Spaces:
Build error
Build error
v2e results
Browse files- app.py +7 -3
- eval_modules/calc_repetitions_v2d.py +0 -1281
- eval_modules/calc_repetitions_v2e.py +0 -1
- eval_modules/calc_repetitions_v2e.py +1310 -0
- notebooks/03a_RAPGeT_v2_Data Analysis_Chat_Template.ipynb +2 -2
- notebooks/03b_RAPGeT_v2_Data Analysis_Generic_Prompt.ipynb +2 -2
- notebooks/03c_RAPGeT_v2_Data Analysis.ipynb +2 -2
- results/mac-results_rpp_with_mnt_2048_generic_prompt_metrics.csv +26 -25
- results/mac-results_rpp_with_mnt_2048_metrics.csv +30 -30
app.py
CHANGED
@@ -2,8 +2,9 @@ import os
|
|
2 |
import sys
|
3 |
import evaluate
|
4 |
import gradio as gr
|
5 |
-
from huggingface_hub import InferenceClient
|
6 |
from dotenv import find_dotenv, load_dotenv
|
|
|
7 |
|
8 |
found_dotenv = find_dotenv(".env")
|
9 |
|
@@ -18,11 +19,14 @@ sys.path.append(path)
|
|
18 |
|
19 |
from llm_toolkit.llm_utils import *
|
20 |
from llm_toolkit.translation_utils import *
|
21 |
-
from eval_modules.
|
22 |
|
23 |
model_name = os.getenv("MODEL_NAME") or "microsoft/Phi-3.5-mini-instruct"
|
24 |
num_shots = int(os.getenv("NUM_SHOTS", 10))
|
25 |
data_path = os.getenv("DATA_PATH")
|
|
|
|
|
|
|
26 |
|
27 |
comet = evaluate.load("comet", config_name="Unbabel/wmt22-cometkiwi-da", gpus=1)
|
28 |
meteor = evaluate.load("meteor")
|
@@ -59,7 +63,7 @@ def calc_perf_scores(prediction, source, reference, debug=False):
|
|
59 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
60 |
"""
|
61 |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
62 |
-
client = InferenceClient(model_name)
|
63 |
|
64 |
datasets = load_translation_dataset(data_path)
|
65 |
print_row_details(datasets["test"].to_pandas())
|
|
|
2 |
import sys
|
3 |
import evaluate
|
4 |
import gradio as gr
|
5 |
+
from huggingface_hub import InferenceClient, login
|
6 |
from dotenv import find_dotenv, load_dotenv
|
7 |
+
from huggingface_hub import login
|
8 |
|
9 |
found_dotenv = find_dotenv(".env")
|
10 |
|
|
|
19 |
|
20 |
from llm_toolkit.llm_utils import *
|
21 |
from llm_toolkit.translation_utils import *
|
22 |
+
from eval_modules.calc_repetitions_v2e import detect_repetitions
|
23 |
|
24 |
model_name = os.getenv("MODEL_NAME") or "microsoft/Phi-3.5-mini-instruct"
|
25 |
num_shots = int(os.getenv("NUM_SHOTS", 10))
|
26 |
data_path = os.getenv("DATA_PATH")
|
27 |
+
hf_token = os.getenv("HF_TOKEN")
|
28 |
+
|
29 |
+
login(token=hf_token, add_to_git_credential=True)
|
30 |
|
31 |
comet = evaluate.load("comet", config_name="Unbabel/wmt22-cometkiwi-da", gpus=1)
|
32 |
meteor = evaluate.load("meteor")
|
|
|
63 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
64 |
"""
|
65 |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
66 |
+
client = InferenceClient(model_name, token=hf_token)
|
67 |
|
68 |
datasets = load_translation_dataset(data_path)
|
69 |
print_row_details(datasets["test"].to_pandas())
|
eval_modules/calc_repetitions_v2d.py
DELETED
@@ -1,1281 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import re
|
3 |
-
import math
|
4 |
-
import pandas as pd
|
5 |
-
import numpy as np
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
import matplotlib.ticker as mtick
|
8 |
-
import seaborn as sns
|
9 |
-
import nltk
|
10 |
-
import evaluate
|
11 |
-
import traceback
|
12 |
-
|
13 |
-
bert_score = evaluate.load("bertscore")
|
14 |
-
meteor = evaluate.load("meteor")
|
15 |
-
|
16 |
-
print(f"loading: {__file__}")
|
17 |
-
|
18 |
-
# pattern_non_word_char_repetition = re.compile(r"\s{5,}")
|
19 |
-
# pattern_text_repetitions = re.compile(r"(.{5}.*)\s*((\1)\s*)+", re.M | re.DOTALL)
|
20 |
-
|
21 |
-
# final version
|
22 |
-
pattern_non_word_char_repetition = re.compile(r"[\s\W]{5,}")
|
23 |
-
pattern_text_repetitions = re.compile(
|
24 |
-
r"(?P<repeat>.{5}.*?)(?:[\s\W]*(?P=repeat))+", re.M | re.DOTALL | re.IGNORECASE
|
25 |
-
)
|
26 |
-
# Explanation of the Regex Pattern:
|
27 |
-
# (?P<repeat>.{5}.*?): Captures any sequence of characters with minimal length of 5 and names this group repeat.
|
28 |
-
# .*?: Matches zero or more characters, non-greedily (as few as possible).
|
29 |
-
# (?:[\s\W]+(?P=repeat))+: A non-capturing group that matches one or more repetitions of:
|
30 |
-
# [\s\W]+: One or more whitespace or non-word characters (spaces, punctuation, etc.).
|
31 |
-
# (?P=repeat): A backreference to the named group repeat.
|
32 |
-
|
33 |
-
|
34 |
-
def del_non_word_char_repetition(text, debug=False):
|
35 |
-
count = 0
|
36 |
-
|
37 |
-
if isinstance(text, str):
|
38 |
-
if debug:
|
39 |
-
print("----detect non-word characters repetition----")
|
40 |
-
count = len(text)
|
41 |
-
text = pattern_non_word_char_repetition.sub("\t", text)
|
42 |
-
count -= len(text)
|
43 |
-
if debug and count:
|
44 |
-
print(f"removed non-word characters repetition: {count}")
|
45 |
-
return text, count
|
46 |
-
|
47 |
-
|
48 |
-
# final version for repetition detection
|
49 |
-
def detect_text_repetitions(text, debug=False):
|
50 |
-
count = 0
|
51 |
-
|
52 |
-
if isinstance(text, str):
|
53 |
-
if debug:
|
54 |
-
print("----detect text repetitions----")
|
55 |
-
matches = pattern_text_repetitions.finditer(text)
|
56 |
-
for match in matches:
|
57 |
-
if debug:
|
58 |
-
print(match)
|
59 |
-
for groupNum in range(0, len(match.groups())):
|
60 |
-
groupNum = groupNum + 1
|
61 |
-
print(
|
62 |
-
"Group {groupNum} found at {start}-{end}: `{group}`".format(
|
63 |
-
groupNum=groupNum,
|
64 |
-
start=match.start(groupNum),
|
65 |
-
end=match.end(groupNum),
|
66 |
-
group=match.group(groupNum),
|
67 |
-
)
|
68 |
-
)
|
69 |
-
|
70 |
-
start, end = match.span()
|
71 |
-
count += end - start - len(match.group(1))
|
72 |
-
|
73 |
-
return count
|
74 |
-
|
75 |
-
|
76 |
-
def detect_repetitions(text, debug=False):
|
77 |
-
text, count_non_word_char_repetition = del_non_word_char_repetition(
|
78 |
-
text, debug=debug
|
79 |
-
)
|
80 |
-
count_text_repetitions = detect_text_repetitions(text, debug=debug)
|
81 |
-
total_repetitions = count_non_word_char_repetition + count_text_repetitions
|
82 |
-
|
83 |
-
result = (count_non_word_char_repetition, count_text_repetitions, total_repetitions)
|
84 |
-
|
85 |
-
if debug:
|
86 |
-
print(result)
|
87 |
-
return result
|
88 |
-
|
89 |
-
|
90 |
-
def detect_scores(text, debug=False):
|
91 |
-
newline_score, repetition_score, total_repetitions = detect_repetitions(
|
92 |
-
text, debug=debug
|
93 |
-
)
|
94 |
-
return pd.Series([newline_score, repetition_score, total_repetitions])
|
95 |
-
|
96 |
-
|
97 |
-
def load_with_newline_and_repetition_scores(result_file, force_recalculate=False):
|
98 |
-
print(f"loading result file: {result_file}")
|
99 |
-
df = pd.read_csv(result_file, comment="#", on_bad_lines="warn")
|
100 |
-
|
101 |
-
if (
|
102 |
-
force_recalculate
|
103 |
-
or "newline_score" not in df.columns
|
104 |
-
or "repetition_score" not in df.columns
|
105 |
-
or "total_repetitions" not in df.columns
|
106 |
-
or "nrr" not in df.columns
|
107 |
-
or "rr" not in df.columns
|
108 |
-
):
|
109 |
-
if (
|
110 |
-
force_recalculate
|
111 |
-
or "newline_score" not in df.columns
|
112 |
-
or "repetition_score" not in df.columns
|
113 |
-
or "total_repetitions" not in df.columns
|
114 |
-
):
|
115 |
-
df[["newline_score", "repetition_score", "total_repetitions"]] = df[
|
116 |
-
"answer"
|
117 |
-
].apply(detect_scores)
|
118 |
-
|
119 |
-
df["answer_len"] = df["answer"].apply(
|
120 |
-
lambda x: len(x) if isinstance(x, str) else 0
|
121 |
-
)
|
122 |
-
|
123 |
-
df["nrr"] = df.apply(
|
124 |
-
lambda x: (
|
125 |
-
1
|
126 |
-
if x["answer_len"] == 0
|
127 |
-
else 1 - (x["newline_score"] + x["repetition_score"]) / x["answer_len"]
|
128 |
-
),
|
129 |
-
axis=1,
|
130 |
-
)
|
131 |
-
|
132 |
-
df["rr"] = df["nrr"].apply(lambda x: 1 - x)
|
133 |
-
|
134 |
-
df.to_csv(result_file, index=False)
|
135 |
-
|
136 |
-
return df
|
137 |
-
|
138 |
-
|
139 |
-
def replace_last(source_string, old_string, new_string):
|
140 |
-
head, _sep, tail = source_string.rpartition(old_string)
|
141 |
-
return head + new_string + tail
|
142 |
-
|
143 |
-
|
144 |
-
def load_for_repetition_penalty(
|
145 |
-
csv_result_file, repetition_penalty, force_recalculate=False
|
146 |
-
):
|
147 |
-
result_file = replace_last(
|
148 |
-
csv_result_file, ".csv", f"_RP_{repetition_penalty:.3f}.csv"
|
149 |
-
)
|
150 |
-
return load_with_newline_and_repetition_scores(
|
151 |
-
result_file, force_recalculate=force_recalculate
|
152 |
-
)
|
153 |
-
|
154 |
-
|
155 |
-
def calc_adjusted_performance(f, r):
|
156 |
-
return f / math.log10(10 + r)
|
157 |
-
|
158 |
-
|
159 |
-
def calculate_adjusted_performance(row):
|
160 |
-
r = row["total_repetitions"]
|
161 |
-
adjusted_precision = calc_adjusted_performance(row["precision"], r)
|
162 |
-
adjusted_recall = calc_adjusted_performance(row["recall"], r)
|
163 |
-
return pd.Series([adjusted_precision, adjusted_recall])
|
164 |
-
|
165 |
-
|
166 |
-
def load_performance_df(csv_result_file, repetition_penalty):
|
167 |
-
result_file = replace_last(
|
168 |
-
csv_result_file, ".csv", f"_RP_{repetition_penalty:.3f}-t2_evaluated.json"
|
169 |
-
)
|
170 |
-
result_file = result_file.replace("/results/", "/eval/")
|
171 |
-
print(f"loading json file: {result_file}")
|
172 |
-
df = pd.read_json(result_file)
|
173 |
-
|
174 |
-
return df
|
175 |
-
|
176 |
-
|
177 |
-
def calculate_performance_score(
|
178 |
-
csv_result_file, repetition_penalty, force_recalculate=False
|
179 |
-
):
|
180 |
-
result_file = replace_last(
|
181 |
-
csv_result_file, ".csv", f"_rpp_{repetition_penalty:.2f}.csv"
|
182 |
-
)
|
183 |
-
|
184 |
-
if os.path.exists(result_file):
|
185 |
-
print(f"loading result file: {result_file}")
|
186 |
-
df = load_with_newline_and_repetition_scores(
|
187 |
-
result_file, force_recalculate=force_recalculate
|
188 |
-
)
|
189 |
-
else:
|
190 |
-
print(f"re-creating result file: {result_file}")
|
191 |
-
df = pd.DataFrame()
|
192 |
-
force_recalculate = True
|
193 |
-
|
194 |
-
if force_recalculate or "f2" in df.columns or "f1" not in df.columns:
|
195 |
-
try:
|
196 |
-
perf_df = load_performance_df(csv_result_file, repetition_penalty)
|
197 |
-
df.drop(
|
198 |
-
columns=[
|
199 |
-
"precision",
|
200 |
-
"recall",
|
201 |
-
"f1",
|
202 |
-
"f2",
|
203 |
-
"entities_in_answer",
|
204 |
-
"entities_in_question",
|
205 |
-
"word_count",
|
206 |
-
],
|
207 |
-
errors="ignore",
|
208 |
-
inplace=True,
|
209 |
-
)
|
210 |
-
|
211 |
-
df["id"] = perf_df["id"]
|
212 |
-
df["question"] = perf_df["question"]
|
213 |
-
df["answer"] = perf_df["pred_answer"]
|
214 |
-
df["word_count"] = df["answer"].apply(
|
215 |
-
lambda x: len(nltk.word_tokenize(x)) if isinstance(x, str) else 0
|
216 |
-
)
|
217 |
-
df["ground_truth"] = perf_df["ground_truth"]
|
218 |
-
|
219 |
-
df["eval_gemini_1.0_pro"] = perf_df["eval_gemini_1.0_pro"]
|
220 |
-
df["precision"] = perf_df["score"].apply(lambda x: x[0])
|
221 |
-
df["recall"] = perf_df["score"].apply(lambda x: x[1])
|
222 |
-
df["f1"] = perf_df["score"].apply(lambda x: x[2])
|
223 |
-
except Exception as e:
|
224 |
-
print(f"\tignored error: {e}")
|
225 |
-
# traceback.print_exc()
|
226 |
-
|
227 |
-
df[["newline_score", "repetition_score", "total_repetitions"]] = df[
|
228 |
-
"answer"
|
229 |
-
].apply(detect_scores)
|
230 |
-
|
231 |
-
df[["adjusted_precision", "adjusted_recall"]] = df.apply(
|
232 |
-
calculate_adjusted_performance, axis=1
|
233 |
-
)
|
234 |
-
|
235 |
-
df.to_csv(result_file, index=False)
|
236 |
-
print(f"performance scores saved to result file: {result_file}")
|
237 |
-
|
238 |
-
# print(f"df len: {len(df)}")
|
239 |
-
|
240 |
-
return df
|
241 |
-
|
242 |
-
|
243 |
-
def adjust_perf_scores_with_repetition_penalty(result, precision, recall):
|
244 |
-
newline_score = [
|
245 |
-
df["newline_score"].mean() for df in result["df_list_repetition_penalty"]
|
246 |
-
]
|
247 |
-
|
248 |
-
repetition_score = [
|
249 |
-
df["repetition_score"].mean() for df in result["df_list_repetition_penalty"]
|
250 |
-
]
|
251 |
-
|
252 |
-
precision = [
|
253 |
-
f / math.log10(10 + n + r)
|
254 |
-
for f, n, r in zip(precision, newline_score, repetition_score)
|
255 |
-
]
|
256 |
-
recall = [
|
257 |
-
f / math.log10(10 + n + r)
|
258 |
-
for f, n, r in zip(recall, newline_score, repetition_score)
|
259 |
-
]
|
260 |
-
|
261 |
-
return precision, recall
|
262 |
-
|
263 |
-
|
264 |
-
def plot_performance_scores(
|
265 |
-
result,
|
266 |
-
models=None,
|
267 |
-
title="Performance",
|
268 |
-
):
|
269 |
-
if models is None:
|
270 |
-
models = result.keys()
|
271 |
-
for model in models:
|
272 |
-
print(f"model: {model}")
|
273 |
-
df = result[model]["df_overall"]
|
274 |
-
|
275 |
-
# Calculate the statistics
|
276 |
-
precision = [
|
277 |
-
df["precision"].mean() for df in result[model]["df_list_repetition_penalty"]
|
278 |
-
]
|
279 |
-
recall = [
|
280 |
-
df["recall"].mean() for df in result[model]["df_list_repetition_penalty"]
|
281 |
-
]
|
282 |
-
f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
|
283 |
-
best_f1 = max(f1)
|
284 |
-
best_f1_index = f1.index(best_f1)
|
285 |
-
|
286 |
-
precision, recall = adjust_perf_scores_with_repetition_penalty(
|
287 |
-
result[model], precision, recall
|
288 |
-
)
|
289 |
-
afrp = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
|
290 |
-
|
291 |
-
# f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]]
|
292 |
-
best_afrp = max(afrp)
|
293 |
-
best_afrp_index = afrp.index(best_afrp)
|
294 |
-
|
295 |
-
adjusted_precision = [
|
296 |
-
df["adjusted_precision"].mean()
|
297 |
-
for df in result[model]["df_list_repetition_penalty"]
|
298 |
-
]
|
299 |
-
adjusted_recall = [
|
300 |
-
df["adjusted_recall"].mean()
|
301 |
-
for df in result[model]["df_list_repetition_penalty"]
|
302 |
-
]
|
303 |
-
afrp2 = [
|
304 |
-
2 * (p * r) / (p + r) for p, r in zip(adjusted_precision, adjusted_recall)
|
305 |
-
]
|
306 |
-
best_afrp2 = max(afrp2)
|
307 |
-
best_afrp2_index = afrp2.index(best_afrp2)
|
308 |
-
|
309 |
-
repetition_penalties = list(df["repetition_penalty"])
|
310 |
-
|
311 |
-
# line plot for precision, recall, f1
|
312 |
-
plt.figure(figsize=(10, 6))
|
313 |
-
|
314 |
-
plt.axvspan(
|
315 |
-
repetition_penalties[best_f1_index] - 0.01,
|
316 |
-
repetition_penalties[best_f1_index] + 0.01,
|
317 |
-
alpha=0.5,
|
318 |
-
edgecolor="none",
|
319 |
-
facecolor="blue",
|
320 |
-
)
|
321 |
-
|
322 |
-
# plt.axvspan(
|
323 |
-
# repetition_penalties[best_afrp2_index] - 0.01,
|
324 |
-
# repetition_penalties[best_afrp2_index] + 0.01,
|
325 |
-
# alpha=0.5,
|
326 |
-
# edgecolor="none",
|
327 |
-
# facecolor="green",
|
328 |
-
# )
|
329 |
-
|
330 |
-
plt.axvspan(
|
331 |
-
repetition_penalties[best_afrp_index] - 0.01,
|
332 |
-
repetition_penalties[best_afrp_index] + 0.01,
|
333 |
-
alpha=0.5,
|
334 |
-
edgecolor="none",
|
335 |
-
facecolor="orange",
|
336 |
-
)
|
337 |
-
|
338 |
-
plt.plot(repetition_penalties, f1, label="F1", marker="D", color="blue")
|
339 |
-
# plt.plot(
|
340 |
-
# repetition_penalties,
|
341 |
-
# afrp2,
|
342 |
-
# label="Per-question RAP - F1",
|
343 |
-
# marker="s",
|
344 |
-
# color="green",
|
345 |
-
# )
|
346 |
-
plt.plot(
|
347 |
-
repetition_penalties,
|
348 |
-
afrp,
|
349 |
-
label="RAP - F1",
|
350 |
-
marker="o",
|
351 |
-
color="orange",
|
352 |
-
)
|
353 |
-
plt.xlabel("Repetition Penalties")
|
354 |
-
plt.ylabel("Score")
|
355 |
-
# plt.xlim(0.99, 1.31)
|
356 |
-
# y in percentage
|
357 |
-
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
|
358 |
-
plt.title(f"{model} {title}")
|
359 |
-
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
|
360 |
-
|
361 |
-
plt.show()
|
362 |
-
|
363 |
-
|
364 |
-
def plot_best_afrp(
|
365 |
-
result,
|
366 |
-
models=None,
|
367 |
-
title="Models with Best RAP - F1",
|
368 |
-
ref_result=None,
|
369 |
-
):
|
370 |
-
# Initialize lists to store the statistics
|
371 |
-
model_names = []
|
372 |
-
best_f1 = []
|
373 |
-
best_afrp = []
|
374 |
-
best_repetition_penalty = []
|
375 |
-
best_mtr = []
|
376 |
-
|
377 |
-
if models is None:
|
378 |
-
models = result.keys()
|
379 |
-
for model in models:
|
380 |
-
print(f"model: {model}")
|
381 |
-
df = result[model]["df_overall"]
|
382 |
-
|
383 |
-
# Calculate the statistics
|
384 |
-
precision = [
|
385 |
-
df["precision"].mean() for df in result[model]["df_list_repetition_penalty"]
|
386 |
-
]
|
387 |
-
recall = [
|
388 |
-
df["recall"].mean() for df in result[model]["df_list_repetition_penalty"]
|
389 |
-
]
|
390 |
-
# f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]]
|
391 |
-
f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
|
392 |
-
|
393 |
-
newline_score = [
|
394 |
-
df["newline_score"].mean()
|
395 |
-
for df in result[model]["df_list_repetition_penalty"]
|
396 |
-
]
|
397 |
-
# print(f"newline_score: {newline_score}")
|
398 |
-
|
399 |
-
repetition_score = [
|
400 |
-
df["repetition_score"].mean()
|
401 |
-
for df in result[model]["df_list_repetition_penalty"]
|
402 |
-
]
|
403 |
-
# print(f"repetition_score: {repetition_score}")
|
404 |
-
|
405 |
-
afrp = [
|
406 |
-
f / math.log10(10 + n + r)
|
407 |
-
for f, n, r in zip(f1, newline_score, repetition_score)
|
408 |
-
]
|
409 |
-
|
410 |
-
best_afrp.append(max(afrp))
|
411 |
-
best_afrp_index = afrp.index(best_afrp[-1])
|
412 |
-
best_repetition_penalty.append(df["repetition_penalty"][best_afrp_index])
|
413 |
-
|
414 |
-
best_f1.append(f1[best_afrp_index])
|
415 |
-
best_mtr.append(
|
416 |
-
newline_score[best_afrp_index] + repetition_score[best_afrp_index]
|
417 |
-
)
|
418 |
-
|
419 |
-
# print(
|
420 |
-
# f"best repetition penalty: {best_repetition_penalty[-1]}, best afrp: {best_afrp[-1]}, f1: {best_f1[-1]}"
|
421 |
-
# )
|
422 |
-
|
423 |
-
df = result[model]["df_list_repetition_penalty"][best_afrp_index]
|
424 |
-
|
425 |
-
model_names.append(
|
426 |
-
f"{model} (RP={best_repetition_penalty[-1]})"
|
427 |
-
) # Add the model name to the list
|
428 |
-
|
429 |
-
if ref_result is not None:
|
430 |
-
print("ref_result:", ref_result)
|
431 |
-
for model in ref_result.keys():
|
432 |
-
model_names.append(model)
|
433 |
-
df = pd.read_csv(ref_result[model])
|
434 |
-
# df = df[df["id"].isin(wikidata_df["id"])]
|
435 |
-
|
436 |
-
p = df["precision"].mean()
|
437 |
-
r = df["recall"].mean()
|
438 |
-
|
439 |
-
f1 = 2 * p * r / (p + r) if p + r > 0 else 0
|
440 |
-
best_f1.append(f1)
|
441 |
-
best_afrp.append(f1)
|
442 |
-
best_mtr.append(0)
|
443 |
-
|
444 |
-
print("model_names:", model_names)
|
445 |
-
# print("best_f1:", best_f1)
|
446 |
-
# print("best_afrp:", best_afrp)
|
447 |
-
|
448 |
-
# Create a DataFrame with the statistics
|
449 |
-
data = pd.DataFrame(
|
450 |
-
{
|
451 |
-
"Model": model_names,
|
452 |
-
"RAP - F1": best_afrp,
|
453 |
-
"F1": best_f1,
|
454 |
-
}
|
455 |
-
)
|
456 |
-
|
457 |
-
# Melt the DataFrame to a long format
|
458 |
-
data_melted = data.melt(id_vars="Model", var_name="Metric", value_name="Score")
|
459 |
-
|
460 |
-
# Pivot the DataFrame to a wide format
|
461 |
-
data_pivoted = data_melted.pivot(index="Metric", columns="Model", values="Score")
|
462 |
-
|
463 |
-
# make sure the columns are following the order of the models
|
464 |
-
data_pivoted = data_pivoted[model_names]
|
465 |
-
|
466 |
-
# make sure three groups in the order of precision, recall, f1
|
467 |
-
data_pivoted = data_pivoted.reindex(["RAP - F1", "F1"])
|
468 |
-
|
469 |
-
# Plot the statistics
|
470 |
-
plt.figure(figsize=(15, 6))
|
471 |
-
ax = data_pivoted.plot(kind="bar", ax=plt.gca(), width=0.9)
|
472 |
-
plt.title(title)
|
473 |
-
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
|
474 |
-
|
475 |
-
# Set the rotation of the x-axis labels to 0 degrees
|
476 |
-
plt.xticks(rotation=0)
|
477 |
-
|
478 |
-
# Format the y-axis to display as percentage
|
479 |
-
ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
|
480 |
-
|
481 |
-
# get the max value of the y-axis
|
482 |
-
a1 = max(best_afrp)
|
483 |
-
a2 = max(best_f1)
|
484 |
-
|
485 |
-
max_value = max([a1, a2]) * 1.12
|
486 |
-
print("max_value:", max_value)
|
487 |
-
|
488 |
-
# Set the y-axis limit up to 70%
|
489 |
-
ax.set_ylim(0, max_value)
|
490 |
-
|
491 |
-
# Add the values above each bar
|
492 |
-
for p in ax.patches:
|
493 |
-
ax.annotate(
|
494 |
-
f"{p.get_height() * 100:.1f}",
|
495 |
-
(p.get_x() + p.get_width() / 2.0, p.get_height()),
|
496 |
-
ha="center",
|
497 |
-
va="bottom",
|
498 |
-
xytext=(0, 10),
|
499 |
-
textcoords="offset points",
|
500 |
-
rotation=90,
|
501 |
-
)
|
502 |
-
|
503 |
-
plt.show()
|
504 |
-
return data_pivoted, best_mtr
|
505 |
-
|
506 |
-
|
507 |
-
def plot_best_performance(
|
508 |
-
result,
|
509 |
-
models=None,
|
510 |
-
title="Models with Best F1 Score",
|
511 |
-
adjusted_f1=False,
|
512 |
-
ref_result=None,
|
513 |
-
):
|
514 |
-
# Initialize lists to store the statistics
|
515 |
-
model_names = []
|
516 |
-
best_precision = []
|
517 |
-
best_recall = []
|
518 |
-
best_f1 = []
|
519 |
-
best_repetition_penalty = []
|
520 |
-
best_mtr = []
|
521 |
-
|
522 |
-
if models is None:
|
523 |
-
models = result.keys()
|
524 |
-
for model in models:
|
525 |
-
print(f"model: {model}")
|
526 |
-
df = result[model]["df_overall"]
|
527 |
-
|
528 |
-
# Calculate the statistics
|
529 |
-
precision = [
|
530 |
-
df["precision"].mean() for df in result[model]["df_list_repetition_penalty"]
|
531 |
-
]
|
532 |
-
recall = [
|
533 |
-
df["recall"].mean() for df in result[model]["df_list_repetition_penalty"]
|
534 |
-
]
|
535 |
-
newline_score = [
|
536 |
-
df["newline_score"].mean()
|
537 |
-
for df in result[model]["df_list_repetition_penalty"]
|
538 |
-
]
|
539 |
-
|
540 |
-
repetition_score = [
|
541 |
-
df["repetition_score"].mean()
|
542 |
-
for df in result[model]["df_list_repetition_penalty"]
|
543 |
-
]
|
544 |
-
|
545 |
-
if adjusted_f1:
|
546 |
-
precision, recall = adjust_perf_scores_with_repetition_penalty(
|
547 |
-
result[model], precision, recall
|
548 |
-
)
|
549 |
-
|
550 |
-
# f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]]
|
551 |
-
f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
|
552 |
-
|
553 |
-
best_f1.append(max(f1))
|
554 |
-
best_f1_index = f1.index(best_f1[-1])
|
555 |
-
best_repetition_penalty.append(df["repetition_penalty"][best_f1_index])
|
556 |
-
|
557 |
-
best_precision.append(precision[best_f1_index])
|
558 |
-
best_recall.append(recall[best_f1_index])
|
559 |
-
best_mtr.append(newline_score[best_f1_index] + repetition_score[best_f1_index])
|
560 |
-
|
561 |
-
print(
|
562 |
-
f"best repetition penalty: {best_repetition_penalty[-1]}, best f1: {best_f1[-1]}, precision: {best_precision[-1]}, recall: {best_recall[-1]}"
|
563 |
-
)
|
564 |
-
|
565 |
-
df = result[model]["df_list_repetition_penalty"][best_f1_index]
|
566 |
-
|
567 |
-
model_names.append(
|
568 |
-
f"{model} (RP={best_repetition_penalty[-1]})"
|
569 |
-
) # Add the model name to the list
|
570 |
-
|
571 |
-
# print sum for columns: newline_score, repetition_score
|
572 |
-
print(
|
573 |
-
f"newline_score: {df['newline_score'].sum()}, repetition_score: {df['repetition_score'].sum()}"
|
574 |
-
)
|
575 |
-
|
576 |
-
if ref_result is not None:
|
577 |
-
print("ref_result:", ref_result)
|
578 |
-
for model in ref_result.keys():
|
579 |
-
model_names.append(model)
|
580 |
-
df = pd.read_csv(ref_result[model])
|
581 |
-
# df = df[df["id"].isin(wikidata_df["id"])]
|
582 |
-
|
583 |
-
best_precision.append(df["precision"].mean())
|
584 |
-
best_recall.append(df["recall"].mean())
|
585 |
-
f1 = (
|
586 |
-
2
|
587 |
-
* (best_precision[-1] * best_recall[-1])
|
588 |
-
/ (best_precision[-1] + best_recall[-1])
|
589 |
-
)
|
590 |
-
# best_f1.append(df["f1"].mean())
|
591 |
-
best_f1.append(f1)
|
592 |
-
best_mtr.append(0)
|
593 |
-
|
594 |
-
# Create a DataFrame with the statistics
|
595 |
-
data = (
|
596 |
-
pd.DataFrame(
|
597 |
-
{
|
598 |
-
"Model": model_names,
|
599 |
-
"Adjusted Precision with RP": best_precision,
|
600 |
-
"Adjusted Recall with RP": best_recall,
|
601 |
-
"Adjusted F1 with RP": best_f1,
|
602 |
-
}
|
603 |
-
)
|
604 |
-
if adjusted_f1
|
605 |
-
else pd.DataFrame(
|
606 |
-
{
|
607 |
-
"Model": model_names,
|
608 |
-
"Precision": best_precision,
|
609 |
-
"Recall": best_recall,
|
610 |
-
"F1": best_f1,
|
611 |
-
}
|
612 |
-
)
|
613 |
-
)
|
614 |
-
columns = list(data.columns)
|
615 |
-
|
616 |
-
# Melt the DataFrame to a long format
|
617 |
-
data_melted = data.melt(id_vars="Model", var_name="Metric", value_name="Score")
|
618 |
-
|
619 |
-
# Pivot the DataFrame to a wide format
|
620 |
-
data_pivoted = data_melted.pivot(index="Metric", columns="Model", values="Score")
|
621 |
-
|
622 |
-
# make sure the columns are following the order of the models
|
623 |
-
data_pivoted = data_pivoted[model_names]
|
624 |
-
|
625 |
-
# make sure three groups in the order of precision, recall, f1
|
626 |
-
data_pivoted = data_pivoted.reindex(columns[1:])
|
627 |
-
|
628 |
-
# Plot the statistics
|
629 |
-
plt.figure(figsize=(10, 6))
|
630 |
-
ax = data_pivoted.plot(kind="bar", ax=plt.gca(), width=0.9)
|
631 |
-
plt.title(title)
|
632 |
-
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
|
633 |
-
|
634 |
-
# Set the rotation of the x-axis labels to 0 degrees
|
635 |
-
plt.xticks(rotation=0)
|
636 |
-
|
637 |
-
# Format the y-axis to display as percentage
|
638 |
-
ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
|
639 |
-
|
640 |
-
# get the max value of the y-axis
|
641 |
-
a1 = max(best_precision)
|
642 |
-
a2 = max(best_recall)
|
643 |
-
a3 = max(best_f1)
|
644 |
-
|
645 |
-
max_value = max([a1, a2, a3]) * 1.12
|
646 |
-
print("max_value:", max_value)
|
647 |
-
|
648 |
-
# Set the y-axis limit up to 70%
|
649 |
-
ax.set_ylim(0, max_value)
|
650 |
-
|
651 |
-
# Add the values above each bar
|
652 |
-
for p in ax.patches:
|
653 |
-
ax.annotate(
|
654 |
-
f"{p.get_height() * 100:.1f}",
|
655 |
-
(p.get_x() + p.get_width() / 2.0, p.get_height()),
|
656 |
-
ha="center",
|
657 |
-
va="bottom",
|
658 |
-
xytext=(0, 10),
|
659 |
-
textcoords="offset points",
|
660 |
-
rotation=90,
|
661 |
-
)
|
662 |
-
|
663 |
-
plt.show()
|
664 |
-
return data_pivoted, best_mtr
|
665 |
-
|
666 |
-
|
667 |
-
def plot_best_performance_ms_macro(
|
668 |
-
result,
|
669 |
-
models=None,
|
670 |
-
title="Models with Best RAP - Performance",
|
671 |
-
ref_result=None,
|
672 |
-
skip_generic_prompt=False,
|
673 |
-
include_adjusted_performance=True,
|
674 |
-
):
|
675 |
-
# Initialize lists to store the statistics
|
676 |
-
model_names = []
|
677 |
-
best_f1 = []
|
678 |
-
best_afrp = []
|
679 |
-
best_repetition_penalty = []
|
680 |
-
best_bleu1 = []
|
681 |
-
best_rougeL = []
|
682 |
-
best_mtr = []
|
683 |
-
|
684 |
-
if models is None:
|
685 |
-
models = result.keys()
|
686 |
-
for model in models:
|
687 |
-
if skip_generic_prompt and "generic prompt" in model:
|
688 |
-
continue
|
689 |
-
print(f"model: {model}")
|
690 |
-
df = result[model]["df_overall"]
|
691 |
-
|
692 |
-
# Calculate the statistics
|
693 |
-
bleu1 = [x for x in df["bleu1"]]
|
694 |
-
rougeL = [x for x in df["rougeL"]]
|
695 |
-
f1 = [2 * (p * r) / (p + r) for p, r in zip(bleu1, rougeL)]
|
696 |
-
|
697 |
-
newline_score = [
|
698 |
-
df["newline_score"].mean()
|
699 |
-
for df in result[model]["df_list_repetition_penalty"]
|
700 |
-
]
|
701 |
-
# print(f"newline_score: {newline_score}")
|
702 |
-
|
703 |
-
repetition_score = [
|
704 |
-
df["repetition_score"].mean()
|
705 |
-
for df in result[model]["df_list_repetition_penalty"]
|
706 |
-
]
|
707 |
-
# print(f"repetition_score: {repetition_score}")
|
708 |
-
|
709 |
-
afrp = [
|
710 |
-
f / math.log10(10 + n + r)
|
711 |
-
for f, n, r in zip(f1, newline_score, repetition_score)
|
712 |
-
]
|
713 |
-
|
714 |
-
best_afrp.append(max(afrp if include_adjusted_performance else f1))
|
715 |
-
best_afrp_index = (
|
716 |
-
afrp.index(best_afrp[-1])
|
717 |
-
if include_adjusted_performance
|
718 |
-
else f1.index(best_afrp[-1])
|
719 |
-
)
|
720 |
-
best_repetition_penalty.append(df["repetition_penalty"][best_afrp_index])
|
721 |
-
|
722 |
-
best_f1.append(f1[best_afrp_index])
|
723 |
-
best_bleu1.append(bleu1[best_afrp_index])
|
724 |
-
best_rougeL.append(rougeL[best_afrp_index])
|
725 |
-
best_mtr.append(
|
726 |
-
newline_score[best_afrp_index] + repetition_score[best_afrp_index]
|
727 |
-
)
|
728 |
-
|
729 |
-
# print(
|
730 |
-
# f"best repetition penalty: {best_repetition_penalty[-1]}, best afrp: {best_afrp[-1]}, f1: {best_f1[-1]}"
|
731 |
-
# )
|
732 |
-
|
733 |
-
df = result[model]["df_list_repetition_penalty"][best_afrp_index]
|
734 |
-
|
735 |
-
model_names.append(
|
736 |
-
f"{model} (RP={best_repetition_penalty[-1]})"
|
737 |
-
) # Add the model name to the list
|
738 |
-
|
739 |
-
if ref_result is not None:
|
740 |
-
print("ref_result:", ref_result)
|
741 |
-
for model in ref_result.keys():
|
742 |
-
model_names.append(model)
|
743 |
-
df = pd.read_csv(ref_result[model], comment="#", on_bad_lines="warn")
|
744 |
-
# df = df[df["id"].isin(wikidata_df["id"])]
|
745 |
-
|
746 |
-
p = df["bleu1"][0]
|
747 |
-
best_bleu1.append(p)
|
748 |
-
|
749 |
-
r = df["rougeL"][0]
|
750 |
-
best_rougeL.append(r)
|
751 |
-
|
752 |
-
f1 = 2 * p * r / (p + r) if p + r > 0 else 0
|
753 |
-
best_f1.append(f1)
|
754 |
-
best_afrp.append(f1)
|
755 |
-
best_mtr.append(0)
|
756 |
-
|
757 |
-
# print("model_names:", model_names)
|
758 |
-
# print("best_f1:", best_f1)
|
759 |
-
# print("best_afrp:", best_afrp)
|
760 |
-
|
761 |
-
# Create a DataFrame with the statistics
|
762 |
-
data = (
|
763 |
-
pd.DataFrame(
|
764 |
-
{
|
765 |
-
"Model": model_names,
|
766 |
-
"RAP - Perf Score": best_afrp,
|
767 |
-
"Overall Perf Score": best_f1,
|
768 |
-
}
|
769 |
-
)
|
770 |
-
if include_adjusted_performance
|
771 |
-
else pd.DataFrame(
|
772 |
-
{
|
773 |
-
"Model": model_names,
|
774 |
-
"Bleu-1": best_bleu1,
|
775 |
-
"Rouge-L": best_rougeL,
|
776 |
-
"Overall Perf Score": best_f1,
|
777 |
-
}
|
778 |
-
)
|
779 |
-
)
|
780 |
-
|
781 |
-
# Melt the DataFrame to a long format
|
782 |
-
data_melted = data.melt(id_vars="Model", var_name="Metric", value_name="Score")
|
783 |
-
|
784 |
-
# Pivot the DataFrame to a wide format
|
785 |
-
data_pivoted = data_melted.pivot(index="Metric", columns="Model", values="Score")
|
786 |
-
|
787 |
-
# make sure the columns are following the order of the models
|
788 |
-
data_pivoted = data_pivoted[model_names]
|
789 |
-
|
790 |
-
columns = list(data.columns)
|
791 |
-
data_pivoted = data_pivoted.reindex(columns[1:])
|
792 |
-
|
793 |
-
# Plot the statistics
|
794 |
-
plt.figure(figsize=(10, 6))
|
795 |
-
ax = data_pivoted.plot(kind="bar", ax=plt.gca(), width=0.9)
|
796 |
-
plt.title(title)
|
797 |
-
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
|
798 |
-
|
799 |
-
# Set the rotation of the x-axis labels to 0 degrees
|
800 |
-
plt.xticks(rotation=0)
|
801 |
-
|
802 |
-
# Format the y-axis to display as percentage
|
803 |
-
ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
|
804 |
-
|
805 |
-
# get the max value of the y-axis
|
806 |
-
a1 = max(best_afrp)
|
807 |
-
a2 = max(best_f1)
|
808 |
-
a3 = max(best_bleu1)
|
809 |
-
a4 = max(best_rougeL)
|
810 |
-
|
811 |
-
max_value = (
|
812 |
-
max([a1, a2] if include_adjusted_performance else [a1, a2, a3, a4]) * 1.12
|
813 |
-
)
|
814 |
-
print("max_value:", max_value)
|
815 |
-
|
816 |
-
# Set the y-axis limit up to 70%
|
817 |
-
ax.set_ylim(0, max_value)
|
818 |
-
|
819 |
-
# Add the values above each bar
|
820 |
-
for p in ax.patches:
|
821 |
-
ax.annotate(
|
822 |
-
f"{p.get_height() * 100:.1f}",
|
823 |
-
(p.get_x() + p.get_width() / 2.0, p.get_height()),
|
824 |
-
ha="center",
|
825 |
-
va="bottom",
|
826 |
-
xytext=(0, 10),
|
827 |
-
textcoords="offset points",
|
828 |
-
rotation=90,
|
829 |
-
)
|
830 |
-
|
831 |
-
plt.show()
|
832 |
-
return data_pivoted, best_mtr
|
833 |
-
|
834 |
-
|
835 |
-
all_open_source_models = [
|
836 |
-
"gemma-1.1-2b-it",
|
837 |
-
"Phi-3-mini-128k-instruct",
|
838 |
-
"gemma-1.1-7b-it",
|
839 |
-
"Llama-2-7b-chat-hf",
|
840 |
-
"Mistral-7B-Instruct-v0.2",
|
841 |
-
"Meta-Llama-3-8B-Instruct",
|
842 |
-
"Llama-2-13b-chat-hf",
|
843 |
-
"Llama-2-70b-chat-hf",
|
844 |
-
"Meta-Llama-3-70B-Instruct",
|
845 |
-
]
|
846 |
-
|
847 |
-
|
848 |
-
def load_for_repetition_penalty_ms_macro(
|
849 |
-
csv_result_file, repetition_penalty, force_recalculate=False
|
850 |
-
):
|
851 |
-
result_file = replace_last(
|
852 |
-
csv_result_file, ".csv", f"_rpp_{repetition_penalty:.2f}.csv"
|
853 |
-
)
|
854 |
-
df = load_with_newline_and_repetition_scores(
|
855 |
-
result_file, force_recalculate=force_recalculate
|
856 |
-
)
|
857 |
-
|
858 |
-
return df
|
859 |
-
|
860 |
-
|
861 |
-
# MS MACRO
|
862 |
-
def plot_performance_scores_ms_macro(
|
863 |
-
result,
|
864 |
-
models=None,
|
865 |
-
title="Performance",
|
866 |
-
):
|
867 |
-
if models is None:
|
868 |
-
models = result.keys()
|
869 |
-
for model in models:
|
870 |
-
print(f"model: {model}")
|
871 |
-
df = result[model]["df_overall"]
|
872 |
-
# print(result[model]["df_list_repetition_penalty"][0].describe())
|
873 |
-
|
874 |
-
# Calculate the statistics
|
875 |
-
bleu1 = list(df["bleu1"])
|
876 |
-
rougeL = list(df["rougeL"])
|
877 |
-
f1 = [2 * (p * r) / (p + r) for p, r in zip(bleu1, rougeL)]
|
878 |
-
best_f1 = max(f1)
|
879 |
-
best_f1_index = f1.index(best_f1)
|
880 |
-
|
881 |
-
bleu1, rougeL = adjust_perf_scores_with_repetition_penalty(
|
882 |
-
result[model], bleu1, rougeL
|
883 |
-
)
|
884 |
-
afrp = [2 * (p * r) / (p + r) for p, r in zip(bleu1, rougeL)]
|
885 |
-
|
886 |
-
# f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]]
|
887 |
-
best_afrp = max(afrp)
|
888 |
-
best_afrp_index = afrp.index(best_afrp)
|
889 |
-
|
890 |
-
repetition_penalties = list(df["repetition_penalty"])
|
891 |
-
|
892 |
-
# line plot for precision, recall, f1
|
893 |
-
plt.figure(figsize=(10, 6))
|
894 |
-
|
895 |
-
plt.axvspan(
|
896 |
-
repetition_penalties[best_f1_index] - 0.01,
|
897 |
-
repetition_penalties[best_f1_index] + 0.01,
|
898 |
-
alpha=0.5,
|
899 |
-
edgecolor="none",
|
900 |
-
facecolor="blue",
|
901 |
-
)
|
902 |
-
|
903 |
-
plt.axvspan(
|
904 |
-
repetition_penalties[best_afrp_index] - 0.01,
|
905 |
-
repetition_penalties[best_afrp_index] + 0.01,
|
906 |
-
alpha=0.5,
|
907 |
-
edgecolor="none",
|
908 |
-
facecolor="orange",
|
909 |
-
)
|
910 |
-
|
911 |
-
plt.plot(
|
912 |
-
repetition_penalties,
|
913 |
-
f1,
|
914 |
-
label="Overall Perf Score",
|
915 |
-
marker="D",
|
916 |
-
color="blue",
|
917 |
-
)
|
918 |
-
plt.plot(
|
919 |
-
repetition_penalties,
|
920 |
-
afrp,
|
921 |
-
label="RAP - Perf Score",
|
922 |
-
marker="o",
|
923 |
-
color="orange",
|
924 |
-
)
|
925 |
-
|
926 |
-
plt.xlabel("Repetition Penalties")
|
927 |
-
plt.ylabel("Score")
|
928 |
-
# plt.xlim(0.99, 1.31)
|
929 |
-
# y in percentage
|
930 |
-
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
|
931 |
-
plt.title(f"{model} {title}")
|
932 |
-
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
|
933 |
-
|
934 |
-
plt.show()
|
935 |
-
|
936 |
-
|
937 |
-
def plot_repetition_factors(result, groups):
|
938 |
-
for group in groups:
|
939 |
-
# Plot the statistics
|
940 |
-
plt.figure(figsize=(10, 6))
|
941 |
-
|
942 |
-
max_value = 0
|
943 |
-
for model in result.keys():
|
944 |
-
if not group in model.lower():
|
945 |
-
continue
|
946 |
-
print(f"model: {model}")
|
947 |
-
df = result[model]["df_overall"]
|
948 |
-
repetition_panelties = [
|
949 |
-
repetition_penalty for repetition_penalty in df["repetition_penalty"]
|
950 |
-
]
|
951 |
-
|
952 |
-
mean_score = [
|
953 |
-
# math.log10(10 + df["total_repetitions"].mean())
|
954 |
-
df["total_repetitions"].mean()
|
955 |
-
for df in result[model]["df_list_repetition_penalty"]
|
956 |
-
]
|
957 |
-
|
958 |
-
sns.lineplot(x=repetition_panelties, y=mean_score, label=model)
|
959 |
-
|
960 |
-
new_max = max(mean_score)
|
961 |
-
if new_max > max_value:
|
962 |
-
max_value = new_max
|
963 |
-
|
964 |
-
max_value = max_value * 1.05
|
965 |
-
# if max_value < 1.5:
|
966 |
-
# max_value = 1.5
|
967 |
-
# set ylimit
|
968 |
-
plt.ylim(0, max_value)
|
969 |
-
|
970 |
-
# show grid
|
971 |
-
plt.grid(True)
|
972 |
-
plt.xlabel("Repetition Penalties")
|
973 |
-
plt.ylabel("Mean Total Repetitions")
|
974 |
-
plt.title("Mean Total Repetitions vs Repetition Penalties")
|
975 |
-
plt.legend()
|
976 |
-
|
977 |
-
plt.show()
|
978 |
-
|
979 |
-
|
980 |
-
def plot_repetition_factors_by_group(result, group_filter=None):
|
981 |
-
markers = ["D", "o", "s", "x"]
|
982 |
-
colors = ["blue", "orange", "green", "red"]
|
983 |
-
|
984 |
-
# Plot the statistics
|
985 |
-
plt.figure(figsize=(10, 6))
|
986 |
-
index = 0
|
987 |
-
max_value = 0
|
988 |
-
|
989 |
-
for model in result.keys():
|
990 |
-
if group_filter is not None and group_filter not in model:
|
991 |
-
continue
|
992 |
-
|
993 |
-
print(f"model: {model}")
|
994 |
-
|
995 |
-
df = result[model]["df_overall"]
|
996 |
-
repetition_panelties = [
|
997 |
-
repetition_penalty for repetition_penalty in df["repetition_penalty"]
|
998 |
-
]
|
999 |
-
|
1000 |
-
# Calculate the statistics
|
1001 |
-
mean_score = [
|
1002 |
-
# math.log10(10 + df["total_repetitions"].mean())
|
1003 |
-
df["total_repetitions"].mean()
|
1004 |
-
for df in result[model]["df_list_repetition_penalty"]
|
1005 |
-
]
|
1006 |
-
if len(mean_score) != len(repetition_panelties):
|
1007 |
-
print(
|
1008 |
-
f"model: {model} has different length of repetition penalties and mean score"
|
1009 |
-
)
|
1010 |
-
print("repetition_panelties:", len(repetition_panelties))
|
1011 |
-
print("mean_score:", len(mean_score))
|
1012 |
-
continue
|
1013 |
-
|
1014 |
-
new_max = max(mean_score)
|
1015 |
-
if new_max > max_value:
|
1016 |
-
max_value = new_max
|
1017 |
-
|
1018 |
-
sns.lineplot(
|
1019 |
-
x=repetition_panelties,
|
1020 |
-
y=mean_score,
|
1021 |
-
label=model,
|
1022 |
-
marker=markers[index],
|
1023 |
-
color=colors[index],
|
1024 |
-
)
|
1025 |
-
|
1026 |
-
index += 1
|
1027 |
-
|
1028 |
-
max_value = max_value * 1.05
|
1029 |
-
# if max_value < 1.5:
|
1030 |
-
# max_value = 1.5
|
1031 |
-
# set ylimit
|
1032 |
-
plt.ylim(0, max_value)
|
1033 |
-
max_value = 0
|
1034 |
-
|
1035 |
-
plt.xlabel("Repetition Penalties")
|
1036 |
-
plt.ylabel("Mean Total Repetitions")
|
1037 |
-
plt.title("Mean Total Repetitions vs Repetition Penalties")
|
1038 |
-
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
|
1039 |
-
|
1040 |
-
plt.show()
|
1041 |
-
|
1042 |
-
|
1043 |
-
ms_marco_csv_result_files = [
|
1044 |
-
"data/results_v2/gemma-1.1-2b-it(RAG - Generic Prompt)_mm.csv",
|
1045 |
-
"data/results_v2/gemma-1.1-2b-it(RAG - Chat Template)_mm.csv",
|
1046 |
-
"data/results_v2/gemma-1.1-2b-it(Non-RAG)_mm.csv",
|
1047 |
-
"data/results_v2/Phi-3-mini-128k-instruct(RAG - Generic Prompt)_mm.csv",
|
1048 |
-
"data/results_v2/Phi-3-mini-128k-instruct(RAG - Chat Template)_mm.csv",
|
1049 |
-
"data/results_v2/Phi-3-mini-128k-instruct(Non-RAG)_mm.csv",
|
1050 |
-
"data/results_v2/gemma-1.1-7b-it(RAG - Generic Prompt)_mm.csv",
|
1051 |
-
"data/results_v2/gemma-1.1-7b-it(RAG - Chat Template)_mm.csv",
|
1052 |
-
"data/results_v2/gemma-1.1-7b-it(Non-RAG)_mm.csv",
|
1053 |
-
"data/results_v2/Llama-2-7b-chat-hf(RAG - Generic Prompt)_mm.csv",
|
1054 |
-
"data/results_v2/Llama-2-7b-chat-hf(RAG - Chat Template)_mm.csv",
|
1055 |
-
"data/results_v2/Llama-2-7b-chat-hf(Non-RAG)_mm.csv",
|
1056 |
-
"data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Generic Prompt)_mm.csv",
|
1057 |
-
"data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Chat Template)_mm.csv",
|
1058 |
-
"data/results_v2/Mistral-7B-Instruct-v0.2(Non-RAG)_mm.csv",
|
1059 |
-
"data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Generic Prompt)_mm.csv",
|
1060 |
-
"data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Chat Template)_mm.csv",
|
1061 |
-
"data/results_v2/Meta-Llama-3-8B-Instruct(Non-RAG)_mm.csv",
|
1062 |
-
"data/results_v2/Llama-2-13b-chat-hf(RAG - Generic Prompt)_mm.csv",
|
1063 |
-
"data/results_v2/Llama-2-13b-chat-hf(RAG - Chat Template)_mm.csv",
|
1064 |
-
"data/results_v2/Llama-2-13b-chat-hf(Non-RAG)_mm.csv",
|
1065 |
-
"data/results_v2/Llama-2-70b-chat-hf(RAG - Generic Prompt)_mm.csv",
|
1066 |
-
"data/results_v2/Llama-2-70b-chat-hf(RAG - Chat Template)_mm.csv",
|
1067 |
-
"data/results_v2/Llama-2-70b-chat-hf(Non-RAG)_mm.csv",
|
1068 |
-
"data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Generic Prompt)_mm.csv",
|
1069 |
-
"data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Chat Template)_mm.csv",
|
1070 |
-
"data/results_v2/Meta-Llama-3-70B-Instruct(Non-RAG)_mm.csv",
|
1071 |
-
]
|
1072 |
-
|
1073 |
-
webqsp_csv_result_files = [
|
1074 |
-
"data/results_v2/gemma-1.1-2b-it(RAG - Generic Prompt)_wd.csv",
|
1075 |
-
"data/results_v2/gemma-1.1-2b-it(RAG - Chat Template)_wd.csv",
|
1076 |
-
"data/results_v2/gemma-1.1-2b-it(Non-RAG)_wd.csv",
|
1077 |
-
"data/results_v2/Phi-3-mini-128k-instruct(RAG - Generic Prompt)_wd.csv",
|
1078 |
-
"data/results_v2/Phi-3-mini-128k-instruct(RAG - Chat Template)_wd.csv",
|
1079 |
-
"data/results_v2/Phi-3-mini-128k-instruct(Non-RAG)_wd.csv",
|
1080 |
-
"data/results_v2/gemma-1.1-7b-it(RAG - Generic Prompt)_wd.csv",
|
1081 |
-
"data/results_v2/gemma-1.1-7b-it(RAG - Chat Template)_wd.csv",
|
1082 |
-
"data/results_v2/gemma-1.1-7b-it(Non-RAG)_wd.csv",
|
1083 |
-
"data/results_v2/Llama-2-7b-chat-hf(RAG - Generic Prompt)_wd.csv",
|
1084 |
-
"data/results_v2/Llama-2-7b-chat-hf(RAG - Chat Template)_wd.csv",
|
1085 |
-
"data/results_v2/Llama-2-7b-chat-hf(Non-RAG)_wd.csv",
|
1086 |
-
"data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Generic Prompt)_wd.csv",
|
1087 |
-
"data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Chat Template)_wd.csv",
|
1088 |
-
"data/results_v2/Mistral-7B-Instruct-v0.2(Non-RAG)_wd.csv",
|
1089 |
-
"data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Generic Prompt)_wd.csv",
|
1090 |
-
"data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Chat Template)_wd.csv",
|
1091 |
-
"data/results_v2/Meta-Llama-3-8B-Instruct(Non-RAG)_wd.csv",
|
1092 |
-
"data/results_v2/Llama-2-13b-chat-hf(RAG - Generic Prompt)_wd.csv",
|
1093 |
-
"data/results_v2/Llama-2-13b-chat-hf(RAG - Chat Template)_wd.csv",
|
1094 |
-
"data/results_v2/Llama-2-13b-chat-hf(Non-RAG)_wd.csv",
|
1095 |
-
"data/results_v2/Llama-2-70b-chat-hf(RAG - Generic Prompt)_wd.csv",
|
1096 |
-
"data/results_v2/Llama-2-70b-chat-hf(RAG - Chat Template)_wd.csv",
|
1097 |
-
"data/results_v2/Llama-2-70b-chat-hf(Non-RAG)_wd.csv",
|
1098 |
-
"data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Generic Prompt)_wd.csv",
|
1099 |
-
"data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Chat Template)_wd.csv",
|
1100 |
-
"data/results_v2/Meta-Llama-3-70B-Instruct(Non-RAG)_wd.csv",
|
1101 |
-
]
|
1102 |
-
|
1103 |
-
|
1104 |
-
def calc_rap_scores(result, precision="precision", recall="recall"):
|
1105 |
-
newline_score = [
|
1106 |
-
df["newline_score"].mean() for df in result["df_list_repetition_penalty"]
|
1107 |
-
]
|
1108 |
-
|
1109 |
-
repetition_score = [
|
1110 |
-
df["repetition_score"].mean() for df in result["df_list_repetition_penalty"]
|
1111 |
-
]
|
1112 |
-
|
1113 |
-
if precision in result["df_list_repetition_penalty"][0].columns:
|
1114 |
-
precision = [
|
1115 |
-
df[precision].mean() for df in result["df_list_repetition_penalty"]
|
1116 |
-
]
|
1117 |
-
recall = [df[recall].mean() for df in result["df_list_repetition_penalty"]]
|
1118 |
-
else:
|
1119 |
-
precision = result["df_overall"][precision]
|
1120 |
-
recall = result["df_overall"][recall]
|
1121 |
-
|
1122 |
-
f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
|
1123 |
-
|
1124 |
-
# rap = [
|
1125 |
-
# f / math.log10(10 + n + r)
|
1126 |
-
# for f, n, r in zip(f1, newline_score, repetition_score)
|
1127 |
-
# ]
|
1128 |
-
|
1129 |
-
nrr = [
|
1130 |
-
1 - (n + r) / s
|
1131 |
-
for f, n, r, s in zip(
|
1132 |
-
f1, newline_score, repetition_score, result["df_overall"]["answer_len"]
|
1133 |
-
)
|
1134 |
-
]
|
1135 |
-
|
1136 |
-
rap = [f * n * n * n for f, n in zip(f1, nrr)]
|
1137 |
-
|
1138 |
-
return newline_score, repetition_score, f1, rap, nrr
|
1139 |
-
|
1140 |
-
|
1141 |
-
def get_model_name(csv_result_file):
|
1142 |
-
parts = re.split(r"[_/]", csv_result_file)
|
1143 |
-
print(f"parts: {parts}")
|
1144 |
-
model_name = parts[3]
|
1145 |
-
return model_name
|
1146 |
-
|
1147 |
-
|
1148 |
-
def load_webqsp_result(csv_result_files, force_recalculate=False, save=False):
|
1149 |
-
result = {}
|
1150 |
-
for i, csv_result_file in enumerate(csv_result_files):
|
1151 |
-
try:
|
1152 |
-
df = pd.read_csv(csv_result_file)
|
1153 |
-
model_name = get_model_name(csv_result_file)
|
1154 |
-
print(f"\tmodel_name: {model_name}")
|
1155 |
-
|
1156 |
-
dfs = [
|
1157 |
-
calculate_performance_score(
|
1158 |
-
csv_result_file,
|
1159 |
-
repetition_penalty,
|
1160 |
-
force_recalculate=force_recalculate,
|
1161 |
-
)
|
1162 |
-
for repetition_penalty in df["repetition_penalty"]
|
1163 |
-
]
|
1164 |
-
|
1165 |
-
answer_lens = []
|
1166 |
-
for df_rpp in dfs:
|
1167 |
-
df_rpp["answer_len"] = df_rpp["answer"].apply(
|
1168 |
-
lambda x: len(x) if isinstance(x, str) else 0
|
1169 |
-
)
|
1170 |
-
answer_lens.append(df_rpp["answer_len"].mean())
|
1171 |
-
df["answer_len"] = answer_lens
|
1172 |
-
|
1173 |
-
result[model_name] = {
|
1174 |
-
"df_overall": df,
|
1175 |
-
"df_list_repetition_penalty": dfs,
|
1176 |
-
"file": csv_result_file,
|
1177 |
-
}
|
1178 |
-
newline_score, repetition_score, perf, rap, nrr = calc_rap_scores(
|
1179 |
-
result[model_name]
|
1180 |
-
)
|
1181 |
-
df["newline_score"] = newline_score
|
1182 |
-
df["repetition_score"] = repetition_score
|
1183 |
-
df["total_repetitions"] = df["newline_score"] + df["repetition_score"]
|
1184 |
-
df["perf"] = perf
|
1185 |
-
df["nrr"] = nrr
|
1186 |
-
df["rap"] = rap
|
1187 |
-
df["rr"] = df["nrr"].apply(lambda x: 1 - x)
|
1188 |
-
if save:
|
1189 |
-
df.to_csv(csv_result_file, index=False)
|
1190 |
-
except Exception as e:
|
1191 |
-
print(f"Error: {e}")
|
1192 |
-
traceback.print_exc()
|
1193 |
-
|
1194 |
-
return result
|
1195 |
-
|
1196 |
-
|
1197 |
-
def load_ms_marco_result(
|
1198 |
-
csv_result_files, force_recalculate=False, calc_bertscore=False, save=False
|
1199 |
-
):
|
1200 |
-
result = {}
|
1201 |
-
for csv_result_file in csv_result_files:
|
1202 |
-
try:
|
1203 |
-
df = pd.read_csv(csv_result_file)
|
1204 |
-
model_name = get_model_name(csv_result_file)
|
1205 |
-
print(f"\tmodel_name: {model_name}")
|
1206 |
-
|
1207 |
-
dfs = [
|
1208 |
-
load_for_repetition_penalty_ms_macro(
|
1209 |
-
csv_result_file,
|
1210 |
-
repetition_penalty,
|
1211 |
-
force_recalculate=force_recalculate,
|
1212 |
-
)
|
1213 |
-
for repetition_penalty in df["repetition_penalty"]
|
1214 |
-
]
|
1215 |
-
|
1216 |
-
answer_lens = []
|
1217 |
-
for df_rpp in dfs:
|
1218 |
-
answer_lens.append(df_rpp["answer_len"].mean())
|
1219 |
-
df["answer_len"] = answer_lens
|
1220 |
-
|
1221 |
-
col = "bert_score" if calc_bertscore else "meteor"
|
1222 |
-
score_unavailable = col not in df.columns
|
1223 |
-
|
1224 |
-
if score_unavailable:
|
1225 |
-
save = True
|
1226 |
-
bert_meteor_scores = []
|
1227 |
-
bert_score_references = None
|
1228 |
-
for df_rpp in dfs:
|
1229 |
-
if calc_bertscore:
|
1230 |
-
bert_meteor_score = 0
|
1231 |
-
|
1232 |
-
for i, row in df_rpp.iterrows():
|
1233 |
-
answer = row["answer"]
|
1234 |
-
if not isinstance(answer, str):
|
1235 |
-
answer = ""
|
1236 |
-
bert_meteor_score += bert_score.compute(
|
1237 |
-
predictions=[answer],
|
1238 |
-
references=[row["ground_truth"][0]],
|
1239 |
-
lang="en",
|
1240 |
-
model_type="microsoft/deberta-large-mnli",
|
1241 |
-
)["f1"][0]
|
1242 |
-
# get average of bertscore
|
1243 |
-
bert_meteor_score = bert_meteor_score / len(df_rpp)
|
1244 |
-
|
1245 |
-
print(f"bert_score: {bert_meteor_score}")
|
1246 |
-
else:
|
1247 |
-
bert_meteor_score = meteor.compute(
|
1248 |
-
predictions=df_rpp["answer"],
|
1249 |
-
references=df_rpp["ground_truth"],
|
1250 |
-
)["meteor"]
|
1251 |
-
|
1252 |
-
bert_meteor_scores.append(bert_meteor_score)
|
1253 |
-
|
1254 |
-
df[col] = bert_meteor_scores
|
1255 |
-
|
1256 |
-
result[model_name] = {
|
1257 |
-
"df_overall": df,
|
1258 |
-
"df_list_repetition_penalty": dfs,
|
1259 |
-
"file": csv_result_file,
|
1260 |
-
}
|
1261 |
-
newline_score, repetition_score, perf, rap, nrr = calc_rap_scores(
|
1262 |
-
result[model_name],
|
1263 |
-
precision=col,
|
1264 |
-
recall=col,
|
1265 |
-
)
|
1266 |
-
df["newline_score"] = newline_score
|
1267 |
-
df["repetition_score"] = repetition_score
|
1268 |
-
df["total_repetitions"] = df["newline_score"] + df["repetition_score"]
|
1269 |
-
df["perf"] = perf
|
1270 |
-
df["nrr"] = nrr
|
1271 |
-
df["rap"] = rap
|
1272 |
-
df["rr"] = df["nrr"].apply(lambda x: 1 - x)
|
1273 |
-
|
1274 |
-
if save:
|
1275 |
-
df.to_csv(csv_result_file, index=False)
|
1276 |
-
except Exception as e:
|
1277 |
-
print("An error occurred:", e)
|
1278 |
-
traceback.print_exc()
|
1279 |
-
print(f"csv_result_file: {csv_result_file}")
|
1280 |
-
|
1281 |
-
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eval_modules/calc_repetitions_v2e.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
/Users/inflaton/code/engd/papers/rapget-v2/eval_modules/calc_repetitions_v2e.py
|
|
|
|
eval_modules/calc_repetitions_v2e.py
ADDED
@@ -0,0 +1,1310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import math
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import matplotlib.ticker as mtick
|
8 |
+
import seaborn as sns
|
9 |
+
import nltk
|
10 |
+
import evaluate
|
11 |
+
import traceback
|
12 |
+
|
13 |
+
bert_score = evaluate.load("bertscore")
|
14 |
+
meteor = evaluate.load("meteor")
|
15 |
+
|
16 |
+
print(f"loading: {__file__}")
|
17 |
+
|
18 |
+
# pattern_non_word_char_repetition = re.compile(r"\s{5,}")
|
19 |
+
# pattern_text_repetitions = re.compile(r"(.{5}.*)\s*((\1)\s*)+", re.M | re.DOTALL)
|
20 |
+
|
21 |
+
# final version
|
22 |
+
pattern_non_word_char_repetition = re.compile(r"[\s\W]{5,}")
|
23 |
+
pattern_text_repetitions = re.compile(
|
24 |
+
r"(?P<repeat>.{5}.*?)(?:[\s\W]*(?P=repeat))+", re.M | re.DOTALL | re.IGNORECASE
|
25 |
+
)
|
26 |
+
# Explanation of the Regex Pattern:
|
27 |
+
# (?P<repeat>.{5}.*?): Captures any sequence of characters with minimal length of 5 and names this group repeat.
|
28 |
+
# .*?: Matches zero or more characters, non-greedily (as few as possible).
|
29 |
+
# (?:[\s\W]+(?P=repeat))+: A non-capturing group that matches one or more repetitions of:
|
30 |
+
# [\s\W]+: One or more whitespace or non-word characters (spaces, punctuation, etc.).
|
31 |
+
# (?P=repeat): A backreference to the named group repeat.
|
32 |
+
|
33 |
+
|
34 |
+
def del_non_word_char_repetition(text, debug=False):
|
35 |
+
count = 0
|
36 |
+
|
37 |
+
if isinstance(text, str):
|
38 |
+
if debug:
|
39 |
+
print("----detect non-word characters repetition----")
|
40 |
+
count = len(text)
|
41 |
+
text = pattern_non_word_char_repetition.sub("\t", text)
|
42 |
+
count -= len(text)
|
43 |
+
if debug and count:
|
44 |
+
print(f"removed non-word characters repetition: {count}")
|
45 |
+
return text, count
|
46 |
+
|
47 |
+
|
48 |
+
# final version for repetition detection
|
49 |
+
def detect_text_repetitions(text, debug=False):
|
50 |
+
count = 0
|
51 |
+
|
52 |
+
if isinstance(text, str):
|
53 |
+
if debug:
|
54 |
+
print("----detect text repetitions----")
|
55 |
+
matches = pattern_text_repetitions.finditer(text)
|
56 |
+
for match in matches:
|
57 |
+
if debug:
|
58 |
+
print(match)
|
59 |
+
for groupNum in range(0, len(match.groups())):
|
60 |
+
groupNum = groupNum + 1
|
61 |
+
print(
|
62 |
+
"Group {groupNum} found at {start}-{end}: `{group}`".format(
|
63 |
+
groupNum=groupNum,
|
64 |
+
start=match.start(groupNum),
|
65 |
+
end=match.end(groupNum),
|
66 |
+
group=match.group(groupNum),
|
67 |
+
)
|
68 |
+
)
|
69 |
+
|
70 |
+
start, end = match.span()
|
71 |
+
count += end - start - len(match.group(1))
|
72 |
+
|
73 |
+
return count
|
74 |
+
|
75 |
+
|
76 |
+
def detect_repetitions(text, debug=False):
|
77 |
+
if isinstance(text, str) is False:
|
78 |
+
return 0, 0, 0
|
79 |
+
text, count_non_word_char_repetition = del_non_word_char_repetition(
|
80 |
+
text, debug=debug
|
81 |
+
)
|
82 |
+
count_text_repetitions = detect_text_repetitions(text, debug=debug)
|
83 |
+
total_repetitions = count_non_word_char_repetition + count_text_repetitions
|
84 |
+
|
85 |
+
result = (count_non_word_char_repetition, count_text_repetitions, total_repetitions)
|
86 |
+
|
87 |
+
if debug:
|
88 |
+
print(result)
|
89 |
+
return result
|
90 |
+
|
91 |
+
|
92 |
+
def detect_scores(
|
93 |
+
row, debug=False, answer_col="answer", ground_truth_col="ground_truth"
|
94 |
+
):
|
95 |
+
newline_score, repetition_score, total_repetitions = detect_repetitions(
|
96 |
+
row[answer_col], debug=debug
|
97 |
+
)
|
98 |
+
|
99 |
+
if ground_truth_col:
|
100 |
+
ground_truth_newline_score, ground_truth_repetition_score, _ = (
|
101 |
+
detect_repetitions(row[ground_truth_col], debug=debug)
|
102 |
+
)
|
103 |
+
|
104 |
+
newline_score -= ground_truth_newline_score
|
105 |
+
if newline_score < 0:
|
106 |
+
newline_score = 0
|
107 |
+
|
108 |
+
repetition_score -= ground_truth_repetition_score
|
109 |
+
if repetition_score < 0:
|
110 |
+
repetition_score = 0
|
111 |
+
|
112 |
+
total_repetitions = newline_score + repetition_score
|
113 |
+
|
114 |
+
return pd.Series([newline_score, repetition_score, total_repetitions])
|
115 |
+
|
116 |
+
|
117 |
+
def load_with_newline_and_repetition_scores(result_file, force_recalculate=False):
|
118 |
+
print(f"loading result file: {result_file}")
|
119 |
+
df = pd.read_csv(result_file, comment="#", on_bad_lines="warn")
|
120 |
+
|
121 |
+
if (
|
122 |
+
force_recalculate
|
123 |
+
or "newline_score" not in df.columns
|
124 |
+
or "repetition_score" not in df.columns
|
125 |
+
or "total_repetitions" not in df.columns
|
126 |
+
or "nrr" not in df.columns
|
127 |
+
or "rr" not in df.columns
|
128 |
+
):
|
129 |
+
if (
|
130 |
+
force_recalculate
|
131 |
+
or "newline_score" not in df.columns
|
132 |
+
or "repetition_score" not in df.columns
|
133 |
+
or "total_repetitions" not in df.columns
|
134 |
+
):
|
135 |
+
df[["newline_score", "repetition_score", "total_repetitions"]] = df.apply(
|
136 |
+
detect_scores, axis=1
|
137 |
+
)
|
138 |
+
|
139 |
+
df["answer_len"] = df["answer"].apply(
|
140 |
+
lambda x: len(x) if isinstance(x, str) else 0
|
141 |
+
)
|
142 |
+
|
143 |
+
df["nrr"] = df.apply(
|
144 |
+
lambda x: (
|
145 |
+
1
|
146 |
+
if x["answer_len"] == 0
|
147 |
+
else 1 - (x["newline_score"] + x["repetition_score"]) / x["answer_len"]
|
148 |
+
),
|
149 |
+
axis=1,
|
150 |
+
)
|
151 |
+
|
152 |
+
df["rr"] = df["nrr"].apply(lambda x: 1 - x)
|
153 |
+
|
154 |
+
df.to_csv(result_file, index=False)
|
155 |
+
|
156 |
+
return df
|
157 |
+
|
158 |
+
|
159 |
+
def replace_last(source_string, old_string, new_string):
|
160 |
+
head, _sep, tail = source_string.rpartition(old_string)
|
161 |
+
return head + new_string + tail
|
162 |
+
|
163 |
+
|
164 |
+
def load_for_repetition_penalty(
|
165 |
+
csv_result_file, repetition_penalty, force_recalculate=False
|
166 |
+
):
|
167 |
+
result_file = replace_last(
|
168 |
+
csv_result_file, ".csv", f"_RP_{repetition_penalty:.3f}.csv"
|
169 |
+
)
|
170 |
+
return load_with_newline_and_repetition_scores(
|
171 |
+
result_file, force_recalculate=force_recalculate
|
172 |
+
)
|
173 |
+
|
174 |
+
|
175 |
+
def calc_adjusted_performance(f, r, l=1):
|
176 |
+
n = 1 - r / l if l > 0 else 0
|
177 |
+
return f * n * n * n
|
178 |
+
|
179 |
+
|
180 |
+
def calculate_adjusted_performance(row):
|
181 |
+
r = row["total_repetitions"]
|
182 |
+
l = row["answer_len"]
|
183 |
+
adjusted_precision = calc_adjusted_performance(row["precision"], r, l)
|
184 |
+
adjusted_recall = calc_adjusted_performance(row["recall"], r, l)
|
185 |
+
return pd.Series([adjusted_precision, adjusted_recall])
|
186 |
+
|
187 |
+
|
188 |
+
def load_performance_df(csv_result_file, repetition_penalty):
|
189 |
+
result_file = replace_last(
|
190 |
+
csv_result_file, ".csv", f"_RP_{repetition_penalty:.3f}-t2_evaluated.json"
|
191 |
+
)
|
192 |
+
result_file = result_file.replace("/results/", "/eval/")
|
193 |
+
print(f"loading json file: {result_file}")
|
194 |
+
df = pd.read_json(result_file)
|
195 |
+
|
196 |
+
return df
|
197 |
+
|
198 |
+
|
199 |
+
def calculate_performance_score(
|
200 |
+
csv_result_file, repetition_penalty, force_recalculate=False
|
201 |
+
):
|
202 |
+
result_file = replace_last(
|
203 |
+
csv_result_file, ".csv", f"_rpp_{repetition_penalty:.2f}.csv"
|
204 |
+
)
|
205 |
+
|
206 |
+
if os.path.exists(result_file):
|
207 |
+
print(f"loading result file: {result_file}")
|
208 |
+
df = load_with_newline_and_repetition_scores(
|
209 |
+
result_file, force_recalculate=force_recalculate
|
210 |
+
)
|
211 |
+
else:
|
212 |
+
print(f"re-creating result file: {result_file}")
|
213 |
+
df = pd.DataFrame()
|
214 |
+
force_recalculate = True
|
215 |
+
|
216 |
+
if force_recalculate or "f2" in df.columns or "f1" not in df.columns:
|
217 |
+
try:
|
218 |
+
perf_df = load_performance_df(csv_result_file, repetition_penalty)
|
219 |
+
df.drop(
|
220 |
+
columns=[
|
221 |
+
"precision",
|
222 |
+
"recall",
|
223 |
+
"f1",
|
224 |
+
"f2",
|
225 |
+
"entities_in_answer",
|
226 |
+
"entities_in_question",
|
227 |
+
"word_count",
|
228 |
+
],
|
229 |
+
errors="ignore",
|
230 |
+
inplace=True,
|
231 |
+
)
|
232 |
+
|
233 |
+
df["id"] = perf_df["id"]
|
234 |
+
df["question"] = perf_df["question"]
|
235 |
+
df["answer"] = perf_df["pred_answer"]
|
236 |
+
df["word_count"] = df["answer"].apply(
|
237 |
+
lambda x: len(nltk.word_tokenize(x)) if isinstance(x, str) else 0
|
238 |
+
)
|
239 |
+
df["ground_truth"] = perf_df["ground_truth"]
|
240 |
+
|
241 |
+
df["eval_gemini_1.0_pro"] = perf_df["eval_gemini_1.0_pro"]
|
242 |
+
df["precision"] = perf_df["score"].apply(lambda x: x[0])
|
243 |
+
df["recall"] = perf_df["score"].apply(lambda x: x[1])
|
244 |
+
df["f1"] = perf_df["score"].apply(lambda x: x[2])
|
245 |
+
except Exception as e:
|
246 |
+
print(f"\tignored error: {e}")
|
247 |
+
# traceback.print_exc()
|
248 |
+
|
249 |
+
df[["newline_score", "repetition_score", "total_repetitions"]] = df.apply(
|
250 |
+
detect_scores, axis=1
|
251 |
+
)
|
252 |
+
df["answer_len"] = df["answer"].apply(
|
253 |
+
lambda x: len(x) if isinstance(x, str) else 0
|
254 |
+
)
|
255 |
+
|
256 |
+
df[["adjusted_precision", "adjusted_recall"]] = df.apply(
|
257 |
+
calculate_adjusted_performance, axis=1
|
258 |
+
)
|
259 |
+
|
260 |
+
df.to_csv(result_file, index=False)
|
261 |
+
print(f"performance scores saved to result file: {result_file}")
|
262 |
+
|
263 |
+
# print(f"df len: {len(df)}")
|
264 |
+
|
265 |
+
return df
|
266 |
+
|
267 |
+
|
268 |
+
def adjust_perf_scores_with_repetition_penalty(result, precision, recall):
|
269 |
+
newline_score = [
|
270 |
+
df["newline_score"].mean() for df in result["df_list_repetition_penalty"]
|
271 |
+
]
|
272 |
+
|
273 |
+
repetition_score = [
|
274 |
+
df["repetition_score"].mean() for df in result["df_list_repetition_penalty"]
|
275 |
+
]
|
276 |
+
|
277 |
+
answer_len = [
|
278 |
+
df["answer_len"].mean() for df in result["df_list_repetition_penalty"]
|
279 |
+
]
|
280 |
+
|
281 |
+
precision = [
|
282 |
+
calc_adjusted_performance(f, n + r, l)
|
283 |
+
for f, n, r, l in zip(precision, newline_score, repetition_score, answer_len)
|
284 |
+
]
|
285 |
+
recall = [
|
286 |
+
calc_adjusted_performance(f, n + r, l)
|
287 |
+
for f, n, r, l in zip(recall, newline_score, repetition_score, answer_len)
|
288 |
+
]
|
289 |
+
|
290 |
+
return precision, recall
|
291 |
+
|
292 |
+
|
293 |
+
def plot_performance_scores(
|
294 |
+
result,
|
295 |
+
models=None,
|
296 |
+
title="Performance",
|
297 |
+
):
|
298 |
+
if models is None:
|
299 |
+
models = result.keys()
|
300 |
+
for model in models:
|
301 |
+
print(f"model: {model}")
|
302 |
+
df = result[model]["df_overall"]
|
303 |
+
|
304 |
+
# Calculate the statistics
|
305 |
+
precision = [
|
306 |
+
df["precision"].mean() for df in result[model]["df_list_repetition_penalty"]
|
307 |
+
]
|
308 |
+
recall = [
|
309 |
+
df["recall"].mean() for df in result[model]["df_list_repetition_penalty"]
|
310 |
+
]
|
311 |
+
f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
|
312 |
+
best_f1 = max(f1)
|
313 |
+
best_f1_index = f1.index(best_f1)
|
314 |
+
|
315 |
+
precision, recall = adjust_perf_scores_with_repetition_penalty(
|
316 |
+
result[model], precision, recall
|
317 |
+
)
|
318 |
+
afrp = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
|
319 |
+
|
320 |
+
# f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]]
|
321 |
+
best_afrp = max(afrp)
|
322 |
+
best_afrp_index = afrp.index(best_afrp)
|
323 |
+
|
324 |
+
adjusted_precision = [
|
325 |
+
df["adjusted_precision"].mean()
|
326 |
+
for df in result[model]["df_list_repetition_penalty"]
|
327 |
+
]
|
328 |
+
adjusted_recall = [
|
329 |
+
df["adjusted_recall"].mean()
|
330 |
+
for df in result[model]["df_list_repetition_penalty"]
|
331 |
+
]
|
332 |
+
afrp2 = [
|
333 |
+
2 * (p * r) / (p + r) for p, r in zip(adjusted_precision, adjusted_recall)
|
334 |
+
]
|
335 |
+
best_afrp2 = max(afrp2)
|
336 |
+
best_afrp2_index = afrp2.index(best_afrp2)
|
337 |
+
|
338 |
+
repetition_penalties = list(df["repetition_penalty"])
|
339 |
+
|
340 |
+
# line plot for precision, recall, f1
|
341 |
+
plt.figure(figsize=(10, 6))
|
342 |
+
|
343 |
+
plt.axvspan(
|
344 |
+
repetition_penalties[best_f1_index] - 0.01,
|
345 |
+
repetition_penalties[best_f1_index] + 0.01,
|
346 |
+
alpha=0.5,
|
347 |
+
edgecolor="none",
|
348 |
+
facecolor="blue",
|
349 |
+
)
|
350 |
+
|
351 |
+
# plt.axvspan(
|
352 |
+
# repetition_penalties[best_afrp2_index] - 0.01,
|
353 |
+
# repetition_penalties[best_afrp2_index] + 0.01,
|
354 |
+
# alpha=0.5,
|
355 |
+
# edgecolor="none",
|
356 |
+
# facecolor="green",
|
357 |
+
# )
|
358 |
+
|
359 |
+
plt.axvspan(
|
360 |
+
repetition_penalties[best_afrp_index] - 0.01,
|
361 |
+
repetition_penalties[best_afrp_index] + 0.01,
|
362 |
+
alpha=0.5,
|
363 |
+
edgecolor="none",
|
364 |
+
facecolor="orange",
|
365 |
+
)
|
366 |
+
|
367 |
+
plt.plot(repetition_penalties, f1, label="F1", marker="D", color="blue")
|
368 |
+
# plt.plot(
|
369 |
+
# repetition_penalties,
|
370 |
+
# afrp2,
|
371 |
+
# label="Per-question RAP - F1",
|
372 |
+
# marker="s",
|
373 |
+
# color="green",
|
374 |
+
# )
|
375 |
+
plt.plot(
|
376 |
+
repetition_penalties,
|
377 |
+
afrp,
|
378 |
+
label="RAP - F1",
|
379 |
+
marker="o",
|
380 |
+
color="orange",
|
381 |
+
)
|
382 |
+
plt.xlabel("Repetition Penalties")
|
383 |
+
plt.ylabel("Score")
|
384 |
+
# plt.xlim(0.99, 1.31)
|
385 |
+
# y in percentage
|
386 |
+
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
|
387 |
+
plt.title(f"{model} {title}")
|
388 |
+
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
|
389 |
+
|
390 |
+
plt.show()
|
391 |
+
|
392 |
+
|
393 |
+
def plot_best_afrp(
|
394 |
+
result,
|
395 |
+
models=None,
|
396 |
+
title="Models with Best RAP - F1",
|
397 |
+
ref_result=None,
|
398 |
+
):
|
399 |
+
# Initialize lists to store the statistics
|
400 |
+
model_names = []
|
401 |
+
best_f1 = []
|
402 |
+
best_afrp = []
|
403 |
+
best_repetition_penalty = []
|
404 |
+
best_mtr = []
|
405 |
+
|
406 |
+
if models is None:
|
407 |
+
models = result.keys()
|
408 |
+
for model in models:
|
409 |
+
print(f"model: {model}")
|
410 |
+
df = result[model]["df_overall"]
|
411 |
+
|
412 |
+
# Calculate the statistics
|
413 |
+
precision = [
|
414 |
+
df["precision"].mean() for df in result[model]["df_list_repetition_penalty"]
|
415 |
+
]
|
416 |
+
recall = [
|
417 |
+
df["recall"].mean() for df in result[model]["df_list_repetition_penalty"]
|
418 |
+
]
|
419 |
+
# f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]]
|
420 |
+
f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
|
421 |
+
|
422 |
+
newline_score = [
|
423 |
+
df["newline_score"].mean()
|
424 |
+
for df in result[model]["df_list_repetition_penalty"]
|
425 |
+
]
|
426 |
+
# print(f"newline_score: {newline_score}")
|
427 |
+
|
428 |
+
repetition_score = [
|
429 |
+
df["repetition_score"].mean()
|
430 |
+
for df in result[model]["df_list_repetition_penalty"]
|
431 |
+
]
|
432 |
+
# print(f"repetition_score: {repetition_score}")
|
433 |
+
|
434 |
+
answer_len = [
|
435 |
+
df["answer_len"].mean()
|
436 |
+
for df in result[model]["df_list_repetition_penalty"]
|
437 |
+
]
|
438 |
+
|
439 |
+
afrp = [
|
440 |
+
calc_adjusted_performance(f, n + r, l)
|
441 |
+
for f, n, r, l in zip(f1, newline_score, repetition_score, answer_len)
|
442 |
+
]
|
443 |
+
|
444 |
+
best_afrp.append(max(afrp))
|
445 |
+
best_afrp_index = afrp.index(best_afrp[-1])
|
446 |
+
best_repetition_penalty.append(df["repetition_penalty"][best_afrp_index])
|
447 |
+
|
448 |
+
best_f1.append(f1[best_afrp_index])
|
449 |
+
best_mtr.append(
|
450 |
+
newline_score[best_afrp_index] + repetition_score[best_afrp_index]
|
451 |
+
)
|
452 |
+
|
453 |
+
# print(
|
454 |
+
# f"best repetition penalty: {best_repetition_penalty[-1]}, best afrp: {best_afrp[-1]}, f1: {best_f1[-1]}"
|
455 |
+
# )
|
456 |
+
|
457 |
+
df = result[model]["df_list_repetition_penalty"][best_afrp_index]
|
458 |
+
|
459 |
+
model_names.append(
|
460 |
+
f"{model} (RP={best_repetition_penalty[-1]})"
|
461 |
+
) # Add the model name to the list
|
462 |
+
|
463 |
+
if ref_result is not None:
|
464 |
+
print("ref_result:", ref_result)
|
465 |
+
for model in ref_result.keys():
|
466 |
+
model_names.append(model)
|
467 |
+
df = pd.read_csv(ref_result[model])
|
468 |
+
# df = df[df["id"].isin(wikidata_df["id"])]
|
469 |
+
|
470 |
+
p = df["precision"].mean()
|
471 |
+
r = df["recall"].mean()
|
472 |
+
|
473 |
+
f1 = 2 * p * r / (p + r) if p + r > 0 else 0
|
474 |
+
best_f1.append(f1)
|
475 |
+
best_afrp.append(f1)
|
476 |
+
best_mtr.append(0)
|
477 |
+
|
478 |
+
print("model_names:", model_names)
|
479 |
+
# print("best_f1:", best_f1)
|
480 |
+
# print("best_afrp:", best_afrp)
|
481 |
+
|
482 |
+
# Create a DataFrame with the statistics
|
483 |
+
data = pd.DataFrame(
|
484 |
+
{
|
485 |
+
"Model": model_names,
|
486 |
+
"RAP - F1": best_afrp,
|
487 |
+
"F1": best_f1,
|
488 |
+
}
|
489 |
+
)
|
490 |
+
|
491 |
+
# Melt the DataFrame to a long format
|
492 |
+
data_melted = data.melt(id_vars="Model", var_name="Metric", value_name="Score")
|
493 |
+
|
494 |
+
# Pivot the DataFrame to a wide format
|
495 |
+
data_pivoted = data_melted.pivot(index="Metric", columns="Model", values="Score")
|
496 |
+
|
497 |
+
# make sure the columns are following the order of the models
|
498 |
+
data_pivoted = data_pivoted[model_names]
|
499 |
+
|
500 |
+
# make sure three groups in the order of precision, recall, f1
|
501 |
+
data_pivoted = data_pivoted.reindex(["RAP - F1", "F1"])
|
502 |
+
|
503 |
+
# Plot the statistics
|
504 |
+
plt.figure(figsize=(15, 6))
|
505 |
+
ax = data_pivoted.plot(kind="bar", ax=plt.gca(), width=0.9)
|
506 |
+
plt.title(title)
|
507 |
+
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
|
508 |
+
|
509 |
+
# Set the rotation of the x-axis labels to 0 degrees
|
510 |
+
plt.xticks(rotation=0)
|
511 |
+
|
512 |
+
# Format the y-axis to display as percentage
|
513 |
+
ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
|
514 |
+
|
515 |
+
# get the max value of the y-axis
|
516 |
+
a1 = max(best_afrp)
|
517 |
+
a2 = max(best_f1)
|
518 |
+
|
519 |
+
max_value = max([a1, a2]) * 1.12
|
520 |
+
print("max_value:", max_value)
|
521 |
+
|
522 |
+
# Set the y-axis limit up to 70%
|
523 |
+
ax.set_ylim(0, max_value)
|
524 |
+
|
525 |
+
# Add the values above each bar
|
526 |
+
for p in ax.patches:
|
527 |
+
ax.annotate(
|
528 |
+
f"{p.get_height() * 100:.1f}",
|
529 |
+
(p.get_x() + p.get_width() / 2.0, p.get_height()),
|
530 |
+
ha="center",
|
531 |
+
va="bottom",
|
532 |
+
xytext=(0, 10),
|
533 |
+
textcoords="offset points",
|
534 |
+
rotation=90,
|
535 |
+
)
|
536 |
+
|
537 |
+
plt.show()
|
538 |
+
return data_pivoted, best_mtr
|
539 |
+
|
540 |
+
|
541 |
+
def plot_best_performance(
|
542 |
+
result,
|
543 |
+
models=None,
|
544 |
+
title="Models with Best F1 Score",
|
545 |
+
adjusted_f1=False,
|
546 |
+
ref_result=None,
|
547 |
+
):
|
548 |
+
# Initialize lists to store the statistics
|
549 |
+
model_names = []
|
550 |
+
best_precision = []
|
551 |
+
best_recall = []
|
552 |
+
best_f1 = []
|
553 |
+
best_repetition_penalty = []
|
554 |
+
best_mtr = []
|
555 |
+
|
556 |
+
if models is None:
|
557 |
+
models = result.keys()
|
558 |
+
for model in models:
|
559 |
+
print(f"model: {model}")
|
560 |
+
df = result[model]["df_overall"]
|
561 |
+
|
562 |
+
# Calculate the statistics
|
563 |
+
precision = [
|
564 |
+
df["precision"].mean() for df in result[model]["df_list_repetition_penalty"]
|
565 |
+
]
|
566 |
+
recall = [
|
567 |
+
df["recall"].mean() for df in result[model]["df_list_repetition_penalty"]
|
568 |
+
]
|
569 |
+
newline_score = [
|
570 |
+
df["newline_score"].mean()
|
571 |
+
for df in result[model]["df_list_repetition_penalty"]
|
572 |
+
]
|
573 |
+
|
574 |
+
repetition_score = [
|
575 |
+
df["repetition_score"].mean()
|
576 |
+
for df in result[model]["df_list_repetition_penalty"]
|
577 |
+
]
|
578 |
+
|
579 |
+
if adjusted_f1:
|
580 |
+
precision, recall = adjust_perf_scores_with_repetition_penalty(
|
581 |
+
result[model], precision, recall
|
582 |
+
)
|
583 |
+
|
584 |
+
# f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]]
|
585 |
+
f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
|
586 |
+
|
587 |
+
best_f1.append(max(f1))
|
588 |
+
best_f1_index = f1.index(best_f1[-1])
|
589 |
+
best_repetition_penalty.append(df["repetition_penalty"][best_f1_index])
|
590 |
+
|
591 |
+
best_precision.append(precision[best_f1_index])
|
592 |
+
best_recall.append(recall[best_f1_index])
|
593 |
+
best_mtr.append(newline_score[best_f1_index] + repetition_score[best_f1_index])
|
594 |
+
|
595 |
+
print(
|
596 |
+
f"best repetition penalty: {best_repetition_penalty[-1]}, best f1: {best_f1[-1]}, precision: {best_precision[-1]}, recall: {best_recall[-1]}"
|
597 |
+
)
|
598 |
+
|
599 |
+
df = result[model]["df_list_repetition_penalty"][best_f1_index]
|
600 |
+
|
601 |
+
model_names.append(
|
602 |
+
f"{model} (RP={best_repetition_penalty[-1]})"
|
603 |
+
) # Add the model name to the list
|
604 |
+
|
605 |
+
# print sum for columns: newline_score, repetition_score
|
606 |
+
print(
|
607 |
+
f"newline_score: {df['newline_score'].sum()}, repetition_score: {df['repetition_score'].sum()}"
|
608 |
+
)
|
609 |
+
|
610 |
+
if ref_result is not None:
|
611 |
+
print("ref_result:", ref_result)
|
612 |
+
for model in ref_result.keys():
|
613 |
+
model_names.append(model)
|
614 |
+
df = pd.read_csv(ref_result[model])
|
615 |
+
# df = df[df["id"].isin(wikidata_df["id"])]
|
616 |
+
|
617 |
+
best_precision.append(df["precision"].mean())
|
618 |
+
best_recall.append(df["recall"].mean())
|
619 |
+
f1 = (
|
620 |
+
2
|
621 |
+
* (best_precision[-1] * best_recall[-1])
|
622 |
+
/ (best_precision[-1] + best_recall[-1])
|
623 |
+
)
|
624 |
+
# best_f1.append(df["f1"].mean())
|
625 |
+
best_f1.append(f1)
|
626 |
+
best_mtr.append(0)
|
627 |
+
|
628 |
+
# Create a DataFrame with the statistics
|
629 |
+
data = (
|
630 |
+
pd.DataFrame(
|
631 |
+
{
|
632 |
+
"Model": model_names,
|
633 |
+
"Adjusted Precision with RP": best_precision,
|
634 |
+
"Adjusted Recall with RP": best_recall,
|
635 |
+
"Adjusted F1 with RP": best_f1,
|
636 |
+
}
|
637 |
+
)
|
638 |
+
if adjusted_f1
|
639 |
+
else pd.DataFrame(
|
640 |
+
{
|
641 |
+
"Model": model_names,
|
642 |
+
"Precision": best_precision,
|
643 |
+
"Recall": best_recall,
|
644 |
+
"F1": best_f1,
|
645 |
+
}
|
646 |
+
)
|
647 |
+
)
|
648 |
+
columns = list(data.columns)
|
649 |
+
|
650 |
+
# Melt the DataFrame to a long format
|
651 |
+
data_melted = data.melt(id_vars="Model", var_name="Metric", value_name="Score")
|
652 |
+
|
653 |
+
# Pivot the DataFrame to a wide format
|
654 |
+
data_pivoted = data_melted.pivot(index="Metric", columns="Model", values="Score")
|
655 |
+
|
656 |
+
# make sure the columns are following the order of the models
|
657 |
+
data_pivoted = data_pivoted[model_names]
|
658 |
+
|
659 |
+
# make sure three groups in the order of precision, recall, f1
|
660 |
+
data_pivoted = data_pivoted.reindex(columns[1:])
|
661 |
+
|
662 |
+
# Plot the statistics
|
663 |
+
plt.figure(figsize=(10, 6))
|
664 |
+
ax = data_pivoted.plot(kind="bar", ax=plt.gca(), width=0.9)
|
665 |
+
plt.title(title)
|
666 |
+
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
|
667 |
+
|
668 |
+
# Set the rotation of the x-axis labels to 0 degrees
|
669 |
+
plt.xticks(rotation=0)
|
670 |
+
|
671 |
+
# Format the y-axis to display as percentage
|
672 |
+
ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
|
673 |
+
|
674 |
+
# get the max value of the y-axis
|
675 |
+
a1 = max(best_precision)
|
676 |
+
a2 = max(best_recall)
|
677 |
+
a3 = max(best_f1)
|
678 |
+
|
679 |
+
max_value = max([a1, a2, a3]) * 1.12
|
680 |
+
print("max_value:", max_value)
|
681 |
+
|
682 |
+
# Set the y-axis limit up to 70%
|
683 |
+
ax.set_ylim(0, max_value)
|
684 |
+
|
685 |
+
# Add the values above each bar
|
686 |
+
for p in ax.patches:
|
687 |
+
ax.annotate(
|
688 |
+
f"{p.get_height() * 100:.1f}",
|
689 |
+
(p.get_x() + p.get_width() / 2.0, p.get_height()),
|
690 |
+
ha="center",
|
691 |
+
va="bottom",
|
692 |
+
xytext=(0, 10),
|
693 |
+
textcoords="offset points",
|
694 |
+
rotation=90,
|
695 |
+
)
|
696 |
+
|
697 |
+
plt.show()
|
698 |
+
return data_pivoted, best_mtr
|
699 |
+
|
700 |
+
|
701 |
+
def plot_best_performance_ms_macro(
|
702 |
+
result,
|
703 |
+
models=None,
|
704 |
+
title="Models with Best RAP - Performance",
|
705 |
+
ref_result=None,
|
706 |
+
skip_generic_prompt=False,
|
707 |
+
include_adjusted_performance=True,
|
708 |
+
):
|
709 |
+
# Initialize lists to store the statistics
|
710 |
+
model_names = []
|
711 |
+
best_f1 = []
|
712 |
+
best_afrp = []
|
713 |
+
best_repetition_penalty = []
|
714 |
+
best_bleu1 = []
|
715 |
+
best_rougeL = []
|
716 |
+
best_mtr = []
|
717 |
+
|
718 |
+
if models is None:
|
719 |
+
models = result.keys()
|
720 |
+
for model in models:
|
721 |
+
if skip_generic_prompt and "generic prompt" in model:
|
722 |
+
continue
|
723 |
+
print(f"model: {model}")
|
724 |
+
df = result[model]["df_overall"]
|
725 |
+
|
726 |
+
# Calculate the statistics
|
727 |
+
bleu1 = [x for x in df["bleu1"]]
|
728 |
+
rougeL = [x for x in df["rougeL"]]
|
729 |
+
f1 = [2 * (p * r) / (p + r) for p, r in zip(bleu1, rougeL)]
|
730 |
+
|
731 |
+
newline_score = [
|
732 |
+
df["newline_score"].mean()
|
733 |
+
for df in result[model]["df_list_repetition_penalty"]
|
734 |
+
]
|
735 |
+
# print(f"newline_score: {newline_score}")
|
736 |
+
|
737 |
+
repetition_score = [
|
738 |
+
df["repetition_score"].mean()
|
739 |
+
for df in result[model]["df_list_repetition_penalty"]
|
740 |
+
]
|
741 |
+
# print(f"repetition_score: {repetition_score}")
|
742 |
+
|
743 |
+
answer_len = [
|
744 |
+
df["answer_len"].mean()
|
745 |
+
for df in result[model]["df_list_repetition_penalty"]
|
746 |
+
]
|
747 |
+
|
748 |
+
afrp = [
|
749 |
+
calc_adjusted_performance(f, n + r, l)
|
750 |
+
for f, n, r, l in zip(f1, newline_score, repetition_score, answer_len)
|
751 |
+
]
|
752 |
+
|
753 |
+
best_afrp.append(max(afrp if include_adjusted_performance else f1))
|
754 |
+
best_afrp_index = (
|
755 |
+
afrp.index(best_afrp[-1])
|
756 |
+
if include_adjusted_performance
|
757 |
+
else f1.index(best_afrp[-1])
|
758 |
+
)
|
759 |
+
best_repetition_penalty.append(df["repetition_penalty"][best_afrp_index])
|
760 |
+
|
761 |
+
best_f1.append(f1[best_afrp_index])
|
762 |
+
best_bleu1.append(bleu1[best_afrp_index])
|
763 |
+
best_rougeL.append(rougeL[best_afrp_index])
|
764 |
+
best_mtr.append(
|
765 |
+
newline_score[best_afrp_index] + repetition_score[best_afrp_index]
|
766 |
+
)
|
767 |
+
|
768 |
+
# print(
|
769 |
+
# f"best repetition penalty: {best_repetition_penalty[-1]}, best afrp: {best_afrp[-1]}, f1: {best_f1[-1]}"
|
770 |
+
# )
|
771 |
+
|
772 |
+
df = result[model]["df_list_repetition_penalty"][best_afrp_index]
|
773 |
+
|
774 |
+
model_names.append(
|
775 |
+
f"{model} (RP={best_repetition_penalty[-1]})"
|
776 |
+
) # Add the model name to the list
|
777 |
+
|
778 |
+
if ref_result is not None:
|
779 |
+
print("ref_result:", ref_result)
|
780 |
+
for model in ref_result.keys():
|
781 |
+
model_names.append(model)
|
782 |
+
df = pd.read_csv(ref_result[model], comment="#", on_bad_lines="warn")
|
783 |
+
# df = df[df["id"].isin(wikidata_df["id"])]
|
784 |
+
|
785 |
+
p = df["bleu1"][0]
|
786 |
+
best_bleu1.append(p)
|
787 |
+
|
788 |
+
r = df["rougeL"][0]
|
789 |
+
best_rougeL.append(r)
|
790 |
+
|
791 |
+
f1 = 2 * p * r / (p + r) if p + r > 0 else 0
|
792 |
+
best_f1.append(f1)
|
793 |
+
best_afrp.append(f1)
|
794 |
+
best_mtr.append(0)
|
795 |
+
|
796 |
+
# print("model_names:", model_names)
|
797 |
+
# print("best_f1:", best_f1)
|
798 |
+
# print("best_afrp:", best_afrp)
|
799 |
+
|
800 |
+
# Create a DataFrame with the statistics
|
801 |
+
data = (
|
802 |
+
pd.DataFrame(
|
803 |
+
{
|
804 |
+
"Model": model_names,
|
805 |
+
"RAP - Perf Score": best_afrp,
|
806 |
+
"Overall Perf Score": best_f1,
|
807 |
+
}
|
808 |
+
)
|
809 |
+
if include_adjusted_performance
|
810 |
+
else pd.DataFrame(
|
811 |
+
{
|
812 |
+
"Model": model_names,
|
813 |
+
"Bleu-1": best_bleu1,
|
814 |
+
"Rouge-L": best_rougeL,
|
815 |
+
"Overall Perf Score": best_f1,
|
816 |
+
}
|
817 |
+
)
|
818 |
+
)
|
819 |
+
|
820 |
+
# Melt the DataFrame to a long format
|
821 |
+
data_melted = data.melt(id_vars="Model", var_name="Metric", value_name="Score")
|
822 |
+
|
823 |
+
# Pivot the DataFrame to a wide format
|
824 |
+
data_pivoted = data_melted.pivot(index="Metric", columns="Model", values="Score")
|
825 |
+
|
826 |
+
# make sure the columns are following the order of the models
|
827 |
+
data_pivoted = data_pivoted[model_names]
|
828 |
+
|
829 |
+
columns = list(data.columns)
|
830 |
+
data_pivoted = data_pivoted.reindex(columns[1:])
|
831 |
+
|
832 |
+
# Plot the statistics
|
833 |
+
plt.figure(figsize=(10, 6))
|
834 |
+
ax = data_pivoted.plot(kind="bar", ax=plt.gca(), width=0.9)
|
835 |
+
plt.title(title)
|
836 |
+
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
|
837 |
+
|
838 |
+
# Set the rotation of the x-axis labels to 0 degrees
|
839 |
+
plt.xticks(rotation=0)
|
840 |
+
|
841 |
+
# Format the y-axis to display as percentage
|
842 |
+
ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
|
843 |
+
|
844 |
+
# get the max value of the y-axis
|
845 |
+
a1 = max(best_afrp)
|
846 |
+
a2 = max(best_f1)
|
847 |
+
a3 = max(best_bleu1)
|
848 |
+
a4 = max(best_rougeL)
|
849 |
+
|
850 |
+
max_value = (
|
851 |
+
max([a1, a2] if include_adjusted_performance else [a1, a2, a3, a4]) * 1.12
|
852 |
+
)
|
853 |
+
print("max_value:", max_value)
|
854 |
+
|
855 |
+
# Set the y-axis limit up to 70%
|
856 |
+
ax.set_ylim(0, max_value)
|
857 |
+
|
858 |
+
# Add the values above each bar
|
859 |
+
for p in ax.patches:
|
860 |
+
ax.annotate(
|
861 |
+
f"{p.get_height() * 100:.1f}",
|
862 |
+
(p.get_x() + p.get_width() / 2.0, p.get_height()),
|
863 |
+
ha="center",
|
864 |
+
va="bottom",
|
865 |
+
xytext=(0, 10),
|
866 |
+
textcoords="offset points",
|
867 |
+
rotation=90,
|
868 |
+
)
|
869 |
+
|
870 |
+
plt.show()
|
871 |
+
return data_pivoted, best_mtr
|
872 |
+
|
873 |
+
|
874 |
+
all_open_source_models = [
|
875 |
+
"gemma-1.1-2b-it",
|
876 |
+
"Phi-3-mini-128k-instruct",
|
877 |
+
"gemma-1.1-7b-it",
|
878 |
+
"Llama-2-7b-chat-hf",
|
879 |
+
"Mistral-7B-Instruct-v0.2",
|
880 |
+
"Meta-Llama-3-8B-Instruct",
|
881 |
+
"Llama-2-13b-chat-hf",
|
882 |
+
"Llama-2-70b-chat-hf",
|
883 |
+
"Meta-Llama-3-70B-Instruct",
|
884 |
+
]
|
885 |
+
|
886 |
+
|
887 |
+
def load_for_repetition_penalty_ms_macro(
|
888 |
+
csv_result_file, repetition_penalty, force_recalculate=False
|
889 |
+
):
|
890 |
+
result_file = replace_last(
|
891 |
+
csv_result_file, ".csv", f"_rpp_{repetition_penalty:.2f}.csv"
|
892 |
+
)
|
893 |
+
df = load_with_newline_and_repetition_scores(
|
894 |
+
result_file, force_recalculate=force_recalculate
|
895 |
+
)
|
896 |
+
|
897 |
+
return df
|
898 |
+
|
899 |
+
|
900 |
+
# MS MACRO
|
901 |
+
def plot_performance_scores_ms_macro(
|
902 |
+
result,
|
903 |
+
models=None,
|
904 |
+
title="Performance",
|
905 |
+
):
|
906 |
+
if models is None:
|
907 |
+
models = result.keys()
|
908 |
+
for model in models:
|
909 |
+
print(f"model: {model}")
|
910 |
+
df = result[model]["df_overall"]
|
911 |
+
# print(result[model]["df_list_repetition_penalty"][0].describe())
|
912 |
+
|
913 |
+
# Calculate the statistics
|
914 |
+
bleu1 = list(df["bleu1"])
|
915 |
+
rougeL = list(df["rougeL"])
|
916 |
+
f1 = [2 * (p * r) / (p + r) for p, r in zip(bleu1, rougeL)]
|
917 |
+
best_f1 = max(f1)
|
918 |
+
best_f1_index = f1.index(best_f1)
|
919 |
+
|
920 |
+
bleu1, rougeL = adjust_perf_scores_with_repetition_penalty(
|
921 |
+
result[model], bleu1, rougeL
|
922 |
+
)
|
923 |
+
afrp = [2 * (p * r) / (p + r) for p, r in zip(bleu1, rougeL)]
|
924 |
+
|
925 |
+
# f1 = [df["f1"].mean() for df in result[model]["df_list_repetition_penalty"]]
|
926 |
+
best_afrp = max(afrp)
|
927 |
+
best_afrp_index = afrp.index(best_afrp)
|
928 |
+
|
929 |
+
repetition_penalties = list(df["repetition_penalty"])
|
930 |
+
|
931 |
+
# line plot for precision, recall, f1
|
932 |
+
plt.figure(figsize=(10, 6))
|
933 |
+
|
934 |
+
plt.axvspan(
|
935 |
+
repetition_penalties[best_f1_index] - 0.01,
|
936 |
+
repetition_penalties[best_f1_index] + 0.01,
|
937 |
+
alpha=0.5,
|
938 |
+
edgecolor="none",
|
939 |
+
facecolor="blue",
|
940 |
+
)
|
941 |
+
|
942 |
+
plt.axvspan(
|
943 |
+
repetition_penalties[best_afrp_index] - 0.01,
|
944 |
+
repetition_penalties[best_afrp_index] + 0.01,
|
945 |
+
alpha=0.5,
|
946 |
+
edgecolor="none",
|
947 |
+
facecolor="orange",
|
948 |
+
)
|
949 |
+
|
950 |
+
plt.plot(
|
951 |
+
repetition_penalties,
|
952 |
+
f1,
|
953 |
+
label="Overall Perf Score",
|
954 |
+
marker="D",
|
955 |
+
color="blue",
|
956 |
+
)
|
957 |
+
plt.plot(
|
958 |
+
repetition_penalties,
|
959 |
+
afrp,
|
960 |
+
label="RAP - Perf Score",
|
961 |
+
marker="o",
|
962 |
+
color="orange",
|
963 |
+
)
|
964 |
+
|
965 |
+
plt.xlabel("Repetition Penalties")
|
966 |
+
plt.ylabel("Score")
|
967 |
+
# plt.xlim(0.99, 1.31)
|
968 |
+
# y in percentage
|
969 |
+
plt.gca().yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
|
970 |
+
plt.title(f"{model} {title}")
|
971 |
+
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
|
972 |
+
|
973 |
+
plt.show()
|
974 |
+
|
975 |
+
|
976 |
+
def plot_repetition_factors(result, groups):
|
977 |
+
for group in groups:
|
978 |
+
# Plot the statistics
|
979 |
+
plt.figure(figsize=(10, 6))
|
980 |
+
|
981 |
+
max_value = 0
|
982 |
+
for model in result.keys():
|
983 |
+
if not group in model.lower():
|
984 |
+
continue
|
985 |
+
print(f"model: {model}")
|
986 |
+
df = result[model]["df_overall"]
|
987 |
+
repetition_panelties = [
|
988 |
+
repetition_penalty for repetition_penalty in df["repetition_penalty"]
|
989 |
+
]
|
990 |
+
|
991 |
+
mean_score = [
|
992 |
+
df["total_repetitions"].mean()
|
993 |
+
for df in result[model]["df_list_repetition_penalty"]
|
994 |
+
]
|
995 |
+
|
996 |
+
sns.lineplot(x=repetition_panelties, y=mean_score, label=model)
|
997 |
+
|
998 |
+
new_max = max(mean_score)
|
999 |
+
if new_max > max_value:
|
1000 |
+
max_value = new_max
|
1001 |
+
|
1002 |
+
max_value = max_value * 1.05
|
1003 |
+
# if max_value < 1.5:
|
1004 |
+
# max_value = 1.5
|
1005 |
+
# set ylimit
|
1006 |
+
plt.ylim(0, max_value)
|
1007 |
+
|
1008 |
+
# show grid
|
1009 |
+
plt.grid(True)
|
1010 |
+
plt.xlabel("Repetition Penalties")
|
1011 |
+
plt.ylabel("Mean Total Repetitions")
|
1012 |
+
plt.title("Mean Total Repetitions vs Repetition Penalties")
|
1013 |
+
plt.legend()
|
1014 |
+
|
1015 |
+
plt.show()
|
1016 |
+
|
1017 |
+
|
1018 |
+
def plot_repetition_factors_by_group(result, group_filter=None):
|
1019 |
+
markers = ["D", "o", "s", "x"]
|
1020 |
+
colors = ["blue", "orange", "green", "red"]
|
1021 |
+
|
1022 |
+
# Plot the statistics
|
1023 |
+
plt.figure(figsize=(10, 6))
|
1024 |
+
index = 0
|
1025 |
+
max_value = 0
|
1026 |
+
|
1027 |
+
for model in result.keys():
|
1028 |
+
if group_filter is not None and group_filter not in model:
|
1029 |
+
continue
|
1030 |
+
|
1031 |
+
print(f"model: {model}")
|
1032 |
+
|
1033 |
+
df = result[model]["df_overall"]
|
1034 |
+
repetition_panelties = [
|
1035 |
+
repetition_penalty for repetition_penalty in df["repetition_penalty"]
|
1036 |
+
]
|
1037 |
+
|
1038 |
+
# Calculate the statistics
|
1039 |
+
mean_score = [
|
1040 |
+
df["total_repetitions"].mean()
|
1041 |
+
for df in result[model]["df_list_repetition_penalty"]
|
1042 |
+
]
|
1043 |
+
if len(mean_score) != len(repetition_panelties):
|
1044 |
+
print(
|
1045 |
+
f"model: {model} has different length of repetition penalties and mean score"
|
1046 |
+
)
|
1047 |
+
print("repetition_panelties:", len(repetition_panelties))
|
1048 |
+
print("mean_score:", len(mean_score))
|
1049 |
+
continue
|
1050 |
+
|
1051 |
+
new_max = max(mean_score)
|
1052 |
+
if new_max > max_value:
|
1053 |
+
max_value = new_max
|
1054 |
+
|
1055 |
+
sns.lineplot(
|
1056 |
+
x=repetition_panelties,
|
1057 |
+
y=mean_score,
|
1058 |
+
label=model,
|
1059 |
+
marker=markers[index],
|
1060 |
+
color=colors[index],
|
1061 |
+
)
|
1062 |
+
|
1063 |
+
index += 1
|
1064 |
+
|
1065 |
+
max_value = max_value * 1.05
|
1066 |
+
# if max_value < 1.5:
|
1067 |
+
# max_value = 1.5
|
1068 |
+
# set ylimit
|
1069 |
+
plt.ylim(0, max_value)
|
1070 |
+
max_value = 0
|
1071 |
+
|
1072 |
+
plt.xlabel("Repetition Penalties")
|
1073 |
+
plt.ylabel("Mean Total Repetitions")
|
1074 |
+
plt.title("Mean Total Repetitions vs Repetition Penalties")
|
1075 |
+
plt.legend(bbox_to_anchor=(1.0, 0.5), loc="center left")
|
1076 |
+
|
1077 |
+
plt.show()
|
1078 |
+
|
1079 |
+
|
1080 |
+
ms_marco_csv_result_files = [
|
1081 |
+
"data/results_v2/gemma-1.1-2b-it(RAG - Generic Prompt)_mm.csv",
|
1082 |
+
"data/results_v2/gemma-1.1-2b-it(RAG - Chat Template)_mm.csv",
|
1083 |
+
"data/results_v2/gemma-1.1-2b-it(Non-RAG)_mm.csv",
|
1084 |
+
"data/results_v2/Phi-3-mini-128k-instruct(RAG - Generic Prompt)_mm.csv",
|
1085 |
+
"data/results_v2/Phi-3-mini-128k-instruct(RAG - Chat Template)_mm.csv",
|
1086 |
+
"data/results_v2/Phi-3-mini-128k-instruct(Non-RAG)_mm.csv",
|
1087 |
+
"data/results_v2/gemma-1.1-7b-it(RAG - Generic Prompt)_mm.csv",
|
1088 |
+
"data/results_v2/gemma-1.1-7b-it(RAG - Chat Template)_mm.csv",
|
1089 |
+
"data/results_v2/gemma-1.1-7b-it(Non-RAG)_mm.csv",
|
1090 |
+
"data/results_v2/Llama-2-7b-chat-hf(RAG - Generic Prompt)_mm.csv",
|
1091 |
+
"data/results_v2/Llama-2-7b-chat-hf(RAG - Chat Template)_mm.csv",
|
1092 |
+
"data/results_v2/Llama-2-7b-chat-hf(Non-RAG)_mm.csv",
|
1093 |
+
"data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Generic Prompt)_mm.csv",
|
1094 |
+
"data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Chat Template)_mm.csv",
|
1095 |
+
"data/results_v2/Mistral-7B-Instruct-v0.2(Non-RAG)_mm.csv",
|
1096 |
+
"data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Generic Prompt)_mm.csv",
|
1097 |
+
"data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Chat Template)_mm.csv",
|
1098 |
+
"data/results_v2/Meta-Llama-3-8B-Instruct(Non-RAG)_mm.csv",
|
1099 |
+
"data/results_v2/Llama-2-13b-chat-hf(RAG - Generic Prompt)_mm.csv",
|
1100 |
+
"data/results_v2/Llama-2-13b-chat-hf(RAG - Chat Template)_mm.csv",
|
1101 |
+
"data/results_v2/Llama-2-13b-chat-hf(Non-RAG)_mm.csv",
|
1102 |
+
"data/results_v2/Llama-2-70b-chat-hf(RAG - Generic Prompt)_mm.csv",
|
1103 |
+
"data/results_v2/Llama-2-70b-chat-hf(RAG - Chat Template)_mm.csv",
|
1104 |
+
"data/results_v2/Llama-2-70b-chat-hf(Non-RAG)_mm.csv",
|
1105 |
+
"data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Generic Prompt)_mm.csv",
|
1106 |
+
"data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Chat Template)_mm.csv",
|
1107 |
+
"data/results_v2/Meta-Llama-3-70B-Instruct(Non-RAG)_mm.csv",
|
1108 |
+
]
|
1109 |
+
|
1110 |
+
webqsp_csv_result_files = [
|
1111 |
+
"data/results_v2/gemma-1.1-2b-it(RAG - Generic Prompt)_wd.csv",
|
1112 |
+
"data/results_v2/gemma-1.1-2b-it(RAG - Chat Template)_wd.csv",
|
1113 |
+
"data/results_v2/gemma-1.1-2b-it(Non-RAG)_wd.csv",
|
1114 |
+
"data/results_v2/Phi-3-mini-128k-instruct(RAG - Generic Prompt)_wd.csv",
|
1115 |
+
"data/results_v2/Phi-3-mini-128k-instruct(RAG - Chat Template)_wd.csv",
|
1116 |
+
"data/results_v2/Phi-3-mini-128k-instruct(Non-RAG)_wd.csv",
|
1117 |
+
"data/results_v2/gemma-1.1-7b-it(RAG - Generic Prompt)_wd.csv",
|
1118 |
+
"data/results_v2/gemma-1.1-7b-it(RAG - Chat Template)_wd.csv",
|
1119 |
+
"data/results_v2/gemma-1.1-7b-it(Non-RAG)_wd.csv",
|
1120 |
+
"data/results_v2/Llama-2-7b-chat-hf(RAG - Generic Prompt)_wd.csv",
|
1121 |
+
"data/results_v2/Llama-2-7b-chat-hf(RAG - Chat Template)_wd.csv",
|
1122 |
+
"data/results_v2/Llama-2-7b-chat-hf(Non-RAG)_wd.csv",
|
1123 |
+
"data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Generic Prompt)_wd.csv",
|
1124 |
+
"data/results_v2/Mistral-7B-Instruct-v0.2(RAG - Chat Template)_wd.csv",
|
1125 |
+
"data/results_v2/Mistral-7B-Instruct-v0.2(Non-RAG)_wd.csv",
|
1126 |
+
"data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Generic Prompt)_wd.csv",
|
1127 |
+
"data/results_v2/Meta-Llama-3-8B-Instruct(RAG - Chat Template)_wd.csv",
|
1128 |
+
"data/results_v2/Meta-Llama-3-8B-Instruct(Non-RAG)_wd.csv",
|
1129 |
+
"data/results_v2/Llama-2-13b-chat-hf(RAG - Generic Prompt)_wd.csv",
|
1130 |
+
"data/results_v2/Llama-2-13b-chat-hf(RAG - Chat Template)_wd.csv",
|
1131 |
+
"data/results_v2/Llama-2-13b-chat-hf(Non-RAG)_wd.csv",
|
1132 |
+
"data/results_v2/Llama-2-70b-chat-hf(RAG - Generic Prompt)_wd.csv",
|
1133 |
+
"data/results_v2/Llama-2-70b-chat-hf(RAG - Chat Template)_wd.csv",
|
1134 |
+
"data/results_v2/Llama-2-70b-chat-hf(Non-RAG)_wd.csv",
|
1135 |
+
"data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Generic Prompt)_wd.csv",
|
1136 |
+
"data/results_v2/Meta-Llama-3-70B-Instruct(RAG - Chat Template)_wd.csv",
|
1137 |
+
"data/results_v2/Meta-Llama-3-70B-Instruct(Non-RAG)_wd.csv",
|
1138 |
+
]
|
1139 |
+
|
1140 |
+
|
1141 |
+
def calc_rap_scores(result, precision="precision", recall="recall"):
|
1142 |
+
newline_score = [
|
1143 |
+
df["newline_score"].mean() for df in result["df_list_repetition_penalty"]
|
1144 |
+
]
|
1145 |
+
|
1146 |
+
repetition_score = [
|
1147 |
+
df["repetition_score"].mean() for df in result["df_list_repetition_penalty"]
|
1148 |
+
]
|
1149 |
+
|
1150 |
+
if precision in result["df_list_repetition_penalty"][0].columns:
|
1151 |
+
precision = [
|
1152 |
+
df[precision].mean() for df in result["df_list_repetition_penalty"]
|
1153 |
+
]
|
1154 |
+
recall = [df[recall].mean() for df in result["df_list_repetition_penalty"]]
|
1155 |
+
else:
|
1156 |
+
precision = result["df_overall"][precision]
|
1157 |
+
recall = result["df_overall"][recall]
|
1158 |
+
|
1159 |
+
f1 = [2 * (p * r) / (p + r) for p, r in zip(precision, recall)]
|
1160 |
+
|
1161 |
+
nrr = [
|
1162 |
+
1 - (n + r) / s
|
1163 |
+
for f, n, r, s in zip(
|
1164 |
+
f1, newline_score, repetition_score, result["df_overall"]["answer_len"]
|
1165 |
+
)
|
1166 |
+
]
|
1167 |
+
|
1168 |
+
rap = [calc_adjusted_performance(f, 1 - n) for f, n in zip(f1, nrr)]
|
1169 |
+
|
1170 |
+
return newline_score, repetition_score, f1, rap, nrr
|
1171 |
+
|
1172 |
+
|
1173 |
+
def get_model_name(csv_result_file):
|
1174 |
+
parts = re.split(r"[_/]", csv_result_file)
|
1175 |
+
print(f"parts: {parts}")
|
1176 |
+
model_name = parts[3]
|
1177 |
+
return model_name
|
1178 |
+
|
1179 |
+
|
1180 |
+
def load_webqsp_result(csv_result_files, force_recalculate=False, save=False):
|
1181 |
+
result = {}
|
1182 |
+
for i, csv_result_file in enumerate(csv_result_files):
|
1183 |
+
try:
|
1184 |
+
df = pd.read_csv(csv_result_file)
|
1185 |
+
model_name = get_model_name(csv_result_file)
|
1186 |
+
print(f"\tmodel_name: {model_name}")
|
1187 |
+
|
1188 |
+
dfs = [
|
1189 |
+
calculate_performance_score(
|
1190 |
+
csv_result_file,
|
1191 |
+
repetition_penalty,
|
1192 |
+
force_recalculate=force_recalculate,
|
1193 |
+
)
|
1194 |
+
for repetition_penalty in df["repetition_penalty"]
|
1195 |
+
]
|
1196 |
+
|
1197 |
+
answer_lens = []
|
1198 |
+
for df_rpp in dfs:
|
1199 |
+
answer_lens.append(df_rpp["answer_len"].mean())
|
1200 |
+
df["answer_len"] = answer_lens
|
1201 |
+
|
1202 |
+
result[model_name] = {
|
1203 |
+
"df_overall": df,
|
1204 |
+
"df_list_repetition_penalty": dfs,
|
1205 |
+
"file": csv_result_file,
|
1206 |
+
}
|
1207 |
+
newline_score, repetition_score, perf, rap, nrr = calc_rap_scores(
|
1208 |
+
result[model_name]
|
1209 |
+
)
|
1210 |
+
df["newline_score"] = newline_score
|
1211 |
+
df["repetition_score"] = repetition_score
|
1212 |
+
df["total_repetitions"] = df["newline_score"] + df["repetition_score"]
|
1213 |
+
df["perf"] = perf
|
1214 |
+
df["nrr"] = nrr
|
1215 |
+
df["rap"] = rap
|
1216 |
+
df["rr"] = df["nrr"].apply(lambda x: 1 - x)
|
1217 |
+
if save:
|
1218 |
+
df.to_csv(csv_result_file, index=False)
|
1219 |
+
except Exception as e:
|
1220 |
+
print(f"Error: {e}")
|
1221 |
+
traceback.print_exc()
|
1222 |
+
|
1223 |
+
return result
|
1224 |
+
|
1225 |
+
|
1226 |
+
def load_ms_marco_result(
|
1227 |
+
csv_result_files, force_recalculate=False, calc_bertscore=False, save=False
|
1228 |
+
):
|
1229 |
+
result = {}
|
1230 |
+
for csv_result_file in csv_result_files:
|
1231 |
+
try:
|
1232 |
+
df = pd.read_csv(csv_result_file)
|
1233 |
+
model_name = get_model_name(csv_result_file)
|
1234 |
+
print(f"\tmodel_name: {model_name}")
|
1235 |
+
|
1236 |
+
dfs = [
|
1237 |
+
load_for_repetition_penalty_ms_macro(
|
1238 |
+
csv_result_file,
|
1239 |
+
repetition_penalty,
|
1240 |
+
force_recalculate=force_recalculate,
|
1241 |
+
)
|
1242 |
+
for repetition_penalty in df["repetition_penalty"]
|
1243 |
+
]
|
1244 |
+
|
1245 |
+
answer_lens = []
|
1246 |
+
for df_rpp in dfs:
|
1247 |
+
answer_lens.append(df_rpp["answer_len"].mean())
|
1248 |
+
df["answer_len"] = answer_lens
|
1249 |
+
|
1250 |
+
col = "bert_score" if calc_bertscore else "meteor"
|
1251 |
+
score_unavailable = col not in df.columns
|
1252 |
+
|
1253 |
+
if score_unavailable:
|
1254 |
+
save = True
|
1255 |
+
bert_meteor_scores = []
|
1256 |
+
bert_score_references = None
|
1257 |
+
for df_rpp in dfs:
|
1258 |
+
if calc_bertscore:
|
1259 |
+
bert_meteor_score = 0
|
1260 |
+
|
1261 |
+
for i, row in df_rpp.iterrows():
|
1262 |
+
answer = row["answer"]
|
1263 |
+
if not isinstance(answer, str):
|
1264 |
+
answer = ""
|
1265 |
+
bert_meteor_score += bert_score.compute(
|
1266 |
+
predictions=[answer],
|
1267 |
+
references=[row["ground_truth"][0]],
|
1268 |
+
lang="en",
|
1269 |
+
model_type="microsoft/deberta-large-mnli",
|
1270 |
+
)["f1"][0]
|
1271 |
+
# get average of bertscore
|
1272 |
+
bert_meteor_score = bert_meteor_score / len(df_rpp)
|
1273 |
+
|
1274 |
+
print(f"bert_score: {bert_meteor_score}")
|
1275 |
+
else:
|
1276 |
+
bert_meteor_score = meteor.compute(
|
1277 |
+
predictions=df_rpp["answer"],
|
1278 |
+
references=df_rpp["ground_truth"],
|
1279 |
+
)["meteor"]
|
1280 |
+
|
1281 |
+
bert_meteor_scores.append(bert_meteor_score)
|
1282 |
+
|
1283 |
+
df[col] = bert_meteor_scores
|
1284 |
+
|
1285 |
+
result[model_name] = {
|
1286 |
+
"df_overall": df,
|
1287 |
+
"df_list_repetition_penalty": dfs,
|
1288 |
+
"file": csv_result_file,
|
1289 |
+
}
|
1290 |
+
newline_score, repetition_score, perf, rap, nrr = calc_rap_scores(
|
1291 |
+
result[model_name],
|
1292 |
+
precision=col,
|
1293 |
+
recall=col,
|
1294 |
+
)
|
1295 |
+
df["newline_score"] = newline_score
|
1296 |
+
df["repetition_score"] = repetition_score
|
1297 |
+
df["total_repetitions"] = df["newline_score"] + df["repetition_score"]
|
1298 |
+
df["perf"] = perf
|
1299 |
+
df["nrr"] = nrr
|
1300 |
+
df["rap"] = rap
|
1301 |
+
df["rr"] = df["nrr"].apply(lambda x: 1 - x)
|
1302 |
+
|
1303 |
+
if save:
|
1304 |
+
df.to_csv(csv_result_file, index=False)
|
1305 |
+
except Exception as e:
|
1306 |
+
print("An error occurred:", e)
|
1307 |
+
traceback.print_exc()
|
1308 |
+
print(f"csv_result_file: {csv_result_file}")
|
1309 |
+
|
1310 |
+
return result
|
notebooks/03a_RAPGeT_v2_Data Analysis_Chat_Template.ipynb
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:205197936482de4ebc17e7cad622a0e699303d062112cc45df85477e7f1f8328
|
3 |
+
size 1557858
|
notebooks/03b_RAPGeT_v2_Data Analysis_Generic_Prompt.ipynb
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e3885c9aa8fd8a1f83f6693df9c68a278575b6b1caf9e087c00eb6264d3e886
|
3 |
+
size 26471820
|
notebooks/03c_RAPGeT_v2_Data Analysis.ipynb
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26dcf7f7d287ca5c6135b26533495ec4d56ed3b0a7eac7d0e10f12aec4d95257
|
3 |
+
size 1714764
|
results/mac-results_rpp_with_mnt_2048_generic_prompt_metrics.csv
CHANGED
@@ -1,26 +1,27 @@
|
|
1 |
model,rpp,comet,meteor,spbleu,bleu_1,rouge_l,ews_score,repetition_score,total_repetitions,rr,rap,translation_completeness,num_max_output_tokens
|
2 |
-
internlm/internlm2_5-7b-chat,1.00,0.7357995069773978,0.4297612514398102,15.060226683930628,0.1506022668393063,0.4097577795330234,0.04942630185348632,9.235657546337158,9.285083848190645,0.07525035765379114,0.
|
3 |
-
internlm/internlm2_5-7b-chat,1.02,0.7377187550620283,0.4246676977198055,14.728605282752795,0.147286052827528,0.4063246630867048,0.06972639011473963,5.35657546337158,5.426301853486319,0.04625547346404442,0.
|
4 |
-
internlm/internlm2_5-7b-chat,1.04,0.7371160490183523,0.4173352728374962,13.846403511622256,0.1384640351162226,0.3988121301027288,0.06884377758164166,5.315092674315975,5.383936451897617,0.04501878242643857,0.
|
5 |
-
internlm/internlm2_5-7b-chat,1.06,0.7338597697698218,0.3997609847704189,12.213374588416173,0.1221337458841617,0.3841365748920261,0.05825242718446602,5.275375110326567,5.333627537511033,0.043830827367611756,0.
|
6 |
-
internlm/internlm2_5-7b-chat,1.08,0.7318234702626478,0.3881614120395272,11.369735763522288,0.1136973576352228,0.372963223209074,0.06707855251544571,5.283318623124448,5.350397175639894,0.04300663332269164,0.
|
7 |
-
internlm/internlm2_5-7b-chat,1.10,0.7288648442604431,0.3784182249483568,10.377989030628608,0.103779890306286,0.3618424457502351,0.05207413945278023,5.288614298323036,5.340688437775817,0.042176064682512025,0.
|
8 |
-
microsoft/Phi-3.5-mini-instruct,1.00,0.710605339281136,0.3788926591792472,9.70032874202361,0.097003287420236,0.3556134739443916,5.390997352162401,12.997352162400706,18.388349514563107,0.13770903562694164,0.
|
9 |
-
microsoft/Phi-3.5-mini-instruct,1.02,0.7150978385770836,0.3741049510326346,9.910633597905436,0.0991063359790543,0.3453160556383774,3.586054721977052,7.001765225066196,10.587819947043249,0.08180522500528503,0.
|
10 |
-
microsoft/Phi-3.5-mini-instruct,1.04,0.7074641684778791,0.3538698731015666,9.19721270538052,0.0919721270538052,0.3225824135517728,0.05119152691968226,0.05560458958517211,0.10679611650485436,0.000859149229250836,0.
|
11 |
-
microsoft/Phi-3.5-mini-instruct,1.06,0.6962301708225224,0.3252854575717334,6.967166383106307,0.069671663831063,0.2948764736589108,0.0353045013239188,0.06796116504854369,0.10326566637246248,0.0007865281839265906,0.
|
12 |
-
microsoft/Phi-3.5-mini-instruct,1.08,0.6823413657174107,0.301599095293242,5.452744292893752,0.0545274429289375,0.2726387617958179,0.07678729037952339,0.04766107678729038,0.12444836716681378,0.0009016671249608319,0.
|
13 |
-
microsoft/Phi-3.5-mini-instruct,1.10,0.6717851540206916,0.2885734336603344,4.751039447225815,0.0475103944722581,0.2604284999048123,0.08031774051191527,0.02383053839364519,0.10414827890556046,0.0007188284314919954,0.
|
14 |
-
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.00,0.739080294072365,0.4490104515425626,6.7013404492782405,0.0670134044927823,0.4196181637680596,0.36716681376875554,139.80935569285083,140.1765225066196,0.48362195756964893,0.
|
15 |
-
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.02,0.743018615750854,0.4514907128972251,8.545954556237808,0.085459545562378,0.4214940415288087,1.0035304501323918,67.00353045013239,68.00706090026479,0.2929644725635723,0.
|
16 |
-
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.04,0.7432195577780335,0.4517500968367987,10.080425294411064,0.1008042529441106,0.4200973007348334,0.01059135039717564,35.19770520741395,35.208296557811124,0.17564306911947306,0.
|
17 |
-
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.06,0.7430821573139815,0.4484154407825542,10.37470506193322,0.1037470506193321,0.4160289393328045,1.8005295675198587,26.880847308031775,28.68137687555163,0.1522966823356282,0.
|
18 |
-
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.08,0.7435937259684909,0.4407733547418294,10.930453247368872,0.1093045324736887,0.4113063412348818,0.09267431597528684,12.007943512797882,12.100617828773169,0.06721477842655646,0.
|
19 |
-
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.10,0.7427059700687901,0.4358940590119784,11.381344076286156,0.1138134407628615,0.4062980635945339,0.03971756398940865,0.6681376875551632,0.707855251544572,0.003961824217515018,0.
|
20 |
-
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.00,0.3888604919913587,0.2055875758168277,0.2434587181959752,0.0024345871819597,0.1844552188025856,638.2797881729921,3889.9232127096207,4528.203000882612,0.9210262088655917,0.
|
21 |
-
shenzhi-wang/
|
22 |
-
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.
|
23 |
-
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.
|
24 |
-
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.
|
25 |
-
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.
|
26 |
-
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.
|
|
|
|
1 |
model,rpp,comet,meteor,spbleu,bleu_1,rouge_l,ews_score,repetition_score,total_repetitions,rr,rap,translation_completeness,num_max_output_tokens
|
2 |
+
internlm/internlm2_5-7b-chat,1.00,0.7357995069773978,0.4297612514398102,15.060226683930628,0.1506022668393063,0.4097577795330234,0.04942630185348632,9.235657546337158,9.285083848190645,0.07525035765379114,0.581878095297299,1.0,2
|
3 |
+
internlm/internlm2_5-7b-chat,1.02,0.7377187550620283,0.4246676977198055,14.728605282752795,0.147286052827528,0.4063246630867048,0.06972639011473963,5.35657546337158,5.426301853486319,0.04625547346404442,0.6400103546749837,1.0,1
|
4 |
+
internlm/internlm2_5-7b-chat,1.04,0.7371160490183523,0.4173352728374962,13.846403511622256,0.1384640351162226,0.3988121301027288,0.06884377758164166,5.315092674315975,5.383936451897617,0.04501878242643857,0.6419783129560218,1.0,1
|
5 |
+
internlm/internlm2_5-7b-chat,1.06,0.7338597697698218,0.3997609847704189,12.213374588416173,0.1221337458841617,0.3841365748920261,0.05825242718446602,5.275375110326567,5.333627537511033,0.043830827367611756,0.6415304775228277,1.0,1
|
6 |
+
internlm/internlm2_5-7b-chat,1.08,0.7318234702626478,0.3881614120395272,11.369735763522288,0.1136973576352228,0.372963223209074,0.06707855251544571,5.283318623124448,5.350397175639894,0.04300663332269164,0.6414061446416202,1.0,1
|
7 |
+
internlm/internlm2_5-7b-chat,1.10,0.7288648442604431,0.3784182249483568,10.377989030628608,0.103779890306286,0.3618424457502351,0.05207413945278023,5.288614298323036,5.340688437775817,0.042176064682512025,0.6404777687452995,1.0,1
|
8 |
+
microsoft/Phi-3.5-mini-instruct,1.00,0.710605339281136,0.3788926591792472,9.70032874202361,0.097003287420236,0.3556134739443916,5.390997352162401,12.997352162400706,18.388349514563107,0.13770903562694164,0.4556065638568846,1.0,4
|
9 |
+
microsoft/Phi-3.5-mini-instruct,1.02,0.7150978385770836,0.3741049510326346,9.910633597905436,0.0991063359790543,0.3453160556383774,3.586054721977052,7.001765225066196,10.587819947043249,0.08180522500528503,0.5535666483700645,1.0,2
|
10 |
+
microsoft/Phi-3.5-mini-instruct,1.04,0.7074641684778791,0.3538698731015666,9.19721270538052,0.0919721270538052,0.3225824135517728,0.05119152691968226,0.05560458958517211,0.10679611650485436,0.000859149229250836,0.7056422827612971,1.0,0
|
11 |
+
microsoft/Phi-3.5-mini-instruct,1.06,0.6962301708225224,0.3252854575717334,6.967166383106307,0.069671663831063,0.2948764736589108,0.0353045013239188,0.06796116504854369,0.10326566637246248,0.0007865281839265906,0.6945886486476809,1.0,0
|
12 |
+
microsoft/Phi-3.5-mini-instruct,1.08,0.6823413657174107,0.301599095293242,5.452744292893752,0.0545274429289375,0.2726387617958179,0.07678729037952339,0.04766107678729038,0.12444836716681378,0.0009016671249608319,0.6804972951227785,1.0,0
|
13 |
+
microsoft/Phi-3.5-mini-instruct,1.10,0.6717851540206916,0.2885734336603344,4.751039447225815,0.0475103944722581,0.2604284999048123,0.08031774051191527,0.02383053839364519,0.10414827890556046,0.0007188284314919954,0.6703375003284932,1.0,0
|
14 |
+
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.00,0.739080294072365,0.4490104515425626,6.7013404492782405,0.0670134044927823,0.4196181637680596,0.36716681376875554,139.80935569285083,140.1765225066196,0.48362195756964893,0.10176417668651536,0.999117387466902,15
|
15 |
+
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.02,0.743018615750854,0.4514907128972251,8.545954556237808,0.085459545562378,0.4214940415288087,1.0035304501323918,67.00353045013239,68.00706090026479,0.2929644725635723,0.2626173445806161,1.0,6
|
16 |
+
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.04,0.7432195577780335,0.4517500968367987,10.080425294411064,0.1008042529441106,0.4200973007348334,0.01059135039717564,35.19770520741395,35.208296557811124,0.17564306911947306,0.4163542580947422,1.0,6
|
17 |
+
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.06,0.7430821573139815,0.4484154407825542,10.37470506193322,0.1037470506193321,0.4160289393328045,1.8005295675198587,26.880847308031775,28.68137687555163,0.1522966823356282,0.45265620897504616,1.0,3
|
18 |
+
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.08,0.7435937259684909,0.4407733547418294,10.930453247368872,0.1093045324736887,0.4113063412348818,0.09267431597528684,12.007943512797882,12.100617828773169,0.06721477842655646,0.6035047423944578,1.0,3
|
19 |
+
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.10,0.7427059700687901,0.4358940590119784,11.381344076286156,0.1138134407628615,0.4062980635945339,0.03971756398940865,0.6681376875551632,0.707855251544572,0.003961824217515018,0.7339134850401315,1.0,1
|
20 |
+
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.00,0.3888604919913587,0.2055875758168277,0.2434587181959752,0.0024345871819597,0.1844552188025856,638.2797881729921,3889.9232127096207,4528.203000882612,0.9210262088655917,0.00019153263422509847,0.9240953221535746,570
|
21 |
+
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.02,0.401959364669889,0.2020993340187826,0.2473696547531083,0.002473696547531,0.1795542969510355,611.315975286849,3759.7599293909975,4371.075904677847,0.8883366762655638,0.0005596465146821489,0.912621359223301,562
|
22 |
+
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.00,0.7222260562908512,0.4039898602650971,13.461179673541356,0.1346117967354136,0.3819960428004565,0.05736981465136805,5.87378640776699,5.931156222418358,0.05150372482295595,0.6162827926700337,1.0,1
|
23 |
+
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.02,0.723643534970515,0.4051102919608809,13.18537912294539,0.1318537912294539,0.3824621732976229,0.06266548984995587,5.840247131509267,5.902912621359223,0.05148734372113075,0.617524335498735,1.0,1
|
24 |
+
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.04,0.7238812581796301,0.4039456988919502,13.314773371306682,0.1331477337130668,0.3813737464821349,0.05736981465136805,5.845542806707855,5.902912621359223,0.05127418810757766,0.6181437496179476,1.0,1
|
25 |
+
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.06,0.7252625281686607,0.4012797167602334,13.19924345265053,0.1319924345265053,0.3798291332004637,0.06266548984995587,5.847308031774051,5.909973521624007,0.05081388730791121,0.6202251404786316,1.0,1
|
26 |
+
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.08,0.7261167238322592,0.3987395126194482,12.656486100206328,0.1265648610020633,0.376975448872996,0.05648720211827008,5.820829655781112,5.877316857899382,0.05012721880128273,0.6223042523816,1.0,1
|
27 |
+
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.10,0.7264630642225547,0.3964859769229444,12.284961706379857,0.1228496170637985,0.3744555065346823,0.04942630185348632,0.09267431597528684,0.14210061782877317,0.001266948385624464,0.7237053873903428,1.0,0
|
results/mac-results_rpp_with_mnt_2048_metrics.csv
CHANGED
@@ -1,31 +1,31 @@
|
|
1 |
model,rpp,comet,meteor,spbleu,bleu_1,rouge_l,ews_score,repetition_score,total_repetitions,rr,rap,translation_completeness,num_max_output_tokens
|
2 |
-
internlm/internlm2_5-7b-chat,1.00,0.739699612254078,0.4289996929258777,14.734881589173108,0.1473488158917311,0.4096466800937898,0.05383936451897617,12.606354810238305,12.660194174757281,0.10371655820679682,0.
|
3 |
-
internlm/internlm2_5-7b-chat,1.02,0.740223803961056,0.4266246904302194,14.583816688798017,0.1458381668879802,0.4071727106228415,0.06266548984995587,9.849073256840247,9.911738746690203,0.0832234063051179,0.
|
4 |
-
internlm/internlm2_5-7b-chat,1.04,0.7398856264610577,0.4154585167056314,13.534659133050225,0.1353465913305021,0.3968657713589718,0.07237422771403354,6.529567519858782,6.601941747572815,0.05613508442776736,0.
|
5 |
-
internlm/internlm2_5-7b-chat,1.06,0.7379362287241489,0.4039588647855378,12.346740971499404,0.1234674097149939,0.3872447044295494,0.06796116504854369,6.533980582524272,6.601941747572815,0.05513987689359035,0.
|
6 |
-
internlm/internlm2_5-7b-chat,1.08,0.7319988705684732,0.3873176839854818,11.075674965706344,0.1107567496570634,0.3724352909668609,0.05207413945278023,9.83495145631068,9.88702559576346,0.07906717392378437,0.
|
7 |
-
internlm/internlm2_5-7b-chat,1.10,0.7295350462119345,0.3769306874386757,10.305163787094209,0.1030516378709421,0.3634496155759507,0.07855251544571933,6.527802294792586,6.606354810238305,0.053004659594657756,0.
|
8 |
-
microsoft/Phi-3.5-mini-instruct,1.00,0.7107840433177544,0.3796831545348129,8.71296896471494,0.0871296896471493,0.3589874395901284,10.670785525154457,17.93821712268314,28.6090026478376,0.20225504327262062,0.
|
9 |
-
microsoft/Phi-3.5-mini-instruct,1.02,0.7164765837070485,0.3780585837553919,10.291240080163629,0.1029124008016362,0.3546952732427276,3.585172109443954,7.1403353927625774,10.725507502206531,0.08530053839296368,0.
|
10 |
-
microsoft/Phi-3.5-mini-instruct,1.04,0.7111233387336411,0.3547161333845742,8.966881655527896,0.0896688165552789,0.3300979657678754,3.6125330979699912,0.07325684024713151,3.685789938217123,0.02973427131098516,0.
|
11 |
-
microsoft/Phi-3.5-mini-instruct,1.06,0.7024363270136286,0.3298733737040869,7.076233088011138,0.0707623308801113,0.3019513312669543,0.04589585172109444,0.05207413945278023,0.09796999117387467,0.0007571675113745661,0.
|
12 |
-
microsoft/Phi-3.5-mini-instruct,1.08,0.6882111219210848,0.3054541022592767,5.105510599247868,0.0510551059924786,0.2736030007297014,3.3609885260370698,0.06443071491615181,3.4254192409532216,0.023581380370521147,0.
|
13 |
-
microsoft/Phi-3.5-mini-instruct,1.10,0.6712992989638161,0.2903831801547132,4.091958857999118,0.0409195885799911,0.251653275009876,0.32215357458075905,0.06531332744924978,0.38746690203000883,0.0023407216247487324,0.
|
14 |
-
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.00,0.7501818982248062,0.4611110508507017,17.87914973742753,0.1787914973742752,0.4340662057009564,0.00706090026478376,0.1262135922330097,0.13327449249779347,0.0011265209898463904,0.
|
15 |
-
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.02,0.7485114382045625,0.4571517219079576,17.436884594979905,0.174368845949799,0.4311385932640979,0.00706090026478376,0.11562224183583407,0.12268314210061783,0.0010382199383043404,0.
|
16 |
-
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.04,0.7500591586357918,0.4560467960364254,17.440173470996626,0.1744017347099662,0.4302844557731285,0.00706090026478376,0.13062665489849956,0.13768755516328332,0.0011593944393659004,0.
|
17 |
-
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.06,0.748812871571673,0.4520416361219855,16.89523258317781,0.168952325831778,0.4260026774745837,0.00706090026478376,0.0997352162400706,0.10679611650485436,0.0008902491962006224,0.
|
18 |
-
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.08,0.7473851635144647,0.4442106511292453,16.16623784482793,0.1616623784482792,0.4195129470585874,0.01059135039717564,0.13062665489849956,0.1412180052956752,0.001176591707969938,0.
|
19 |
-
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.10,0.7465709781131172,0.4379837926138161,15.60172257624066,0.1560172257624066,0.4132562932940978,0.01059135039717564,0.07855251544571933,0.08914386584289496,0.000734476013176936,0.
|
20 |
-
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.00,0.7426396049131678,0.433632501662176,15.209540658023398,0.1520954065802339,0.4089208235151474,0.00353045013239188,3.901147396293027,3.904677846425419,0.03237065275450547,0.
|
21 |
-
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.02,0.7436477056353469,0.4329054166518245,15.19102241646024,0.1519102241646024,0.4068967964789407,0.0,3.8905560458958517,3.8905560458958517,0.03219656852361788,0.
|
22 |
-
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.04,0.7440943776351209,0.4320478700956207,15.05135166158296,0.1505135166158296,0.4062008380201262,0.00353045013239188,0.1526919682259488,0.1562224183583407,0.001352332200022921,0.
|
23 |
-
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.06,0.7426502735395928,0.4275429314912545,14.449130821290163,0.1444913082129016,0.4001409979222783,0.00706090026478376,0.13768755516328332,0.14474845542806708,0.0012399256044637321,0.
|
24 |
-
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.08,0.7408098006080129,0.4206626658729054,13.933703757385222,0.1393370375738522,0.3964824268676203,0.00353045013239188,0.1297440423654016,0.13327449249779347,0.001134996993385448,0.
|
25 |
-
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.10,0.7392685912871718,0.4111211240399151,13.303738403756984,0.1330373840375698,0.3870959581563503,0.00353045013239188,0.12180052956751986,0.12533097969991175,0.0010529672171262895,0.
|
26 |
-
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.00,0.7240239171358935,0.4068335357738006,13.565136550617618,0.1356513655061761,0.3866395067055498,0.0529567519858782,0.1209179170344219,0.17387466902030008,0.001578993772192076,0.
|
27 |
-
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.02,0.7263097057327799,0.4064914781094827,13.42987641622816,0.1342987641622816,0.3863697821025159,0.06001765225066196,6.236540158870256,6.296557811120918,0.0541899611084103,0.
|
28 |
-
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.04,0.7276128307708258,0.4054859896994975,13.295092218891954,0.1329509221889195,0.3851203729935697,0.05207413945278023,0.1297440423654016,0.18181818181818182,0.0016533037985858635,0.
|
29 |
-
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.06,0.7276865132383193,0.4014727027723293,13.10860799057166,0.1310860799057166,0.3804952786306688,0.05207413945278023,0.13415710503089143,0.18623124448367168,0.001691057431836761,0.
|
30 |
-
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.08,0.726393195584298,0.3987018836449559,12.850537785783194,0.1285053778578319,0.3788945955746495,0.05648720211827008,0.15357458075904679,0.21006178287731686,0.0018871365478087807,0.
|
31 |
-
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.10,0.7244012304511832,0.3932239948456176,12.361161644811926,0.1236116164481192,0.3733413807007665,0.05030891438658429,0.08561341571050309,0.13592233009708737,0.0012217374057913526,0.
|
|
|
1 |
model,rpp,comet,meteor,spbleu,bleu_1,rouge_l,ews_score,repetition_score,total_repetitions,rr,rap,translation_completeness,num_max_output_tokens
|
2 |
+
internlm/internlm2_5-7b-chat,1.00,0.739699612254078,0.4289996929258777,14.734881589173108,0.1473488158917311,0.4096466800937898,0.05383936451897617,12.606354810238305,12.660194174757281,0.10371655820679682,0.5325881640465967,1.0,2
|
3 |
+
internlm/internlm2_5-7b-chat,1.02,0.740223803961056,0.4266246904302194,14.583816688798017,0.1458381668879802,0.4071727106228415,0.06266548984995587,9.849073256840247,9.911738746690203,0.0832234063051179,0.5703659582906754,1.0,1
|
4 |
+
internlm/internlm2_5-7b-chat,1.04,0.7398856264610577,0.4154585167056314,13.534659133050225,0.1353465913305021,0.3968657713589718,0.07237422771403354,6.529567519858782,6.601941747572815,0.05613508442776736,0.6221485884888651,1.0,1
|
5 |
+
internlm/internlm2_5-7b-chat,1.06,0.7379362287241489,0.4039588647855378,12.346740971499404,0.1234674097149939,0.3872447044295494,0.06796116504854369,6.533980582524272,6.601941747572815,0.05513987689359035,0.6224742543197805,0.999117387466902,1
|
6 |
+
internlm/internlm2_5-7b-chat,1.08,0.7319988705684732,0.3873176839854818,11.075674965706344,0.1107567496570634,0.3724352909668609,0.05207413945278023,9.83495145631068,9.88702559576346,0.07906717392378437,0.5717343310562308,0.999117387466902,1
|
7 |
+
internlm/internlm2_5-7b-chat,1.10,0.7295350462119345,0.3769306874386757,10.305163787094209,0.1030516378709421,0.3634496155759507,0.07855251544571933,6.527802294792586,6.606354810238305,0.053004659594657756,0.6195690090849183,0.999117387466902,1
|
8 |
+
microsoft/Phi-3.5-mini-instruct,1.00,0.7107840433177544,0.3796831545348129,8.71296896471494,0.0871296896471493,0.3589874395901284,10.670785525154457,17.93821712268314,28.6090026478376,0.20225504327262062,0.3608526271635592,1.0,6
|
9 |
+
microsoft/Phi-3.5-mini-instruct,1.02,0.7164765837070485,0.3780585837553919,10.291240080163629,0.1029124008016362,0.3546952732427276,3.585172109443954,7.1403353927625774,10.725507502206531,0.08530053839296368,0.5483240204881398,1.0,2
|
10 |
+
microsoft/Phi-3.5-mini-instruct,1.04,0.7111233387336411,0.3547161333845742,8.966881655527896,0.0896688165552789,0.3300979657678754,3.6125330979699912,0.07325684024713151,3.685789938217123,0.02973427131098516,0.6495566110355127,1.0,1
|
11 |
+
microsoft/Phi-3.5-mini-instruct,1.06,0.7024363270136286,0.3298733737040869,7.076233088011138,0.0707623308801113,0.3019513312669543,0.04589585172109444,0.05207413945278023,0.09796999117387467,0.0007571675113745661,0.7008419489376413,1.0,0
|
12 |
+
microsoft/Phi-3.5-mini-instruct,1.08,0.6882111219210848,0.3054541022592767,5.105510599247868,0.0510551059924786,0.2736030007297014,3.3609885260370698,0.06443071491615181,3.4254192409532216,0.023581380370521147,0.6406632969877,1.0,1
|
13 |
+
microsoft/Phi-3.5-mini-instruct,1.10,0.6712992989638161,0.2903831801547132,4.091958857999118,0.0409195885799911,0.251653275009876,0.32215357458075905,0.06531332744924978,0.38746690203000883,0.0023407216247487324,0.6665963500989894,1.0,0
|
14 |
+
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.00,0.7501818982248062,0.4611110508507017,17.87914973742753,0.1787914973742752,0.4340662057009564,0.00706090026478376,0.1262135922330097,0.13327449249779347,0.0011265209898463904,0.7476494662426587,1.0,0
|
15 |
+
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.02,0.7485114382045625,0.4571517219079576,17.436884594979905,0.174368845949799,0.4311385932640979,0.00706090026478376,0.11562224183583407,0.12268314210061783,0.0010382199383043404,0.7461824993322019,1.0,0
|
16 |
+
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.04,0.7500591586357918,0.4560467960364254,17.440173470996626,0.1744017347099662,0.4302844557731285,0.00706090026478376,0.13062665489849956,0.13768755516328332,0.0011593944393659004,0.7474533388920676,1.0,0
|
17 |
+
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.06,0.748812871571673,0.4520416361219855,16.89523258317781,0.168952325831778,0.4260026774745837,0.00706090026478376,0.0997352162400706,0.10679611650485436,0.0008902491962006224,0.7468147612728927,1.0,0
|
18 |
+
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.08,0.7473851635144647,0.4442106511292453,16.16623784482793,0.1616623784482792,0.4195129470585874,0.01059135039717564,0.13062665489849956,0.1412180052956752,0.001176591707969938,0.7447501647073623,1.0,0
|
19 |
+
shenzhi-wang/Llama3.1-70B-Chinese-Chat,1.10,0.7465709781131172,0.4379837926138161,15.60172257624066,0.1560172257624066,0.4132562932940978,0.01059135039717564,0.07855251544571933,0.08914386584289496,0.000734476013176936,0.7449271706150111,1.0,0
|
20 |
+
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.00,0.7426396049131678,0.433632501662176,15.209540658023398,0.1520954065802339,0.4089208235151474,0.00353045013239188,3.901147396293027,3.904677846425419,0.03237065275450547,0.6728297734832243,1.0,1
|
21 |
+
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.02,0.7436477056353469,0.4329054166518245,15.19102241646024,0.1519102241646024,0.4068967964789407,0.0,3.8905560458958517,3.8905560458958517,0.03219656852361788,0.6741068111074712,1.0,1
|
22 |
+
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.04,0.7440943776351209,0.4320478700956207,15.05135166158296,0.1505135166158296,0.4062008380201262,0.00353045013239188,0.1526919682259488,0.1562224183583407,0.001352332200022921,0.7410796698393737,1.0,0
|
23 |
+
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.06,0.7426502735395928,0.4275429314912545,14.449130821290163,0.1444913082129016,0.4001409979222783,0.00706090026478376,0.13768755516328332,0.14474845542806708,0.0012399256044637321,0.7398912041420567,1.0,0
|
24 |
+
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.08,0.7408098006080129,0.4206626658729054,13.933703757385222,0.1393370375738522,0.3964824268676203,0.00353045013239188,0.1297440423654016,0.13327449249779347,0.001134996993385448,0.7382902118097237,1.0,0
|
25 |
+
shenzhi-wang/Llama3.1-8B-Chinese-Chat,1.10,0.7392685912871718,0.4111211240399151,13.303738403756984,0.1330373840375698,0.3870959581563503,0.00353045013239188,0.12180052956751986,0.12533097969991175,0.0010529672171262895,0.7369357726201563,1.0,0
|
26 |
+
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.00,0.7240239171358935,0.4068335357738006,13.565136550617618,0.1356513655061761,0.3866395067055498,0.0529567519858782,0.1209179170344219,0.17387466902030008,0.001578993772192076,0.7205996419729696,1.0,0
|
27 |
+
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.02,0.7263097057327799,0.4064914781094827,13.42987641622816,0.1342987641622816,0.3863697821025159,0.06001765225066196,6.236540158870256,6.296557811120918,0.0541899611084103,0.6145165811709306,1.0,1
|
28 |
+
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.04,0.7276128307708258,0.4054859896994975,13.295092218891954,0.1329509221889195,0.3851203729935697,0.05207413945278023,0.1297440423654016,0.18181818181818182,0.0016533037985858635,0.7240098989116803,1.0,0
|
29 |
+
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.06,0.7276865132383193,0.4014727027723293,13.10860799057166,0.1310860799057166,0.3804952786306688,0.05207413945278023,0.13415710503089143,0.18623124448367168,0.001691057431836761,0.7240010735018495,1.0,0
|
30 |
+
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.08,0.726393195584298,0.3987018836449559,12.850537785783194,0.1285053778578319,0.3788945955746495,0.05648720211827008,0.15357458075904679,0.21006178287731686,0.0018871365478087807,0.7222885419382362,1.0,0
|
31 |
+
shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat,1.10,0.7244012304511832,0.3932239948456176,12.361161644811926,0.1236116164481192,0.3733413807007665,0.05030891438658429,0.08561341571050309,0.13592233009708737,0.0012217374057913526,0.721749388705754,1.0,0
|