import os import sys import torch from dotenv import find_dotenv, load_dotenv found_dotenv = find_dotenv(".env") if len(found_dotenv) == 0: found_dotenv = find_dotenv(".env.example") print(f"loading env vars from: {found_dotenv}") load_dotenv(found_dotenv, override=False) path = os.path.dirname(found_dotenv) print(f"Adding {path} to sys.path") sys.path.append(path) from llm_toolkit.llm_utils import * from llm_toolkit.translation_utils import * device = check_gpu() is_cuda = torch.cuda.is_available() model_name = os.getenv("MODEL_NAME") adapter_name_or_path = os.getenv("ADAPTER_NAME_OR_PATH") load_in_4bit = os.getenv("LOAD_IN_4BIT") == "true" data_path = os.getenv("DATA_PATH") results_path = os.getenv("RESULTS_PATH") batch_size = int(os.getenv("BATCH_SIZE", 1)) use_english_datasets = os.getenv("USE_ENGLISH_DATASETS") == "true" max_new_tokens = int(os.getenv("MAX_NEW_TOKENS", 2048)) print( model_name, adapter_name_or_path, load_in_4bit, data_path, results_path, use_english_datasets, max_new_tokens, batch_size, ) if is_cuda: torch.cuda.empty_cache() gpu_stats = torch.cuda.get_device_properties(0) start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) print(f"(0) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") print(f"{start_gpu_memory} GB of memory reserved.") torch.cuda.empty_cache() model, tokenizer = load_model( model_name, load_in_4bit=load_in_4bit, adapter_name_or_path=adapter_name_or_path ) if is_cuda: gpu_stats = torch.cuda.get_device_properties(0) start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) print(f"(2) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") print(f"{start_gpu_memory} GB of memory reserved.") datasets = load_translation_dataset(data_path, tokenizer) if len(sys.argv) > 1: num = int(sys.argv[1]) if num > 0: print(f"--- evaluating {num} entries") datasets["test"] = datasets["test"].select(range(num)) print_row_details(datasets["test"].to_pandas(), indices=[0, -1]) def on_repetition_penalty_step_completed(model_name, predictions): save_results( model_name, results_path, datasets["test"], predictions, ) metrics = calc_metrics(datasets["test"]["english"], predictions, debug=True) print(f"{model_name} metrics: {metrics}") if adapter_name_or_path is not None: model_name += "/" + adapter_name_or_path.split("/")[-1] evaluate_model_with_repetition_penalty( model, tokenizer, model_name, datasets["test"], on_repetition_penalty_step_completed, start_repetition_penalty=1.0, end_repetition_penalty=1.3, step_repetition_penalty=0.02, batch_size=batch_size, max_new_tokens=max_new_tokens, device=device, ) if is_cuda: gpu_stats = torch.cuda.get_device_properties(0) start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) print(f"(3) GPU = {gpu_stats.name}. Max memory = {max_memory} GB.") print(f"{start_gpu_memory} GB of memory reserved.")