 'grad_norm': 2.3542563915252686, 'learning_rate': 1.531194719857292e-05, 'epoch': 7.69}\n", + "{'loss': 0.1645, 'grad_norm': 5.031445503234863, 'learning_rate': 1.5088159095696363e-05, 'epoch': 7.71}\n", + "{'loss': 0.2475, 'grad_norm': 5.543506145477295, 'learning_rate': 1.4865727462266543e-05, 'epoch': 7.73}\n", + "{'loss': 0.2831, 'grad_norm': 3.0280065536499023, 'learning_rate': 1.4644660940672627e-05, 'epoch': 7.75}\n", + "{'loss': 0.2326, 'grad_norm': 3.493994951248169, 'learning_rate': 1.4424968120263504e-05, 'epoch': 7.76}\n", + "{'loss': 0.2206, 'grad_norm': 3.2602357864379883, 'learning_rate': 1.4206657537014079e-05, 'epoch': 7.78}\n", + "{'loss': 0.2249, 'grad_norm': 5.095388412475586, 'learning_rate': 1.398973767319368e-05, 'epoch': 7.8}\n", + "{'loss': 0.2642, 'grad_norm': 13.810650825500488, 'learning_rate': 1.3774216957036367e-05, 'epoch': 7.82}\n", + "{'loss': 0.1592, 'grad_norm': 11.616129875183105, 'learning_rate': 1.3560103762413584e-05, 'epoch': 7.84}\n", + "{'loss': 0.1754, 'grad_norm': 4.300165176391602, 'learning_rate': 1.3347406408508695e-05, 'epoch': 7.85}\n", + "{'loss': 0.2721, 'grad_norm': 3.653315782546997, 'learning_rate': 1.3136133159493802e-05, 'epoch': 7.87}\n", + "{'loss': 0.1998, 'grad_norm': 3.611405611038208, 'learning_rate': 1.2926292224208664e-05, 'epoch': 7.89}\n", + "{'loss': 0.2173, 'grad_norm': 12.638509750366211, 'learning_rate': 1.2717891755841722e-05, 'epoch': 7.91}\n", + "{'loss': 0.2315, 'grad_norm': 12.878602981567383, 'learning_rate': 1.2510939851613285e-05, 'epoch': 7.93}\n", + "{'loss': 0.2456, 'grad_norm': 3.8157997131347656, 'learning_rate': 1.230544455246101e-05, 'epoch': 7.94}\n", + "{'loss': 0.1785, 'grad_norm': 4.757344722747803, 'learning_rate': 1.2101413842727345e-05, 'epoch': 7.96}\n", + "{'loss': 0.2599, 'grad_norm': 9.757575035095215, 'learning_rate': 1.1898855649849461e-05, 'epoch': 7.98}\n", + "{'loss': 0.1662, 'grad_norm': 2.5260682106018066, 'learning_rate': 1.1697777844051105e-05, 'epoch': 8.0}\n", + " 80%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Œ | 4480/5600 [2:05:14<30:43, 1.65s/it][INFO|trainer.py:3788] 2024-06-30 08:21:50,010 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-30 08:21:50,010 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-30 08:21:50,010 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-1.5b/lora/sft/checkpoint-4480\n", + "[INFO|configuration_utils.py:733] 2024-06-30 08:21:52,924 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-30 08:21:52,925 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 1536,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 8960,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 28,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 28,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-30 08:21:52,971 >> tokenizer config file saved in saves/qwen2-1.5b/lora/sft/checkpoint-4480/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-30 08:21:52,971 >> Special tokens file saved in saves/qwen2-1.5b/lora/sft/checkpoint-4480/special_tokens_map.json\n", + "{'loss': 0.1445, 'grad_norm': 1.7341903448104858, 'learning_rate': 1.1498188238036861e-05, 'epoch': 8.01}\n", + "{'loss': 0.113, 'grad_norm': 2.666015863418579, 'learning_rate': 1.130009458668863e-05, 'epoch': 8.03}\n", + "{'loss': 0.2103, 'grad_norm': 3.4498844146728516, 'learning_rate': 1.1103504586764263e-05, 'epoch': 8.05}\n", + "{'loss': 0.1438, 'grad_norm': 3.1626198291778564, 'learning_rate': 1.090842587659851e-05, 'epoch': 8.07}\n", + "{'loss': 0.1212, 'grad_norm': 2.0630691051483154, 'learning_rate': 1.0714866035806326e-05, 'epoch': 8.09}\n", + "{'loss': 0.1799, 'grad_norm': 3.088937282562256, 'learning_rate': 1.0522832584988234e-05, 'epoch': 8.1}\n", + "{'loss': 0.1107, 'grad_norm': 2.786867380142212, 'learning_rate': 1.0332332985438248e-05, 'epoch': 8.12}\n", + "{'loss': 0.1752, 'grad_norm': 1.7368676662445068, 'learning_rate': 1.0143374638853891e-05, 'epoch': 8.14}\n", + "{'loss': 0.1186, 'grad_norm': 2.039095878601074, 'learning_rate': 9.955964887048607e-06, 'epoch': 8.16}\n", + "{'loss': 0.133, 'grad_norm': 3.3849267959594727, 'learning_rate': 9.770111011666583e-06, 'epoch': 8.17}\n", + "{'loss': 0.1982, 'grad_norm': 3.557002305984497, 'learning_rate': 9.58582023389974e-06, 'epoch': 8.19}\n", + "{'loss': 0.1974, 'grad_norm': 2.3108747005462646, 'learning_rate': 9.403099714207175e-06, 'epoch': 8.21}\n", + "{'loss': 0.1912, 'grad_norm': 3.278822183609009, 'learning_rate': 9.221956552036992e-06, 'epoch': 8.23}\n", + "{'loss': 0.1803, 'grad_norm': 3.1523773670196533, 'learning_rate': 9.042397785550405e-06, 'epoch': 8.25}\n", + "{'loss': 0.1569, 'grad_norm': 4.3890862464904785, 'learning_rate': 8.864430391348332e-06, 'epoch': 8.26}\n", + "{'loss': 0.1246, 'grad_norm': 2.280132532119751, 'learning_rate': 8.688061284200266e-06, 'epoch': 8.28}\n", + "{'loss': 0.1357, 'grad_norm': 5.60243034362793, 'learning_rate': 8.513297316775625e-06, 'epoch': 8.3}\n", + "{'loss': 0.148, 'grad_norm': 4.402873992919922, 'learning_rate': 8.34014527937756e-06, 'epoch': 8.32}\n", + "{'loss': 0.1943, 'grad_norm': 3.0184195041656494, 'learning_rate': 8.168611899679013e-06, 'epoch': 8.34}\n", + "{'loss': 0.1651, 'grad_norm': 3.244899034500122, 'learning_rate': 7.998703842461431e-06, 'epoch': 8.35}\n", + "{'loss': 0.1725, 'grad_norm': 2.839618444442749, 'learning_rate': 7.830427709355725e-06, 'epoch': 8.37}\n", + "{'loss': 0.1764, 'grad_norm': 2.485934257507324, 'learning_rate': 7.663790038585793e-06, 'epoch': 8.39}\n", + "{'loss': 0.1308, 'grad_norm': 1.899274230003357, 'learning_rate': 7.498797304714544e-06, 'epoch': 8.41}\n", + "{'loss': 0.1754, 'grad_norm': 2.954799175262451, 'learning_rate': 7.33545591839222e-06, 'epoch': 8.42}\n", + "{'loss': 0.1637, 'grad_norm': 2.595350980758667, 'learning_rate': 7.173772226107434e-06, 'epoch': 8.44}\n", + "{'loss': 0.1736, 'grad_norm': 3.245035409927368, 'learning_rate': 7.013752509940485e-06, 'epoch': 8.46}\n", + "{'loss': 0.1975, 'grad_norm': 2.79209303855896, 'learning_rate': 6.855402987319348e-06, 'epoch': 8.48}\n", + "{'loss': 0.1608, 'grad_norm': 3.176992177963257, 'learning_rate': 6.698729810778065e-06, 'epoch': 8.5}\n", + "{'loss': 0.1425, 'grad_norm': 3.4199535846710205, 'learning_rate': 6.54373906771768e-06, 'epoch': 8.51}\n", + "{'loss': 0.1397, 'grad_norm': 2.7271015644073486, 'learning_rate': 6.390436780169734e-06, 'epoch': 8.53}\n", + "{'loss': 0.2058, 'grad_norm': 2.070603847503662, 'learning_rate': 6.238828904562316e-06, 'epoch': 8.55}\n", + "{'loss': 0.1612, 'grad_norm': 2.0566606521606445, 'learning_rate': 6.088921331488568e-06, 'epoch': 8.57}\n", + "{'loss': 0.0814, 'grad_norm': 2.8068063259124756, 'learning_rate': 5.94071988547788e-06, 'epoch': 8.59}\n", + "{'loss': 0.1446, 'grad_norm': 2.784498691558838, 'learning_rate': 5.794230324769517e-06, 'epoch': 8.6}\n", + "{'loss': 0.1159, 'grad_norm': 1.9032204151153564, 'learning_rate': 5.649458341088915e-06, 'epoch': 8.62}\n", + "{'loss': 0.1592, 'grad_norm': 3.4346718788146973, 'learning_rate': 5.506409559426573e-06, 'epoch': 8.64}\n", + "{'loss': 0.22, 'grad_norm': 1.5027986764907837, 'learning_rate': 5.365089537819434e-06, 'epoch': 8.66}\n", + "{'loss': 0.1448, 'grad_norm': 2.700094223022461, 'learning_rate': 5.2255037671349535e-06, 'epoch': 8.67}\n", + "{'loss': 0.173, 'grad_norm': 1.7306227684020996, 'learning_rate': 5.087657670857798e-06, 'epoch': 8.69}\n", + "{'loss': 0.1248, 'grad_norm': 2.1537575721740723, 'learning_rate': 4.951556604879048e-06, 'epoch': 8.71}\n", + "{'loss': 0.1908, 'grad_norm': 3.676980972290039, 'learning_rate': 4.8172058572881765e-06, 'epoch': 8.73}\n", + "{'loss': 0.1352, 'grad_norm': 3.5679290294647217, 'learning_rate': 4.684610648167503e-06, 'epoch': 8.75}\n", + "{'loss': 0.1403, 'grad_norm': 3.0709311962127686, 'learning_rate': 4.5537761293894535e-06, 'epoch': 8.76}\n", + "{'loss': 0.157, 'grad_norm': 4.296623706817627, 'learning_rate': 4.424707384416344e-06, 'epoch': 8.78}\n", + "{'loss': 0.1893, 'grad_norm': 2.2179601192474365, 'learning_rate': 4.29740942810285e-06, 'epoch': 8.8}\n", + "{'loss': 0.1651, 'grad_norm': 3.256356716156006, 'learning_rate': 4.1718872065011904e-06, 'epoch': 8.82}\n", + "{'loss': 0.1567, 'grad_norm': 2.9854118824005127, 'learning_rate': 4.048145596668967e-06, 'epoch': 8.84}\n", + "{'loss': 0.1463, 'grad_norm': 1.8327380418777466, 'learning_rate': 3.9261894064796135e-06, 'epoch': 8.85}\n", + "{'loss': 0.1511, 'grad_norm': 3.7827322483062744, 'learning_rate': 3.8060233744356633e-06, 'epoch': 8.87}\n", + "{'loss': 0.1404, 'grad_norm': 1.0582958459854126, 'learning_rate': 3.687652169484568e-06, 'epoch': 8.89}\n", + "{'loss': 0.1494, 'grad_norm': 2.8895883560180664, 'learning_rate': 3.5710803908373224e-06, 'epoch': 8.91}\n", + "{'loss': 0.1691, 'grad_norm': 4.131629467010498, 'learning_rate': 3.4563125677897932e-06, 'epoch': 8.92}\n", + "{'loss': 0.2159, 'grad_norm': 3.1218199729919434, 'learning_rate': 3.343353159546675e-06, 'epoch': 8.94}\n", + "{'loss': 0.1488, 'grad_norm': 1.3627033233642578, 'learning_rate': 3.2322065550483007e-06, 'epoch': 8.96}\n", + "{'loss': 0.1338, 'grad_norm': 0.7474280595779419, 'learning_rate': 3.1228770728000455e-06, 'epoch': 8.98}\n", + "{'loss': 0.1358, 'grad_norm': 7.197608947753906, 'learning_rate': 3.0153689607045845e-06, 'epoch': 9.0}\n", + " 90%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–Ž | 5040/5600 [2:20:27<14:49, 1.59s/it][INFO|trainer.py:3788] 2024-06-30 08:37:02,463 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-30 08:37:02,463 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-30 08:37:02,463 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-1.5b/lora/sft/checkpoint-5040\n", + "[INFO|configuration_utils.py:733] 2024-06-30 08:37:05,334 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-30 08:37:05,334 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 1536,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 8960,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 28,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 28,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-30 08:37:05,376 >> tokenizer config file saved in saves/qwen2-1.5b/lora/sft/checkpoint-5040/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-30 08:37:05,376 >> Special tokens file saved in saves/qwen2-1.5b/lora/sft/checkpoint-5040/special_tokens_map.json\n", + "{'loss': 0.127, 'grad_norm': 2.002713441848755, 'learning_rate': 2.9096863958968268e-06, 'epoch': 9.01}\n", + "{'loss': 0.1209, 'grad_norm': 1.9945132732391357, 'learning_rate': 2.8058334845816213e-06, 'epoch': 9.03}\n", + "{'loss': 0.1432, 'grad_norm': 1.8608288764953613, 'learning_rate': 2.7038142618741992e-06, 'epoch': 9.05}\n", + "{'loss': 0.1707, 'grad_norm': 3.0099308490753174, 'learning_rate': 2.603632691643415e-06, 'epoch': 9.07}\n", + "{'loss': 0.1253, 'grad_norm': 2.0166702270507812, 'learning_rate': 2.5052926663577e-06, 'epoch': 9.09}\n", + "{'loss': 0.1316, 'grad_norm': 2.971637487411499, 'learning_rate': 2.408798006933882e-06, 'epoch': 9.1}\n", + "{'loss': 0.0958, 'grad_norm': 3.2099649906158447, 'learning_rate': 2.314152462588659e-06, 'epoch': 9.12}\n", + "{'loss': 0.1209, 'grad_norm': 3.63370418548584, 'learning_rate': 2.221359710692961e-06, 'epoch': 9.14}\n", + "{'loss': 0.0965, 'grad_norm': 1.7885162830352783, 'learning_rate': 2.1304233566290964e-06, 'epoch': 9.16}\n", + "{'loss': 0.0858, 'grad_norm': 1.2611875534057617, 'learning_rate': 2.041346933650612e-06, 'epoch': 9.17}\n", + "{'loss': 0.1183, 'grad_norm': 1.9412541389465332, 'learning_rate': 1.9541339027450256e-06, 'epoch': 9.19}\n", + "{'loss': 0.1395, 'grad_norm': 1.758565068244934, 'learning_rate': 1.8687876524993987e-06, 'epoch': 9.21}\n", + "{'loss': 0.0943, 'grad_norm': 2.854973316192627, 'learning_rate': 1.785311498968617e-06, 'epoch': 9.23}\n", + "{'loss': 0.1427, 'grad_norm': 6.644575119018555, 'learning_rate': 1.70370868554659e-06, 'epoch': 9.25}\n", + "{'loss': 0.1434, 'grad_norm': 3.3001134395599365, 'learning_rate': 1.6239823828401945e-06, 'epoch': 9.26}\n", + "{'loss': 0.1218, 'grad_norm': 0.8132327795028687, 'learning_rate': 1.5461356885461075e-06, 'epoch': 9.28}\n", + "{'loss': 0.1723, 'grad_norm': 1.5899766683578491, 'learning_rate': 1.4701716273304521e-06, 'epoch': 9.3}\n", + "{'loss': 0.1067, 'grad_norm': 1.619358777999878, 'learning_rate': 1.3960931507112752e-06, 'epoch': 9.32}\n", + "{'loss': 0.1708, 'grad_norm': 1.985873818397522, 'learning_rate': 1.3239031369438326e-06, 'epoch': 9.34}\n", + "{'loss': 0.1221, 'grad_norm': 2.568528175354004, 'learning_rate': 1.2536043909088191e-06, 'epoch': 9.35}\n", + "{'loss': 0.1285, 'grad_norm': 2.3798413276672363, 'learning_rate': 1.1851996440033319e-06, 'epoch': 9.37}\n", + "{'loss': 0.1118, 'grad_norm': 0.7661011815071106, 'learning_rate': 1.118691554034773e-06, 'epoch': 9.39}\n", + "{'loss': 0.1178, 'grad_norm': 2.5488016605377197, 'learning_rate': 1.0540827051175818e-06, 'epoch': 9.41}\n", + "{'loss': 0.1357, 'grad_norm': 3.0472471714019775, 'learning_rate': 9.913756075728087e-07, 'epoch': 9.42}\n", + "{'loss': 0.0948, 'grad_norm': 0.8541691899299622, 'learning_rate': 9.305726978306173e-07, 'epoch': 9.44}\n", + "{'loss': 0.1502, 'grad_norm': 0.9478998780250549, 'learning_rate': 8.716763383355864e-07, 'epoch': 9.46}\n", + "{'loss': 0.1266, 'grad_norm': 1.7219117879867554, 'learning_rate': 8.146888174549339e-07, 'epoch': 9.48}\n", + "{'loss': 0.0963, 'grad_norm': 2.673491954803467, 'learning_rate': 7.596123493895991e-07, 'epoch': 9.5}\n", + "{'loss': 0.186, 'grad_norm': 2.8655078411102295, 'learning_rate': 7.064490740882057e-07, 'epoch': 9.51}\n", + "{'loss': 0.1359, 'grad_norm': 2.7357897758483887, 'learning_rate': 6.552010571639456e-07, 'epoch': 9.53}\n", + "{'loss': 0.1508, 'grad_norm': 2.8306162357330322, 'learning_rate': 6.058702898142643e-07, 'epoch': 9.55}\n", + "{'loss': 0.1036, 'grad_norm': 3.270542621612549, 'learning_rate': 5.584586887435739e-07, 'epoch': 9.57}\n", + "{'loss': 0.1504, 'grad_norm': 2.821152925491333, 'learning_rate': 5.129680960887007e-07, 'epoch': 9.59}\n", + "{'loss': 0.1388, 'grad_norm': 1.7769047021865845, 'learning_rate': 4.6940027934735954e-07, 'epoch': 9.6}\n", + "{'loss': 0.1101, 'grad_norm': 2.468860387802124, 'learning_rate': 4.277569313094809e-07, 'epoch': 9.62}\n", + "{'loss': 0.1552, 'grad_norm': 2.018123149871826, 'learning_rate': 3.8803966999139684e-07, 'epoch': 9.64}\n", + "{'loss': 0.124, 'grad_norm': 1.8176459074020386, 'learning_rate': 3.50250038573019e-07, 'epoch': 9.66}\n", + "{'loss': 0.1084, 'grad_norm': 1.4483444690704346, 'learning_rate': 3.143895053378698e-07, 'epoch': 9.67}\n", + "{'loss': 0.1122, 'grad_norm': 2.107964038848877, 'learning_rate': 2.8045946361601183e-07, 'epoch': 9.69}\n", + "{'loss': 0.167, 'grad_norm': 3.6413228511810303, 'learning_rate': 2.4846123172992954e-07, 'epoch': 9.71}\n", + "{'loss': 0.1457, 'grad_norm': 3.200455904006958, 'learning_rate': 2.1839605294330933e-07, 'epoch': 9.73}\n", + "{'loss': 0.1466, 'grad_norm': 2.517279863357544, 'learning_rate': 1.9026509541272275e-07, 'epoch': 9.75}\n", + "{'loss': 0.1311, 'grad_norm': 1.4828776121139526, 'learning_rate': 1.640694521422459e-07, 'epoch': 9.76}\n", + "{'loss': 0.1393, 'grad_norm': 2.981771945953369, 'learning_rate': 1.3981014094099353e-07, 'epoch': 9.78}\n", + "{'loss': 0.0979, 'grad_norm': 1.9358062744140625, 'learning_rate': 1.1748810438355628e-07, 'epoch': 9.8}\n", + "{'loss': 0.1863, 'grad_norm': 1.4688208103179932, 'learning_rate': 9.710420977340762e-08, 'epoch': 9.82}\n", + "{'loss': 0.1427, 'grad_norm': 2.011298418045044, 'learning_rate': 7.865924910916977e-08, 'epoch': 9.83}\n", + "{'loss': 0.0873, 'grad_norm': 3.8186533451080322, 'learning_rate': 6.215393905388278e-08, 'epoch': 9.85}\n", + "{'loss': 0.099, 'grad_norm': 2.1099774837493896, 'learning_rate': 4.7588920907110094e-08, 'epoch': 9.87}\n", + "{'loss': 0.1162, 'grad_norm': 2.2421796321868896, 'learning_rate': 3.496476058006959e-08, 'epoch': 9.89}\n", + "{'loss': 0.1642, 'grad_norm': 3.2422990798950195, 'learning_rate': 2.4281948573617874e-08, 'epoch': 9.91}\n", + "{'loss': 0.1631, 'grad_norm': 2.7475242614746094, 'learning_rate': 1.5540899959187727e-08, 'epoch': 9.92}\n", + "{'loss': 0.145, 'grad_norm': 2.781863212585449, 'learning_rate': 8.741954362678772e-09, 'epoch': 9.94}\n", + "{'loss': 0.1242, 'grad_norm': 3.5185129642486572, 'learning_rate': 3.885375951256931e-09, 'epoch': 9.96}\n", + "{'loss': 0.1676, 'grad_norm': 2.617418050765991, 'learning_rate': 9.713534230904041e-10, 'epoch': 9.98}\n", + "{'loss': 0.1304, 'grad_norm': 2.882068395614624, 'learning_rate': 0.0, 'epoch': 10.0}\n", + "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 5600/5600 [2:35:33<00:00, 1.59s/it][INFO|trainer.py:3788] 2024-06-30 08:52:08,248 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-30 08:52:08,248 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-30 08:52:08,248 >> Batch size = 1\n", + "\n", + " 0%| | 0/46 [00:00> Saving model checkpoint to saves/qwen2-1.5b/lora/sft/checkpoint-5600\n", + "[INFO|configuration_utils.py:733] 2024-06-30 08:52:11,263 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-30 08:52:11,263 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 1536,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 8960,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 28,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 28,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-30 08:52:11,334 >> tokenizer config file saved in saves/qwen2-1.5b/lora/sft/checkpoint-5600/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-30 08:52:11,334 >> Special tokens file saved in saves/qwen2-1.5b/lora/sft/checkpoint-5600/special_tokens_map.json\n", + "[INFO|trainer.py:2383] 2024-06-30 08:52:11,559 >> \n", + "\n", + "Training completed. Do not forget to share your model on huggingface.co/models =)\n", + "\n", + "\n", + "{'train_runtime': 9336.476, 'train_samples_per_second': 4.801, 'train_steps_per_second': 0.6, 'train_loss': 0.7698830796884639, 'epoch': 10.0}\n", + "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 5600/5600 [2:35:36<00:00, 1.67s/it]\n", + "[INFO|trainer.py:3478] 2024-06-30 08:52:11,560 >> Saving model checkpoint to saves/qwen2-1.5b/lora/sft\n", + "[INFO|configuration_utils.py:733] 2024-06-30 08:52:12,070 >> loading configuration file config.json from cache at /home/inflaton/.cache/huggingface/hub/models--Qwen--Qwen2-1.5B-Instruct/snapshots/ba1cf1846d7df0a0591d6c00649f57e798519da8/config.json\n", + "[INFO|configuration_utils.py:800] 2024-06-30 08:52:12,070 >> Model config Qwen2Config {\n", + " \"architectures\": [\n", + " \"Qwen2ForCausalLM\"\n", + " ],\n", + " \"attention_dropout\": 0.0,\n", + " \"bos_token_id\": 151643,\n", + " \"eos_token_id\": 151645,\n", + " \"hidden_act\": \"silu\",\n", + " \"hidden_size\": 1536,\n", + " \"initializer_range\": 0.02,\n", + " \"intermediate_size\": 8960,\n", + " \"max_position_embeddings\": 32768,\n", + " \"max_window_layers\": 28,\n", + " \"model_type\": \"qwen2\",\n", + " \"num_attention_heads\": 12,\n", + " \"num_hidden_layers\": 28,\n", + " \"num_key_value_heads\": 2,\n", + " \"rms_norm_eps\": 1e-06,\n", + " \"rope_theta\": 1000000.0,\n", + " \"sliding_window\": 32768,\n", + " \"tie_word_embeddings\": true,\n", + " \"torch_dtype\": \"bfloat16\",\n", + " \"transformers_version\": \"4.42.3\",\n", + " \"use_cache\": true,\n", + " \"use_sliding_window\": false,\n", + " \"vocab_size\": 151936\n", + "}\n", + "\n", + "[INFO|tokenization_utils_base.py:2574] 2024-06-30 08:52:12,110 >> tokenizer config file saved in saves/qwen2-1.5b/lora/sft/tokenizer_config.json\n", + "[INFO|tokenization_utils_base.py:2583] 2024-06-30 08:52:12,110 >> Special tokens file saved in saves/qwen2-1.5b/lora/sft/special_tokens_map.json\n", + "***** train metrics *****\n", + " epoch = 9.9955\n", + " total_flos = 27888647GF\n", + " train_loss = 0.7699\n", + " train_runtime = 2:35:36.47\n", + " train_samples_per_second = 4.801\n", + " train_steps_per_second = 0.6\n", + "Figure saved at: saves/qwen2-1.5b/lora/sft/training_loss.png\n", + "Figure saved at: saves/qwen2-1.5b/lora/sft/training_eval_loss.png\n", + "[INFO|trainer.py:3788] 2024-06-30 08:52:12,411 >> \n", + "***** Running Evaluation *****\n", + "[INFO|trainer.py:3790] 2024-06-30 08:52:12,411 >> Num examples = 46\n", + "[INFO|trainer.py:3793] 2024-06-30 08:52:12,411 >> Batch size = 1\n", + "100%|โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 46/46 [00:02<00:00, 19.87it/s]\n", + "***** eval metrics *****\n", + " epoch = 9.9955\n", + " eval_loss = 3.5357\n", + " eval_runtime = 0:00:02.39\n", + " eval_samples_per_second = 19.224\n", + " eval_steps_per_second = 19.224\n", + "[INFO|modelcard.py:449] 2024-06-30 08:52:14,805 >> Dropping the following result as it does not have all the necessary fields:\n", + "{'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}\n", + "CPU times: user 2min 11s, sys: 44.5 s, total: 2min 56s\n", + "Wall time: 2h 37min 48s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "!./scripts/tune-lf.sh config/qwen2_1.5b_lora_sft.yaml" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%%time\n", + "\n", + "!./scripts/tune-lf.sh config/qwen2_7b_lora_sft.yaml" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "application/vnd.databricks.v1+notebook": { + "dashboards": [], + "environmentMetadata": null, + "language": "python", + "notebookMetadata": { + "pythonIndentUnit": 4 + }, + "notebookName": "07_MAC_+_Qwen2-7B-Instructi_Unsloth_train", + "widgets": {} + }, + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "036fc5746f43416db18c19ad8fd36677": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "06e806c82c7b4cbea31c5358dd9c3434": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "087b76a8b7514269b1f0ab29b062e444": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a069d2ab23824f29aa320ac256e2cfe9", + "placeholder": "โ€‹", + "style": "IPY_MODEL_06e806c82c7b4cbea31c5358dd9c3434", + "value": "Mapโ€‡(num_proc=2):โ€‡100%" + } + }, + "09b76013aa9e45efb6deb23a7a0d0925": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dea41c5260884aa6879b5e1d1697b14f", + "placeholder": "โ€‹", + "style": "IPY_MODEL_89965917796a4f81b899fdc7685f33df", + "value": "config.json:โ€‡100%" + } + }, + "0a92c56bfa134ef583220d7ef0b13e17": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "0c34be936c8145d3ab41282f30a70713": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f8b6bfe16894500838793f2491d403f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "177c78fce95d4b4ab33057c5a048d693": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1f44c9ce1adf470cbb19784493ed209f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0c34be936c8145d3ab41282f30a70713", + "placeholder": "โ€‹", + "style": "IPY_MODEL_0a92c56bfa134ef583220d7ef0b13e17", + "value": "model.safetensors:โ€‡100%" + } + }, + "201b59ccd9f845e197029b57e424aefc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2157f01726d748f8a9ae4a00664430da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "21db8a77b00d4a4e82fdfa608657531f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "26e4202cca81496a90d15a0dd4ca9cf1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ba90fdb8822d47dab7ba203bee297f37", + "IPY_MODEL_61560ff6a36b44f4a9dfdae5c52791d4", + "IPY_MODEL_95fbe66647904c06a20f640630d6dc0e" + ], + "layout": "IPY_MODEL_57182a263d324a3dbf1471c74290a0d5" + } + }, + "27155728b6b84cb199c91c940095d0a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b91feeed5464877991ac2c207aebe7c", + "IPY_MODEL_cca8113c54c0495daedce1327bf9c68b", + "IPY_MODEL_2e63a29e2f7247bba5beede9a568c99f" + ], + "layout": "IPY_MODEL_5c9d781c28944f3eb86e2a6d44efdf18" + } + }, + "271ddaa553a042d09b6db7b450643d8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2a58d04b428c46f4b3dbadd3bc6cd529": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2d18ddf6482c4d97829ac0e5a7b9868f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9f679ad3ec7f4fe8ad0510ffb57bc2ab", + "IPY_MODEL_f2df530d22c74977b249dd9fb5f4829b", + "IPY_MODEL_89b2ef0dbfea47ab8e6f8d659e3351d1" + ], + "layout": "IPY_MODEL_3056b148aa9f4e6e8aa3b61d26886255" + } + }, + "2e5087c76f98437cb5dc729230358cba": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2e63a29e2f7247bba5beede9a568c99f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b993eaec6b224440bf80c0958c6fb536", + "placeholder": "โ€‹", + "style": "IPY_MODEL_de868e26e7154f62aa86223a539ad421", + "value": "โ€‡464/464โ€‡[00:00<00:00,โ€‡27.1kB/s]" + } + }, + "2f6c70dd266c4816bfad3fd3d192929a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "30307300bc4e4baf96560e30969a82b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e36a3f9eff0e4cf68834d66b0213ae96", + "placeholder": "โ€‹", + "style": "IPY_MODEL_a0037bdccf254159becde630bee3d1db", + "value": "generation_config.json:โ€‡100%" + } + }, + "3056b148aa9f4e6e8aa3b61d26886255": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "30cdc32298134cb0be4d41615b9e5774": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3572201bd4d74a58b7a665f9bdfdcdba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "35b0e8c26d6640e9bd0ed7b242a423d8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2e5087c76f98437cb5dc729230358cba", + "max": 51760, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_036fc5746f43416db18c19ad8fd36677", + "value": 51760 + } + }, + "36166c7bcb854b34aca1f41a5d6ea50b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "370692d819df41828b48c4ad446f977b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "39b29a75374b45c0a22506010be2b84e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_30cdc32298134cb0be4d41615b9e5774", + "max": 1179, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_47928317548c454bba6358ab132e8dee", + "value": 1179 + } + }, + "3cf2dd993b5e4d3daecf61e4bab5a404": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_087b76a8b7514269b1f0ab29b062e444", + "IPY_MODEL_35b0e8c26d6640e9bd0ed7b242a423d8", + "IPY_MODEL_54ad89e05fd74576b9b8b5b5a10eaf8d" + ], + "layout": "IPY_MODEL_a41dc44766444a998bec2d777f249d23" + } + }, + "43dec2ede91341f5af60eb522e18e984": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4463edd481c1467f914c7dcd6c6e6ffc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "47928317548c454bba6358ab132e8dee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "49277aeeac16434a865a4d12308b1abc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4ae7e449e4ea4c729b5f34607c18ebae": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4b2061b8a73c43ffb0c2f83daf0d0183": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4c4c88d4c701450692fa0f6b0c5764b0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4c666f4ace3943f8b80ecd20e7503236": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4ccedf0d93094e63b57a0f8a434fba06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4463edd481c1467f914c7dcd6c6e6ffc", + "max": 44307561, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6d3b9a05db0b4dadb638c686faa0c40a", + "value": 44307561 + } + }, + "4dcf6ff672d24983a1877a8431709aa9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5807d5fb827d490fb3bc698f801ffff5", + "placeholder": "โ€‹", + "style": "IPY_MODEL_c4f2b06a82fd4987b8b659524a7b503b", + "value": "Generatingโ€‡trainโ€‡split:โ€‡100%" + } + }, + "4ea63adfce694725bdba878aef709dd3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5234566b1bfc4655b8d582ea5b46ed9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "54ad89e05fd74576b9b8b5b5a10eaf8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fdb1941405ed4e4aa06019933892deb3", + "placeholder": "โ€‹", + "style": "IPY_MODEL_668d5377ca56426a99753867e6e24862", + "value": "โ€‡51760/51760โ€‡[01:02<00:00,โ€‡1131.51โ€‡examples/s]" + } + }, + "56aee4853b7740e6a977254f5d1fa66d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "57182a263d324a3dbf1471c74290a0d5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5807d5fb827d490fb3bc698f801ffff5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c9d781c28944f3eb86e2a6d44efdf18": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5f40db8173dd4d76b6ef5ed6d9ec8b6e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "61560ff6a36b44f4a9dfdae5c52791d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_db19fc8d37db4e45a5790a876836d8c4", + "max": 11610, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_36166c7bcb854b34aca1f41a5d6ea50b", + "value": 11610 + } + }, + "6578fd7acdb54c4c93528ea431fd0144": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_370692d819df41828b48c4ad446f977b", + "placeholder": "โ€‹", + "style": "IPY_MODEL_a0bf9160eb2647409b3200270914b90f", + "value": "โ€‡50.6k/50.6kโ€‡[00:00<00:00,โ€‡2.71MB/s]" + } + }, + "668d5377ca56426a99753867e6e24862": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "697f027529b54ee9956bae78a11e0611": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "69ac12aec0714318bf2c83d4f4e745f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6b2012c3f88547af8884a9ea90e3164b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_938f45f1b3e24118b815d96ae34ba86a", + "placeholder": "โ€‹", + "style": "IPY_MODEL_9367047a800747f79c6b225d92397846", + "value": "โ€‡44.3M/44.3Mโ€‡[00:01<00:00,โ€‡31.0MB/s]" + } + }, + "6b91feeed5464877991ac2c207aebe7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4b2061b8a73c43ffb0c2f83daf0d0183", + "placeholder": "โ€‹", + "style": "IPY_MODEL_69ac12aec0714318bf2c83d4f4e745f5", + "value": "special_tokens_map.json:โ€‡100%" + } + }, + "6d3b9a05db0b4dadb638c686faa0c40a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6dbbedeca9314e66ae50e44ffa31a414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6e34619b45934040b6092e6fb01ea7fe": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71ce208e20d6483abb9ed923510c86d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d69dc491b3ab44d7852b21873ed7bb7f", + "placeholder": "โ€‹", + "style": "IPY_MODEL_f401d53bf28e44eb906bce6c05412662", + "value": "โ€‡51760/51760โ€‡[00:01<00:00,โ€‡45512.81โ€‡examples/s]" + } + }, + "7358cdad832342c983e31efb8754ab78": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "73e352a3404f4c7dad0737f57d29e92f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_988a0e8c1f89446086858da0a891a79c", + "IPY_MODEL_4ccedf0d93094e63b57a0f8a434fba06", + "IPY_MODEL_6b2012c3f88547af8884a9ea90e3164b" + ], + "layout": "IPY_MODEL_7e29cb8dd4df4d5b94407cd8fd3f2011" + } + }, + "74501720ac7e4dbb911a4a99b3633bc6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "78e5400bff924a92a4cc61c4ff18b182": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b9b313fd861948f5aba25b24b1518d30", + "placeholder": "โ€‹", + "style": "IPY_MODEL_4c666f4ace3943f8b80ecd20e7503236", + "value": "โ€‡1.18k/1.18kโ€‡[00:00<00:00,โ€‡31.3kB/s]" + } + }, + "7975adbc2ec5489ea7fa0167e620d85c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6e34619b45934040b6092e6fb01ea7fe", + "max": 51760, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_271ddaa553a042d09b6db7b450643d8f", + "value": 51760 + } + }, + "7e29cb8dd4df4d5b94407cd8fd3f2011": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "810ff6c0e17d4fa09a30fef27eacff90": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "89965917796a4f81b899fdc7685f33df": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "89b2ef0dbfea47ab8e6f8d659e3351d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b8908fa0df3743ecb9d12983a739104f", + "placeholder": "โ€‹", + "style": "IPY_MODEL_177c78fce95d4b4ab33057c5a048d693", + "value": "โ€‡9.09M/9.09Mโ€‡[00:00<00:00,โ€‡32.6MB/s]" + } + }, + "8b3505352a5a42bf910428c40ce40465": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_49277aeeac16434a865a4d12308b1abc", + "placeholder": "โ€‹", + "style": "IPY_MODEL_2157f01726d748f8a9ae4a00664430da", + "value": "โ€‡5.70G/5.70Gโ€‡[01:02<00:00,โ€‡30.1MB/s]" + } + }, + "8fc142b628fb40568730234de1cafde2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4ae7e449e4ea4c729b5f34607c18ebae", + "max": 172, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3572201bd4d74a58b7a665f9bdfdcdba", + "value": 172 + } + }, + "9367047a800747f79c6b225d92397846": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "938f45f1b3e24118b815d96ae34ba86a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "95fbe66647904c06a20f640630d6dc0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b0a370dc20654b279b9680692e34418e", + "placeholder": "โ€‹", + "style": "IPY_MODEL_cfeb365ddf7548d58b2557f22737fcf5", + "value": "โ€‡11.6k/11.6kโ€‡[00:00<00:00,โ€‡716kB/s]" + } + }, + "988a0e8c1f89446086858da0a891a79c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ad2be500fc164c0f86f33e914ef8e6a0", + "placeholder": "โ€‹", + "style": "IPY_MODEL_5234566b1bfc4655b8d582ea5b46ed9f", + "value": "Downloadingโ€‡data:โ€‡100%" + } + }, + "98c58f23f4d549518832cb2d18f796e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_09b76013aa9e45efb6deb23a7a0d0925", + "IPY_MODEL_39b29a75374b45c0a22506010be2b84e", + "IPY_MODEL_78e5400bff924a92a4cc61c4ff18b182" + ], + "layout": "IPY_MODEL_2a58d04b428c46f4b3dbadd3bc6cd529" + } + }, + "99fdbb0300c14c139d1937c646f0cfe7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7358cdad832342c983e31efb8754ab78", + "placeholder": "โ€‹", + "style": "IPY_MODEL_e9adf418296e436fb48bb9f78885598b", + "value": "โ€‡51760/51760โ€‡[00:01<00:00,โ€‡38665.95โ€‡examples/s]" + } + }, + "9f679ad3ec7f4fe8ad0510ffb57bc2ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4ea63adfce694725bdba878aef709dd3", + "placeholder": "โ€‹", + "style": "IPY_MODEL_74501720ac7e4dbb911a4a99b3633bc6", + "value": "tokenizer.json:โ€‡100%" + } + }, + "a0037bdccf254159becde630bee3d1db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a069d2ab23824f29aa320ac256e2cfe9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a0bf9160eb2647409b3200270914b90f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a41dc44766444a998bec2d777f249d23": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a8464a4c711e4e00aafdfc919b60d07e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fb995c740590427b882572c81d4e848c", + "placeholder": "โ€‹", + "style": "IPY_MODEL_201b59ccd9f845e197029b57e424aefc", + "value": "โ€‡172/172โ€‡[00:00<00:00,โ€‡12.0kB/s]" + } + }, + "a9f0cc51fc3d4d7b874c32dcf1c5bdf2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad2be500fc164c0f86f33e914ef8e6a0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b0240cd9a4554b29ae11f8051984a1c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_edaf890370314a218f138015faa0b05d", + "placeholder": "โ€‹", + "style": "IPY_MODEL_697f027529b54ee9956bae78a11e0611", + "value": "Map:โ€‡100%" + } + }, + "b0a370dc20654b279b9680692e34418e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b518dcee69074b87be73957cd810e7ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d891f8d0b1fc462f8008d02bb2a15692", + "placeholder": "โ€‹", + "style": "IPY_MODEL_cced8fd7e998472794f3f3e3018956a5", + "value": "tokenizer_config.json:โ€‡100%" + } + }, + "b8908fa0df3743ecb9d12983a739104f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b993eaec6b224440bf80c0958c6fb536": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b9b313fd861948f5aba25b24b1518d30": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ba90fdb8822d47dab7ba203bee297f37": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0f8b6bfe16894500838793f2491d403f", + "placeholder": "โ€‹", + "style": "IPY_MODEL_bb19f6c747754682a514373a3a0535ba", + "value": "Downloadingโ€‡readme:โ€‡100%" + } + }, + "bb19f6c747754682a514373a3a0535ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bc883d4cf13e4f8b8a4fe5f410cb6efd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e9159e03e61f4f56978ece9c3bca49b2", + "max": 51760, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_810ff6c0e17d4fa09a30fef27eacff90", + "value": 51760 + } + }, + "c161d94df0f04feba9542237e0856c22": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c22f71b1f85843209d7e5321506b9cb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1f44c9ce1adf470cbb19784493ed209f", + "IPY_MODEL_f1addc4479d849879e743cf9089e6540", + "IPY_MODEL_8b3505352a5a42bf910428c40ce40465" + ], + "layout": "IPY_MODEL_4c4c88d4c701450692fa0f6b0c5764b0" + } + }, + "c4f2b06a82fd4987b8b659524a7b503b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cca8113c54c0495daedce1327bf9c68b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e02f9b7849c64531835eb77b860d1c93", + "max": 464, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_56aee4853b7740e6a977254f5d1fa66d", + "value": 464 + } + }, + "cced8fd7e998472794f3f3e3018956a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cf245afeb1c04f29a24d291608c3d157": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b518dcee69074b87be73957cd810e7ed", + "IPY_MODEL_e29104486d594b2992d7285e0ef77371", + "IPY_MODEL_6578fd7acdb54c4c93528ea431fd0144" + ], + "layout": "IPY_MODEL_d35db8148a354c56aaac56dbae22536f" + } + }, + "cfe8cae0e22b495bafa221a63d13b283": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cfeb365ddf7548d58b2557f22737fcf5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "d1b47d39450d4019ae85c9b2f943eeaf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4dcf6ff672d24983a1877a8431709aa9", + "IPY_MODEL_7975adbc2ec5489ea7fa0167e620d85c", + "IPY_MODEL_71ce208e20d6483abb9ed923510c86d7" + ], + "layout": "IPY_MODEL_cfe8cae0e22b495bafa221a63d13b283" + } + }, + "d35db8148a354c56aaac56dbae22536f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d69dc491b3ab44d7852b21873ed7bb7f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d891f8d0b1fc462f8008d02bb2a15692": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d8e5318cead340c4adbeaccc05d39225": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "daf4cd890b35422683d22fd30bc71e83": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b0240cd9a4554b29ae11f8051984a1c6", + "IPY_MODEL_bc883d4cf13e4f8b8a4fe5f410cb6efd", + "IPY_MODEL_99fdbb0300c14c139d1937c646f0cfe7" + ], + "layout": "IPY_MODEL_c161d94df0f04feba9542237e0856c22" + } + }, + "db19fc8d37db4e45a5790a876836d8c4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "de868e26e7154f62aa86223a539ad421": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "dea41c5260884aa6879b5e1d1697b14f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e02f9b7849c64531835eb77b860d1c93": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e29104486d594b2992d7285e0ef77371": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a9f0cc51fc3d4d7b874c32dcf1c5bdf2", + "max": 50641, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_2f6c70dd266c4816bfad3fd3d192929a", + "value": 50641 + } + }, + "e36a3f9eff0e4cf68834d66b0213ae96": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e9159e03e61f4f56978ece9c3bca49b2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e9adf418296e436fb48bb9f78885598b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "edaf890370314a218f138015faa0b05d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f1addc4479d849879e743cf9089e6540": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_43dec2ede91341f5af60eb522e18e984", + "max": 5702746405, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d8e5318cead340c4adbeaccc05d39225", + "value": 5702746405 + } + }, + "f2df530d22c74977b249dd9fb5f4829b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_21db8a77b00d4a4e82fdfa608657531f", + "max": 9085698, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6dbbedeca9314e66ae50e44ffa31a414", + "value": 9085698 + } + }, + "f401d53bf28e44eb906bce6c05412662": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fb995c740590427b882572c81d4e848c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fce7a61c25ec4390af43d92b7c473a45": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_30307300bc4e4baf96560e30969a82b6", + "IPY_MODEL_8fc142b628fb40568730234de1cafde2", + "IPY_MODEL_a8464a4c711e4e00aafdfc919b60d07e" + ], + "layout": "IPY_MODEL_5f40db8173dd4d76b6ef5ed6d9ec8b6e" + } + }, + "fdb1941405ed4e4aa06019933892deb3": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}