--- base_model: shenzhi-wang/Llama3.1-8B-Chinese-Chat library_name: peft license: other tags: - llama-factory - lora - generated_from_trainer model-index: - name: Llama3.1-8B-Chinese-Chat results: [] --- # Llama3.1-8B-Chinese-Chat This model is a fine-tuned version of [shenzhi-wang/Llama3.1-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3.1-8B-Chinese-Chat) on the alpaca_mac dataset. It achieves the following results on the evaluation set: - Loss: 1.7097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7323 | 0.9964 | 35 | 1.6576 | | 1.5369 | 1.9929 | 70 | 1.5469 | | 1.3988 | 2.9893 | 105 | 1.5315 | | 1.1671 | 3.9858 | 140 | 1.5979 | | 1.0609 | 4.9822 | 175 | 1.6828 | | 0.9885 | 5.9786 | 210 | 1.7097 | ### Framework versions - PEFT 0.11.1 - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1