import os import re import pandas as pd import evaluate import seaborn as sns import matplotlib.pyplot as plt from datasets import load_dataset from langchain_openai import ChatOpenAI from langchain_core.prompts import ChatPromptTemplate from tqdm import tqdm print(f"loading {__file__}") bleu = evaluate.load("bleu") rouge = evaluate.load("rouge") meteor = evaluate.load("meteor") accuracy = evaluate.load("accuracy") def extract_answer(text, debug=False): if text: # Remove the begin and end tokens text = re.sub( r".*?(assistant|\[/INST\]).+?\b", "", text, flags=re.DOTALL | re.MULTILINE ) if debug: print("--------\nstep 1:", text) text = re.sub(r"<.+?>.*", "", text, flags=re.DOTALL | re.MULTILINE) if debug: print("--------\nstep 2:", text) text = re.sub( r".*?end_header_id\|>\n\n", "", text, flags=re.DOTALL | re.MULTILINE ) if debug: print("--------\nstep 3:", text) return text def calc_metrics(references, predictions, debug=False): assert len(references) == len( predictions ), f"lengths are difference: {len(references)} != {len(predictions)}" predictions = [extract_answer(text) for text in predictions] correct = [1 if ref == pred else 0 for ref, pred in zip(references, predictions)] accuracy = sum(correct) / len(references) results = {"accuracy": accuracy} if debug: correct_ids = [i for i, c in enumerate(correct) if c == 1] results["correct_ids"] = correct_ids results["meteor"] = meteor.compute(predictions=predictions, references=references)[ "meteor" ] results["bleu_scores"] = bleu.compute( predictions=predictions, references=references, max_order=4 ) results["rouge_scores"] = rouge.compute( predictions=predictions, references=references ) return results def save_results(model_name, results_path, dataset, predictions, debug=False): if not os.path.exists(results_path): # Get the directory part of the file path dir_path = os.path.dirname(results_path) # Create all directories in the path (if they don't exist) os.makedirs(dir_path, exist_ok=True) df = dataset.to_pandas() df.drop(columns=["text", "prompt"], inplace=True) else: df = pd.read_csv(results_path, on_bad_lines="warn") df[model_name] = predictions if debug: print(df.head(1)) df.to_csv(results_path, index=False) def load_translation_dataset(data_path, tokenizer=None): train_data_file = data_path.replace(".tsv", "-train.tsv") test_data_file = data_path.replace(".tsv", "-test.tsv") if not os.path.exists(train_data_file): print("generating train/test data files") dataset = load_dataset( "csv", data_files=data_path, delimiter="\t", split="train" ) print(len(dataset)) dataset = dataset.filter(lambda x: x["chinese"] and x["english"]) datasets = dataset.train_test_split(test_size=0.2) print(len(dataset)) # Convert to pandas DataFrame train_df = pd.DataFrame(datasets["train"]) test_df = pd.DataFrame(datasets["test"]) # Save to TSV train_df.to_csv(train_data_file, sep="\t", index=False) test_df.to_csv(test_data_file, sep="\t", index=False) print("loading train/test data files") datasets = load_dataset( "csv", data_files={"train": train_data_file, "test": test_data_file}, delimiter="\t", ) if tokenizer: translation_prompt = "Please translate the following Chinese text into English and provide only the translated content, nothing else.\n{}" def formatting_prompts_func(examples): inputs = examples["chinese"] outputs = examples["english"] messages = [ { "role": "system", "content": "You are an expert in translating Chinese to English.", }, None, ] model_name = os.getenv("MODEL_NAME") if "mistral" in model_name.lower(): messages = messages[1:] texts = [] prompts = [] for input, output in zip(inputs, outputs): prompt = translation_prompt.format(input) messages[-1] = {"role": "user", "content": prompt} prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) prompts.append(prompt) texts.append(prompt + output + tokenizer.eos_token) return {"text": texts, "prompt": prompts} datasets = datasets.map( formatting_prompts_func, batched=True, ) print(datasets) return datasets def eval_model(model, tokenizer, eval_dataset): total = len(eval_dataset) predictions = [] for i in tqdm(range(total)): inputs = tokenizer( eval_dataset["prompt"][i : i + 1], return_tensors="pt", ).to("cuda") outputs = model.generate(**inputs, max_new_tokens=4096, use_cache=False) decoded_output = tokenizer.batch_decode(outputs) debug = i == 0 decoded_output = [ extract_answer(output, debug=debug) for output in decoded_output ] predictions.extend(decoded_output) return predictions def save_model( model, tokenizer, include_gguf=True, include_merged=True, publish=True, ): try: token = os.getenv("HF_TOKEN") or None model_name = os.getenv("MODEL_NAME") save_method = "lora" quantization_method = "q5_k_m" model_names = get_model_names( model_name, save_method=save_method, quantization_method=quantization_method ) model.save_pretrained(model_names["local"]) tokenizer.save_pretrained(model_names["local"]) if publish: model.push_to_hub( model_names["hub"], token=token, ) tokenizer.push_to_hub( model_names["hub"], token=token, ) if include_merged: model.save_pretrained_merged( model_names["local"] + "-merged", tokenizer, save_method=save_method ) if publish: model.push_to_hub_merged( model_names["hub"] + "-merged", tokenizer, save_method="lora", token="", ) if include_gguf: model.save_pretrained_gguf( model_names["local-gguf"], tokenizer, quantization_method=quantization_method, ) if publish: model.push_to_hub_gguf( model_names["hub-gguf"], tokenizer, quantization_method=quantization_method, token=token, ) except Exception as e: print(e) def get_metrics(df): metrics_df = pd.DataFrame(df.columns.T)[2:] metrics_df.rename(columns={0: "model"}, inplace=True) metrics_df["model"] = metrics_df["model"].apply(lambda x: x.split("/")[-1]) metrics_df.reset_index(inplace=True) metrics_df = metrics_df.drop(columns=["index"]) accuracy = [] meteor = [] bleu_1 = [] rouge_l = [] all_metrics = [] for col in df.columns[2:]: metrics = calc_metrics(df["english"], df[col], debug=True) print(f"{col}: {metrics}") accuracy.append(metrics["accuracy"]) meteor.append(metrics["meteor"]) bleu_1.append(metrics["bleu_scores"]["bleu"]) rouge_l.append(metrics["rouge_scores"]["rougeL"]) all_metrics.append(metrics) metrics_df["accuracy"] = accuracy metrics_df["meteor"] = meteor metrics_df["bleu_1"] = bleu_1 metrics_df["rouge_l"] = rouge_l metrics_df["all_metrics"] = all_metrics return metrics_df def plot_metrics(metrics_df, figsize=(14, 5), ylim=(0, 0.44)): plt.figure(figsize=figsize) df_melted = pd.melt( metrics_df, id_vars="model", value_vars=["meteor", "bleu_1", "rouge_l"] ) barplot = sns.barplot(x="variable", y="value", hue="model", data=df_melted) # Set different hatches for each model hatches = ["/", "\\", "|", "-", "+", "x", "o", "O", ".", "*", "//", "\\\\"] # Create a dictionary to map models to hatches model_hatches = { model: hatches[i % len(hatches)] for i, model in enumerate(metrics_df["model"].unique()) } # Apply hatches based on the model num_vars = len(df_melted["variable"].unique()) for i, bar in enumerate(barplot.patches): model = df_melted["model"].iloc[i // num_vars] bar.set_hatch(model_hatches[model]) # Manually update legend to match the bar hatches handles, labels = barplot.get_legend_handles_labels() for handle, model in zip(handles, metrics_df["model"].unique()): handle.set_hatch(model_hatches[model]) barplot.set_xticklabels(["METEOR", "BLEU-1", "ROUGE-L"]) for p in barplot.patches: if p.get_height() == 0: continue barplot.annotate( f"{p.get_height():.2f}", (p.get_x() + p.get_width() / 2.0, p.get_height()), ha="center", va="center", xytext=(0, 10), textcoords="offset points", ) barplot.set(ylim=ylim, ylabel="Scores", xlabel="Metrics") plt.legend(bbox_to_anchor=(0.5, -0.1), loc="upper center") plt.show() def plot_times(perf_df, ylim=0.421): # Adjusted code to put "train-time" bars in red at the bottom fig, ax1 = plt.subplots(figsize=(12, 10)) color_train = "tab:red" color_eval = "orange" ax1.set_xlabel("Models") ax1.set_ylabel("Time (mins)") ax1.set_xticks(range(len(perf_df["model"]))) # Set x-ticks positions ax1.set_xticklabels(perf_df["model"], rotation=90) # Plot "train-time" first so it's at the bottom ax1.bar( perf_df["model"], perf_df["train-time(mins)"], color=color_train, label="train-time", ) # Then, plot "eval-time" on top of "train-time" ax1.bar( perf_df["model"], perf_df["eval-time(mins)"], bottom=perf_df["train-time(mins)"], color=color_eval, label="eval-time", ) ax1.tick_params(axis="y") ax1.legend(loc="upper left") if "meteor" in perf_df.columns: ax2 = ax1.twinx() color_meteor = "tab:blue" ax2.set_ylabel("METEOR", color=color_meteor) ax2.plot( perf_df["model"], perf_df["meteor"], color=color_meteor, marker="o", label="meteor", ) ax2.tick_params(axis="y", labelcolor=color_meteor) ax2.legend(loc="upper right") ax2.set_ylim(ax2.get_ylim()[0], ylim) # Show numbers in bars for p in ax1.patches: height = p.get_height() if height == 0: # Skip bars with height 0 continue ax1.annotate( f"{height:.2f}", (p.get_x() + p.get_width() / 2.0, p.get_y() + height), ha="center", va="center", xytext=(0, -10), textcoords="offset points", ) fig.tight_layout() plt.show() def translate_via_llm(text): base_url = os.getenv("OPENAI_BASE_URL") or "http://localhost:8000/v1" llm = ChatOpenAI( model="gpt-4o", temperature=0, max_tokens=None, timeout=None, max_retries=2, base_url=base_url, ) prompt = ChatPromptTemplate.from_messages( [ ( "human", "Please translate the following Chinese text into English and provide only the translated content, nothing else.\n{input}", ), ] ) chain = prompt | llm response = chain.invoke( { "input": text, } ) return response.content def translate(text, cache_dict): if text in cache_dict: return cache_dict[text] else: translated_text = translate_via_llm(text) cache_dict[text] = translated_text return translated_text