Spaces:
Build error
Build error
ready for gpu cluster
Browse files- llm_toolkit/chat.py +0 -88
- llm_toolkit/eval.py +44 -24
- llm_toolkit/eval_lf.py +0 -110
- llm_toolkit/llm_utils.py +41 -0
- llm_toolkit/translation_engine.py +0 -130
- llm_toolkit/translation_utils.py +2 -2
- llm_toolkit/tune.py +0 -143
- notebooks/00_Data_Analysis.ipynb +0 -0
- notebooks/01_Qwen2-0.5B_Unsloth.ipynb +0 -0
- notebooks/02_Qwen2-1.5B_Unsloth.ipynb +0 -0
- notebooks/03_Qwen2-0.5B_1.5B-4bit.ipynb +0 -0
- notebooks/04_tune-small-no-flash-attn.ipynb +0 -0
- notebooks/05_tune-small-with-flash-attn.ipynb +0 -0
- notebooks/06_tune-small-py3.11.ipynb +0 -0
- notebooks/07_tune-lf-py3.11.ipynb +0 -0
- notebooks/07r2_tune-lf-py3.11.ipynb +0 -0
- notebooks/08_eval-lf-py3.11.ipynb +0 -0
- results/experiment-1-results.csv +0 -3
- results/experiment-2-results.csv +0 -3
- results/experiment-3-results.csv +0 -3
- results/mac-results-no-flash-attn.csv +0 -3
- results/mac-results-with-flash-attn.csv +0 -3
- results/mac-results.csv +0 -3
- results/mac-results_final.csv +0 -3
- results/mac-results_lf-r2.csv +0 -3
- results/mac-results_lf-r3.csv +0 -3
- results/mac-results_lf.csv +0 -3
- results/mac-results_py3.11.csv +0 -3
- results/mac-results_v3.csv +0 -3
- results/model_training_evaluation_times.csv +0 -3
- scripts/eval-mac.sh +10 -5
- scripts/eval-model.sh +10 -0
llm_toolkit/chat.py
DELETED
@@ -1,88 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
from llamafactory.chat import ChatModel
|
4 |
-
from llamafactory.extras.misc import torch_gc
|
5 |
-
|
6 |
-
from dotenv import find_dotenv, load_dotenv
|
7 |
-
|
8 |
-
found_dotenv = find_dotenv(".env")
|
9 |
-
|
10 |
-
if len(found_dotenv) == 0:
|
11 |
-
found_dotenv = find_dotenv(".env.example")
|
12 |
-
print(f"loading env vars from: {found_dotenv}")
|
13 |
-
load_dotenv(found_dotenv, override=False)
|
14 |
-
|
15 |
-
path = os.path.dirname(found_dotenv)
|
16 |
-
print(f"Adding {path} to sys.path")
|
17 |
-
sys.path.append(path)
|
18 |
-
|
19 |
-
from llm_toolkit.translation_engine import *
|
20 |
-
from llm_toolkit.translation_utils import *
|
21 |
-
|
22 |
-
model_name = os.getenv("MODEL_NAME")
|
23 |
-
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
|
24 |
-
eval_base_model = os.getenv("EVAL_BASE_MODEL") == "true"
|
25 |
-
eval_fine_tuned = os.getenv("EVAL_FINE_TUNED") == "true"
|
26 |
-
save_fine_tuned_model = os.getenv("SAVE_FINE_TUNED") == "true"
|
27 |
-
num_train_epochs = int(os.getenv("NUM_TRAIN_EPOCHS") or 0)
|
28 |
-
data_path = os.getenv("DATA_PATH")
|
29 |
-
results_path = os.getenv("RESULTS_PATH")
|
30 |
-
|
31 |
-
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
32 |
-
dtype = (
|
33 |
-
None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
34 |
-
)
|
35 |
-
|
36 |
-
print(
|
37 |
-
model_name,
|
38 |
-
load_in_4bit,
|
39 |
-
max_seq_length,
|
40 |
-
num_train_epochs,
|
41 |
-
dtype,
|
42 |
-
data_path,
|
43 |
-
results_path,
|
44 |
-
eval_base_model,
|
45 |
-
eval_fine_tuned,
|
46 |
-
save_fine_tuned_model,
|
47 |
-
)
|
48 |
-
|
49 |
-
adapter_name_or_path = (
|
50 |
-
sys.argv[1]
|
51 |
-
if len(sys.argv) > 1
|
52 |
-
else "llama-factory/saves/qwen2-0.5b/lora/sft/checkpoint-560"
|
53 |
-
)
|
54 |
-
|
55 |
-
args = dict(
|
56 |
-
model_name_or_path=model_name, # use bnb-4bit-quantized Llama-3-8B-Instruct model
|
57 |
-
adapter_name_or_path=adapter_name_or_path, # load the saved LoRA adapters
|
58 |
-
template="chatml", # same to the one in training
|
59 |
-
finetuning_type="lora", # same to the one in training
|
60 |
-
quantization_bit=4, # load 4-bit quantized model
|
61 |
-
)
|
62 |
-
chat_model = ChatModel(args)
|
63 |
-
|
64 |
-
messages = []
|
65 |
-
print(
|
66 |
-
"Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application."
|
67 |
-
)
|
68 |
-
while True:
|
69 |
-
query = input("\nUser: ")
|
70 |
-
if query.strip() == "exit":
|
71 |
-
break
|
72 |
-
if query.strip() == "clear":
|
73 |
-
messages = []
|
74 |
-
torch_gc()
|
75 |
-
print("History has been removed.")
|
76 |
-
continue
|
77 |
-
|
78 |
-
messages.append({"role": "user", "content": query})
|
79 |
-
print("Assistant: ", end="", flush=True)
|
80 |
-
|
81 |
-
response = ""
|
82 |
-
for new_text in chat_model.stream_chat(messages):
|
83 |
-
print(new_text, end="", flush=True)
|
84 |
-
response += new_text
|
85 |
-
print()
|
86 |
-
messages.append({"role": "assistant", "content": response})
|
87 |
-
|
88 |
-
torch_gc()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llm_toolkit/eval.py
CHANGED
@@ -17,6 +17,9 @@ sys.path.append(path)
|
|
17 |
from llm_toolkit.llm_utils import *
|
18 |
from llm_toolkit.translation_utils import *
|
19 |
|
|
|
|
|
|
|
20 |
model_name = os.getenv("MODEL_NAME")
|
21 |
adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH")
|
22 |
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
|
@@ -25,21 +28,26 @@ results_path = os.getenv("RESULTS_PATH")
|
|
25 |
|
26 |
print(model_name, adapter_name_or_path, load_in_4bit, data_path, results_path)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
model, tokenizer = load_model(
|
35 |
model_name, load_in_4bit=load_in_4bit, adapter_name_or_path=adapter_name_or_path
|
36 |
)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
print(f"{
|
|
|
43 |
|
44 |
datasets = load_translation_dataset(data_path, tokenizer)
|
45 |
|
@@ -51,25 +59,37 @@ if len(sys.argv) > 1:
|
|
51 |
|
52 |
print_row_details(datasets["test"].to_pandas(), indices=[0, -1])
|
53 |
|
54 |
-
print("Evaluating model: " + model_name)
|
55 |
-
predictions = eval_model(model, tokenizer, datasets["test"])
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if adapter_name_or_path is not None:
|
64 |
-
model_name += "
|
65 |
|
66 |
-
|
|
|
|
|
67 |
model_name,
|
68 |
-
results_path,
|
69 |
datasets["test"],
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
72 |
)
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
17 |
from llm_toolkit.llm_utils import *
|
18 |
from llm_toolkit.translation_utils import *
|
19 |
|
20 |
+
device = check_gpu()
|
21 |
+
is_cuda = torch.cuda.is_available()
|
22 |
+
|
23 |
model_name = os.getenv("MODEL_NAME")
|
24 |
adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH")
|
25 |
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
|
|
|
28 |
|
29 |
print(model_name, adapter_name_or_path, load_in_4bit, data_path, results_path)
|
30 |
|
31 |
+
if is_cuda:
|
32 |
+
torch.cuda.empty_cache()
|
33 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
34 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
35 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
36 |
+
print(f"(0) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
37 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
38 |
+
|
39 |
+
torch.cuda.empty_cache()
|
40 |
|
41 |
model, tokenizer = load_model(
|
42 |
model_name, load_in_4bit=load_in_4bit, adapter_name_or_path=adapter_name_or_path
|
43 |
)
|
44 |
|
45 |
+
if is_cuda:
|
46 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
47 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
48 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
49 |
+
print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
50 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
51 |
|
52 |
datasets = load_translation_dataset(data_path, tokenizer)
|
53 |
|
|
|
59 |
|
60 |
print_row_details(datasets["test"].to_pandas(), indices=[0, -1])
|
61 |
|
|
|
|
|
62 |
|
63 |
+
def on_repetition_penalty_step_completed(model_name, predictions):
|
64 |
+
save_results(
|
65 |
+
model_name,
|
66 |
+
results_path,
|
67 |
+
datasets["test"],
|
68 |
+
predictions,
|
69 |
+
)
|
70 |
+
|
71 |
+
metrics = calc_metrics(datasets["test"]["english"], predictions, debug=True)
|
72 |
+
print(f"{model_name} metrics: {metrics}")
|
73 |
+
|
74 |
|
75 |
if adapter_name_or_path is not None:
|
76 |
+
model_name += "/" + adapter_name_or_path.split("/")[-1]
|
77 |
|
78 |
+
evaluate_model_with_repetition_penalty(
|
79 |
+
model,
|
80 |
+
tokenizer,
|
81 |
model_name,
|
|
|
82 |
datasets["test"],
|
83 |
+
on_repetition_penalty_step_completed,
|
84 |
+
start_repetition_penalty=1.0,
|
85 |
+
end_repetition_penalty=1.3,
|
86 |
+
step_repetition_penalty=0.02,
|
87 |
+
device=device,
|
88 |
)
|
89 |
|
90 |
+
if is_cuda:
|
91 |
+
gpu_stats = torch.cuda.get_device_properties(0)
|
92 |
+
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
93 |
+
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
94 |
+
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
95 |
+
print(f"{start_gpu_memory} GB of memory reserved.")
|
llm_toolkit/eval_lf.py
DELETED
@@ -1,110 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import torch
|
4 |
-
from dotenv import find_dotenv, load_dotenv
|
5 |
-
from llamafactory.chat import ChatModel
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
7 |
-
|
8 |
-
found_dotenv = find_dotenv(".env")
|
9 |
-
|
10 |
-
if len(found_dotenv) == 0:
|
11 |
-
found_dotenv = find_dotenv(".env.example")
|
12 |
-
print(f"loading env vars from: {found_dotenv}")
|
13 |
-
load_dotenv(found_dotenv, override=False)
|
14 |
-
|
15 |
-
path = os.path.dirname(found_dotenv)
|
16 |
-
print(f"Adding {path} to sys.path")
|
17 |
-
sys.path.append(path)
|
18 |
-
|
19 |
-
from llm_toolkit.translation_utils import *
|
20 |
-
|
21 |
-
model_name = os.getenv("MODEL_NAME")
|
22 |
-
adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH")
|
23 |
-
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
|
24 |
-
data_path = os.getenv("DATA_PATH")
|
25 |
-
results_path = os.getenv("RESULTS_PATH")
|
26 |
-
|
27 |
-
print(model_name, adapter_name_or_path, load_in_4bit, data_path, results_path)
|
28 |
-
|
29 |
-
|
30 |
-
def load_model(
|
31 |
-
model_name,
|
32 |
-
max_seq_length=2048,
|
33 |
-
dtype=torch.bfloat16,
|
34 |
-
load_in_4bit=False,
|
35 |
-
adapter_name_or_path=None,
|
36 |
-
):
|
37 |
-
print(f"loading model: {model_name}")
|
38 |
-
|
39 |
-
if adapter_name_or_path:
|
40 |
-
template = "llama3" if "llama-3" in model_name.lower() else "chatml"
|
41 |
-
|
42 |
-
args = dict(
|
43 |
-
model_name_or_path=model_name,
|
44 |
-
adapter_name_or_path=adapter_name_or_path, # load the saved LoRA adapters
|
45 |
-
template=template, # same to the one in training
|
46 |
-
finetuning_type="lora", # same to the one in training
|
47 |
-
quantization_bit=4 if load_in_4bit else None, # load 4-bit quantized model
|
48 |
-
)
|
49 |
-
chat_model = ChatModel(args)
|
50 |
-
return chat_model.engine.model, chat_model.engine.tokenizer
|
51 |
-
|
52 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
53 |
-
bnb_config = BitsAndBytesConfig(
|
54 |
-
load_in_4bit=load_in_4bit,
|
55 |
-
bnb_4bit_quant_type="nf4",
|
56 |
-
bnb_4bit_use_double_quant=False,
|
57 |
-
bnb_4bit_compute_dtype=dtype,
|
58 |
-
)
|
59 |
-
|
60 |
-
model = AutoModelForCausalLM.from_pretrained(
|
61 |
-
model_name,
|
62 |
-
quantization_config=bnb_config,
|
63 |
-
torch_dtype=dtype,
|
64 |
-
trust_remote_code=True,
|
65 |
-
device_map="auto",
|
66 |
-
)
|
67 |
-
|
68 |
-
return model, tokenizer
|
69 |
-
|
70 |
-
|
71 |
-
gpu_stats = torch.cuda.get_device_properties(0)
|
72 |
-
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
73 |
-
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
74 |
-
print(f"(1) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
75 |
-
print(f"{start_gpu_memory} GB of memory reserved.")
|
76 |
-
|
77 |
-
model, tokenizer = load_model(
|
78 |
-
model_name, load_in_4bit=load_in_4bit, adapter_name_or_path=adapter_name_or_path
|
79 |
-
)
|
80 |
-
|
81 |
-
gpu_stats = torch.cuda.get_device_properties(0)
|
82 |
-
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
83 |
-
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
84 |
-
print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
85 |
-
print(f"{start_gpu_memory} GB of memory reserved.")
|
86 |
-
|
87 |
-
datasets = load_translation_dataset(data_path, tokenizer)
|
88 |
-
|
89 |
-
print("Evaluating model: " + model_name)
|
90 |
-
predictions = eval_model(model, tokenizer, datasets["test"])
|
91 |
-
|
92 |
-
gpu_stats = torch.cuda.get_device_properties(0)
|
93 |
-
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
94 |
-
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
95 |
-
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
96 |
-
print(f"{start_gpu_memory} GB of memory reserved.")
|
97 |
-
|
98 |
-
if adapter_name_or_path is not None:
|
99 |
-
model_name += "_" + adapter_name_or_path.split("/")[-1]
|
100 |
-
|
101 |
-
save_results(
|
102 |
-
model_name,
|
103 |
-
results_path,
|
104 |
-
datasets["test"],
|
105 |
-
predictions,
|
106 |
-
debug=True,
|
107 |
-
)
|
108 |
-
|
109 |
-
metrics = calc_metrics(datasets["test"]["english"], predictions, debug=True)
|
110 |
-
print(metrics)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llm_toolkit/llm_utils.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import re
|
|
|
3 |
import torch
|
4 |
from transformers import (
|
5 |
AutoModelForCausalLM,
|
@@ -197,6 +198,46 @@ def eval_model(
|
|
197 |
return predictions
|
198 |
|
199 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
def save_model(
|
201 |
model,
|
202 |
tokenizer,
|
|
|
1 |
import os
|
2 |
import re
|
3 |
+
import numpy as np
|
4 |
import torch
|
5 |
from transformers import (
|
6 |
AutoModelForCausalLM,
|
|
|
198 |
return predictions
|
199 |
|
200 |
|
201 |
+
def evaluate_model_with_repetition_penalty(
|
202 |
+
model,
|
203 |
+
tokenizer,
|
204 |
+
model_name,
|
205 |
+
dataset,
|
206 |
+
on_repetition_penalty_step_completed,
|
207 |
+
start_repetition_penalty=1.0,
|
208 |
+
end_repetition_penalty=1.3,
|
209 |
+
step_repetition_penalty=0.02,
|
210 |
+
device="cuda",
|
211 |
+
):
|
212 |
+
print(f"Evaluating model: {model_name} on {device}")
|
213 |
+
|
214 |
+
for repetition_penalty in np.arange(
|
215 |
+
start_repetition_penalty,
|
216 |
+
end_repetition_penalty + step_repetition_penalty / 2,
|
217 |
+
step_repetition_penalty,
|
218 |
+
):
|
219 |
+
# round to 2 decimal places
|
220 |
+
repetition_penalty = round(repetition_penalty, 2)
|
221 |
+
print(f"*** Evaluating with repetition_penalty: {repetition_penalty}")
|
222 |
+
predictions = eval_model(
|
223 |
+
model,
|
224 |
+
tokenizer,
|
225 |
+
dataset,
|
226 |
+
device=device,
|
227 |
+
repetition_penalty=repetition_penalty,
|
228 |
+
)
|
229 |
+
|
230 |
+
model_name_with_rp = f"{model_name}/rpp-{repetition_penalty:.2f}"
|
231 |
+
|
232 |
+
try:
|
233 |
+
on_repetition_penalty_step_completed(
|
234 |
+
model_name_with_rp,
|
235 |
+
predictions,
|
236 |
+
)
|
237 |
+
except Exception as e:
|
238 |
+
print(e)
|
239 |
+
|
240 |
+
|
241 |
def save_model(
|
242 |
model,
|
243 |
tokenizer,
|
llm_toolkit/translation_engine.py
DELETED
@@ -1,130 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import pandas as pd
|
3 |
-
import torch
|
4 |
-
from unsloth import FastLanguageModel, is_bfloat16_supported
|
5 |
-
from trl import SFTTrainer
|
6 |
-
from transformers import TrainingArguments, TextStreamer
|
7 |
-
from llm_toolkit.translation_utils import *
|
8 |
-
from llamafactory.chat import ChatModel
|
9 |
-
|
10 |
-
print(f"loading {__file__}")
|
11 |
-
|
12 |
-
|
13 |
-
def get_model_names(
|
14 |
-
model_name, save_method="merged_4bit_forced", quantization_method="q5_k_m"
|
15 |
-
):
|
16 |
-
hub_model = model_name.split("/")[-1] + "-MAC-"
|
17 |
-
local_model = "models/" + hub_model
|
18 |
-
|
19 |
-
return {
|
20 |
-
"local": local_model + save_method,
|
21 |
-
"local-gguf": local_model + quantization_method,
|
22 |
-
"hub": hub_model + save_method,
|
23 |
-
"hub-gguf": hub_model + "gguf-" + quantization_method,
|
24 |
-
}
|
25 |
-
|
26 |
-
|
27 |
-
def load_model(
|
28 |
-
model_name,
|
29 |
-
max_seq_length=2048,
|
30 |
-
dtype=None,
|
31 |
-
load_in_4bit=False,
|
32 |
-
template="chatml",
|
33 |
-
adapter_name_or_path=None,
|
34 |
-
):
|
35 |
-
print(f"loading model: {model_name}")
|
36 |
-
|
37 |
-
if adapter_name_or_path:
|
38 |
-
args = dict(
|
39 |
-
model_name_or_path=model_name,
|
40 |
-
adapter_name_or_path=adapter_name_or_path, # load the saved LoRA adapters
|
41 |
-
template=template, # same to the one in training
|
42 |
-
finetuning_type="lora", # same to the one in training
|
43 |
-
quantization_bit=4, # load 4-bit quantized model
|
44 |
-
)
|
45 |
-
chat_model = ChatModel(args)
|
46 |
-
return chat_model.engine.model, chat_model.engine.tokenizer
|
47 |
-
|
48 |
-
model, tokenizer = FastLanguageModel.from_pretrained(
|
49 |
-
model_name=model_name, # YOUR MODEL YOU USED FOR TRAINING
|
50 |
-
max_seq_length=max_seq_length,
|
51 |
-
dtype=dtype,
|
52 |
-
load_in_4bit=load_in_4bit,
|
53 |
-
trust_remote_code=True,
|
54 |
-
)
|
55 |
-
FastLanguageModel.for_inference(model)
|
56 |
-
|
57 |
-
return model, tokenizer
|
58 |
-
|
59 |
-
|
60 |
-
def test_model(model, tokenizer, prompt):
|
61 |
-
inputs = tokenizer(
|
62 |
-
[prompt],
|
63 |
-
return_tensors="pt",
|
64 |
-
).to("cuda")
|
65 |
-
|
66 |
-
text_streamer = TextStreamer(tokenizer)
|
67 |
-
|
68 |
-
_ = model.generate(
|
69 |
-
**inputs, max_new_tokens=128, streamer=text_streamer, use_cache=True
|
70 |
-
)
|
71 |
-
|
72 |
-
|
73 |
-
def load_trainer(
|
74 |
-
model,
|
75 |
-
tokenizer,
|
76 |
-
dataset,
|
77 |
-
num_train_epochs,
|
78 |
-
max_seq_length=2048,
|
79 |
-
fp16=False,
|
80 |
-
bf16=False,
|
81 |
-
output_dir="./outputs",
|
82 |
-
):
|
83 |
-
model = FastLanguageModel.get_peft_model(
|
84 |
-
model,
|
85 |
-
r=16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
86 |
-
target_modules=[
|
87 |
-
"q_proj",
|
88 |
-
"k_proj",
|
89 |
-
"v_proj",
|
90 |
-
"o_proj",
|
91 |
-
"gate_proj",
|
92 |
-
"up_proj",
|
93 |
-
"down_proj",
|
94 |
-
],
|
95 |
-
lora_alpha=16,
|
96 |
-
lora_dropout=0, # Supports any, but = 0 is optimized
|
97 |
-
bias="none", # Supports any, but = "none" is optimized
|
98 |
-
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
99 |
-
use_gradient_checkpointing="unsloth", # True or "unsloth" for very long context
|
100 |
-
random_state=3407,
|
101 |
-
use_rslora=False, # We support rank stabilized LoRA
|
102 |
-
loftq_config=None, # And LoftQ
|
103 |
-
)
|
104 |
-
|
105 |
-
trainer = SFTTrainer(
|
106 |
-
model=model,
|
107 |
-
tokenizer=tokenizer,
|
108 |
-
train_dataset=dataset,
|
109 |
-
dataset_text_field="text",
|
110 |
-
max_seq_length=max_seq_length,
|
111 |
-
dataset_num_proc=2,
|
112 |
-
packing=False, # Can make training 5x faster for short sequences.
|
113 |
-
args=TrainingArguments(
|
114 |
-
per_device_train_batch_size=2,
|
115 |
-
gradient_accumulation_steps=4,
|
116 |
-
warmup_steps=5,
|
117 |
-
num_train_epochs=num_train_epochs,
|
118 |
-
learning_rate=2e-4,
|
119 |
-
fp16=not is_bfloat16_supported(),
|
120 |
-
bf16=is_bfloat16_supported(),
|
121 |
-
logging_steps=100,
|
122 |
-
optim="adamw_8bit",
|
123 |
-
weight_decay=0.01,
|
124 |
-
lr_scheduler_type="linear",
|
125 |
-
seed=3407,
|
126 |
-
output_dir=output_dir,
|
127 |
-
),
|
128 |
-
)
|
129 |
-
|
130 |
-
return trainer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llm_toolkit/translation_utils.py
CHANGED
@@ -159,14 +159,14 @@ def load_translation_dataset(data_path, tokenizer=None):
|
|
159 |
return datasets
|
160 |
|
161 |
|
162 |
-
def eval_model(model, tokenizer, eval_dataset):
|
163 |
total = len(eval_dataset)
|
164 |
predictions = []
|
165 |
for i in tqdm(range(total)):
|
166 |
inputs = tokenizer(
|
167 |
eval_dataset["prompt"][i : i + 1],
|
168 |
return_tensors="pt",
|
169 |
-
).to(
|
170 |
|
171 |
outputs = model.generate(**inputs, max_new_tokens=4096, use_cache=False)
|
172 |
decoded_output = tokenizer.batch_decode(outputs)
|
|
|
159 |
return datasets
|
160 |
|
161 |
|
162 |
+
def eval_model(model, tokenizer, eval_dataset, device="cuda"):
|
163 |
total = len(eval_dataset)
|
164 |
predictions = []
|
165 |
for i in tqdm(range(total)):
|
166 |
inputs = tokenizer(
|
167 |
eval_dataset["prompt"][i : i + 1],
|
168 |
return_tensors="pt",
|
169 |
+
).to(device)
|
170 |
|
171 |
outputs = model.generate(**inputs, max_new_tokens=4096, use_cache=False)
|
172 |
decoded_output = tokenizer.batch_decode(outputs)
|
llm_toolkit/tune.py
DELETED
@@ -1,143 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import torch
|
4 |
-
from dotenv import find_dotenv, load_dotenv
|
5 |
-
|
6 |
-
found_dotenv = find_dotenv(".env")
|
7 |
-
|
8 |
-
if len(found_dotenv) == 0:
|
9 |
-
found_dotenv = find_dotenv(".env.example")
|
10 |
-
print(f"loading env vars from: {found_dotenv}")
|
11 |
-
load_dotenv(found_dotenv, override=False)
|
12 |
-
|
13 |
-
path = os.path.dirname(found_dotenv)
|
14 |
-
print(f"Adding {path} to sys.path")
|
15 |
-
sys.path.append(path)
|
16 |
-
|
17 |
-
from llm_toolkit.translation_engine import *
|
18 |
-
from llm_toolkit.translation_utils import *
|
19 |
-
|
20 |
-
|
21 |
-
model_name = os.getenv("MODEL_NAME")
|
22 |
-
load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true"
|
23 |
-
eval_base_model = os.getenv("EVAL_BASE_MODEL") == "true"
|
24 |
-
eval_fine_tuned = os.getenv("EVAL_FINE_TUNED") == "true"
|
25 |
-
save_fine_tuned_model = os.getenv("SAVE_FINE_TUNED") == "true"
|
26 |
-
num_train_epochs = int(os.getenv("NUM_TRAIN_EPOCHS") or 0)
|
27 |
-
data_path = os.getenv("DATA_PATH")
|
28 |
-
results_path = os.getenv("RESULTS_PATH")
|
29 |
-
|
30 |
-
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
31 |
-
dtype = (
|
32 |
-
None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
33 |
-
)
|
34 |
-
|
35 |
-
print(
|
36 |
-
model_name,
|
37 |
-
load_in_4bit,
|
38 |
-
max_seq_length,
|
39 |
-
num_train_epochs,
|
40 |
-
dtype,
|
41 |
-
data_path,
|
42 |
-
results_path,
|
43 |
-
eval_base_model,
|
44 |
-
eval_fine_tuned,
|
45 |
-
save_fine_tuned_model,
|
46 |
-
)
|
47 |
-
|
48 |
-
gpu_stats = torch.cuda.get_device_properties(0)
|
49 |
-
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
50 |
-
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
51 |
-
print(f"(1) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
52 |
-
print(f"{start_gpu_memory} GB of memory reserved.")
|
53 |
-
|
54 |
-
model, tokenizer = load_model(model_name, load_in_4bit=load_in_4bit)
|
55 |
-
|
56 |
-
gpu_stats = torch.cuda.get_device_properties(0)
|
57 |
-
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
58 |
-
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
59 |
-
print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
60 |
-
print(f"{start_gpu_memory} GB of memory reserved.")
|
61 |
-
|
62 |
-
datasets = load_translation_dataset(data_path, tokenizer)
|
63 |
-
|
64 |
-
if eval_base_model:
|
65 |
-
print("Evaluating base model: " + model_name)
|
66 |
-
predictions = eval_model(model, tokenizer, datasets["test"])
|
67 |
-
|
68 |
-
# calc_metrics(datasets["test"]["english"], predictions, debug=True)
|
69 |
-
|
70 |
-
save_results(
|
71 |
-
model_name,
|
72 |
-
results_path,
|
73 |
-
datasets["test"],
|
74 |
-
predictions,
|
75 |
-
debug=True,
|
76 |
-
)
|
77 |
-
|
78 |
-
gpu_stats = torch.cuda.get_device_properties(0)
|
79 |
-
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
80 |
-
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
81 |
-
print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
82 |
-
print(f"{start_gpu_memory} GB of memory reserved.")
|
83 |
-
|
84 |
-
|
85 |
-
def is_bfloat16_supported():
|
86 |
-
return True
|
87 |
-
|
88 |
-
|
89 |
-
trainer = load_trainer(
|
90 |
-
model,
|
91 |
-
tokenizer,
|
92 |
-
datasets["train"],
|
93 |
-
num_train_epochs,
|
94 |
-
fp16=not is_bfloat16_supported(),
|
95 |
-
bf16=is_bfloat16_supported(),
|
96 |
-
)
|
97 |
-
|
98 |
-
gpu_stats = torch.cuda.get_device_properties(0)
|
99 |
-
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
100 |
-
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
101 |
-
print(f"(4) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
102 |
-
print(f"{start_gpu_memory} GB of memory reserved.")
|
103 |
-
|
104 |
-
trainer_stats = trainer.train()
|
105 |
-
|
106 |
-
# @title Show final memory and time stats
|
107 |
-
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
108 |
-
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
|
109 |
-
used_percentage = round(used_memory / max_memory * 100, 3)
|
110 |
-
lora_percentage = round(used_memory_for_lora / max_memory * 100, 3)
|
111 |
-
print(f"(5) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
112 |
-
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
|
113 |
-
print(
|
114 |
-
f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training."
|
115 |
-
)
|
116 |
-
print(f"Peak reserved memory = {used_memory} GB.")
|
117 |
-
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
|
118 |
-
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
|
119 |
-
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
|
120 |
-
|
121 |
-
if eval_fine_tuned:
|
122 |
-
print("Evaluating fine-tuned model: " + model_name)
|
123 |
-
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
124 |
-
predictions = eval_model(model, tokenizer, datasets["test"])
|
125 |
-
|
126 |
-
# calc_metrics(datasets["test"]["english"], predictions, debug=True)
|
127 |
-
|
128 |
-
save_results(
|
129 |
-
model_name + "(finetuned)",
|
130 |
-
results_path,
|
131 |
-
datasets["test"],
|
132 |
-
predictions,
|
133 |
-
debug=True,
|
134 |
-
)
|
135 |
-
|
136 |
-
gpu_stats = torch.cuda.get_device_properties(0)
|
137 |
-
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
|
138 |
-
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
|
139 |
-
print(f"(6) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
|
140 |
-
print(f"{start_gpu_memory} GB of memory reserved.")
|
141 |
-
|
142 |
-
if save_fine_tuned_model:
|
143 |
-
save_model(model, tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/00_Data_Analysis.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/01_Qwen2-0.5B_Unsloth.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/02_Qwen2-1.5B_Unsloth.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/03_Qwen2-0.5B_1.5B-4bit.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/04_tune-small-no-flash-attn.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/05_tune-small-with-flash-attn.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/06_tune-small-py3.11.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/07_tune-lf-py3.11.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/07r2_tune-lf-py3.11.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/08_eval-lf-py3.11.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
results/experiment-1-results.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:bfb0c7a3813e9c98c9245c9303b2fb95c1fd7d6a92dd4e0d9d3fe4e4d29a8849
|
3 |
-
size 2072299
|
|
|
|
|
|
|
|
results/experiment-2-results.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b1c99b9bb0c6539a9ff3c9198d730f110c5b6371cba803e1992802beb13e3600
|
3 |
-
size 2038783
|
|
|
|
|
|
|
|
results/experiment-3-results.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f0b8dcb783ed847422ca4f2000b5106742b992537f4b84da6b5ca0b4c22bf0dd
|
3 |
-
size 1427300
|
|
|
|
|
|
|
|
results/mac-results-no-flash-attn.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:89144b0a3e727b326be559637312e353208a7e506b7c0c701ce8e4392e4cbb5e
|
3 |
-
size 2129451
|
|
|
|
|
|
|
|
results/mac-results-with-flash-attn.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:4c73be2c390511d0a59090b57c53f0a66c0d4c4648c209ef7155aa97ff73c0b9
|
3 |
-
size 1461478
|
|
|
|
|
|
|
|
results/mac-results.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7eb1c66dd7162f27a969599ddb3695c3ac82a88bff15cd57d7ed00ca86ab19cd
|
3 |
-
size 2072299
|
|
|
|
|
|
|
|
results/mac-results_final.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:aacf61087ae3b1fd622407c75d0a969b232517c7489841da722e0228bb69a310
|
3 |
-
size 2334006
|
|
|
|
|
|
|
|
results/mac-results_lf-r2.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:25c14d76c8d71ecbce6bc83d641ec4f54f6c0e188fccfcfd8536758a12ed456a
|
3 |
-
size 2442353
|
|
|
|
|
|
|
|
results/mac-results_lf-r3.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:0ea9402ad5c87e3b7dcb570cf0a3c0bf33bef093c522d4d2ba6dbf633e21f035
|
3 |
-
size 531603
|
|
|
|
|
|
|
|
results/mac-results_lf.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c5acc087808de5df6839cbf7b170094c6e63445aab4bea15e4be9564b905eb51
|
3 |
-
size 3236072
|
|
|
|
|
|
|
|
results/mac-results_py3.11.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:4adb0922c02cc435858b4ba44b4cdaaee4afe6fcc8721a795d740c36d8d94c2c
|
3 |
-
size 1463058
|
|
|
|
|
|
|
|
results/mac-results_v3.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:8bfe9ce9720d0cf67ba118d8b2d82f8f6c0bd0f763a8aa00fc1f43f58e544157
|
3 |
-
size 1683953
|
|
|
|
|
|
|
|
results/model_training_evaluation_times.csv
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5691ccd7fafb765772c2e5da0ada82bd2f3532459dcfed8517565e7cc0d9f1a8
|
3 |
-
size 441
|
|
|
|
|
|
|
|
scripts/eval-mac.sh
CHANGED
@@ -11,9 +11,14 @@ cat /etc/os-release
|
|
11 |
lscpu
|
12 |
grep MemTotal /proc/meminfo
|
13 |
|
14 |
-
|
15 |
-
export DO_FINE_TUNING=false
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
lscpu
|
12 |
grep MemTotal /proc/meminfo
|
13 |
|
14 |
+
./scripts/eval-model.sh Qwen/Qwen2-7B-Instruct
|
|
|
15 |
|
16 |
+
./scripts/eval-model.sh internlm/internlm2_5-7b-chat-1m
|
17 |
+
|
18 |
+
./scripts/eval-model.sh THUDM/glm-4-9b-chat-1m
|
19 |
+
|
20 |
+
./scripts/eval-model.sh shenzhi-wang/Llama3.1-8B-Chinese-Chat
|
21 |
+
|
22 |
+
./scripts/eval-model.sh shenzhi-wang/Gemma-2-9B-Chinese-Chat
|
23 |
+
|
24 |
+
./scripts/eval-model.sh shenzhi-wang/Mistral-7B-v0.3-Chinese-Chat
|
scripts/eval-model.sh
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
|
3 |
+
BASEDIR=$(dirname "$0")
|
4 |
+
cd $BASEDIR/..
|
5 |
+
echo Current Directory:
|
6 |
+
pwd
|
7 |
+
|
8 |
+
export MODEL_NAME=$1
|
9 |
+
echo Evaluating $MODEL_NAME
|
10 |
+
python llm_toolkit/eval.py
|