--- base_model: shenzhi-wang/Llama3.1-70B-Chinese-Chat library_name: peft license: other tags: - llama-factory - lora - generated_from_trainer model-index: - name: Llama3.1-70B-Chinese-Chat results: [] --- # Llama3.1-70B-Chinese-Chat This model is a fine-tuned version of [shenzhi-wang/Llama3.1-70B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3.1-70B-Chinese-Chat) on the alpaca_mac dataset. It achieves the following results on the evaluation set: - Loss: 2.5071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4367 | 0.9982 | 70 | 1.3731 | | 1.2601 | 1.9964 | 140 | 1.3131 | | 0.8929 | 2.9947 | 210 | 1.4369 | | 0.383 | 3.9929 | 280 | 1.7250 | | 0.1431 | 4.9911 | 350 | 2.0897 | | 0.0691 | 5.9893 | 420 | 2.5071 | ### Framework versions - PEFT 0.11.1 - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1