import os import sys import evaluate import gradio as gr from huggingface_hub import InferenceClient, login from dotenv import find_dotenv, load_dotenv from huggingface_hub import login found_dotenv = find_dotenv(".env") if len(found_dotenv) == 0: found_dotenv = find_dotenv(".env.example") print(f"loading env vars from: {found_dotenv}") load_dotenv(found_dotenv, override=False) path = os.path.dirname(found_dotenv) print(f"Adding {path} to sys.path") sys.path.append(path) from llm_toolkit.llm_utils import * from llm_toolkit.translation_utils import * from eval_modules.calc_repetitions_v2e import detect_repetitions model_name = os.getenv("MODEL_NAME") or "microsoft/Phi-3.5-mini-instruct" num_shots = int(os.getenv("NUM_SHOTS", 10)) data_path = os.getenv("DATA_PATH") hf_token = os.getenv("HF_TOKEN") login(token=hf_token, add_to_git_credential=True) comet = evaluate.load("comet", config_name="Unbabel/wmt22-cometkiwi-da", gpus=1) meteor = evaluate.load("meteor") bleu = evaluate.load("bleu") rouge = evaluate.load("rouge") def calc_perf_scores(prediction, source, reference, debug=False): if debug: print("prediction:", prediction) print("source:", source) print("reference:", reference) if reference: bleu_scores = bleu.compute( predictions=[prediction], references=[reference], max_order=1 ) rouge_scores = rouge.compute(predictions=[prediction], references=[reference]) rouge_scores = rouge.compute(predictions=[prediction], references=[reference]) meteor_scores = meteor.compute(predictions=[prediction], references=[reference]) comet_metric = comet.compute( predictions=[prediction], sources=[source], references=[reference] ) result = {"bleu_scores": bleu_scores, "rouge_scores": rouge_scores, "meteor_scores":meteor_scores, "comet_scores": comet_metric} if debug: print("result:", result) return result """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") client = InferenceClient(model_name, token=hf_token) datasets = load_translation_dataset(data_path) print_row_details(datasets["test"].to_pandas()) translation_prompt = get_few_shot_prompt(datasets["train"], num_shots) examples = [[row["chinese"]] for row in datasets["test"]][:5] def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] source = message for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": translation_prompt.format(input=message)}) partial_text = "" finish_reason = None for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, frequency_penalty=None, # frequency_penalty, presence_penalty=None, # presence_penalty, top_p=top_p, seed=42, ): finish_reason = message.choices[0].finish_reason # print("finish_reason:", finish_reason) if finish_reason is None: new_text = message.choices[0].delta.content partial_text += new_text yield partial_text else: break answer = partial_text (whitespace_score, repetition_score, total_repetitions) = detect_repetitions(answer, debug=True) partial_text += "\n\nRepetition Metrics:\n" partial_text += f"1. EWC Repetition Score: {whitespace_score:.3f}\n" partial_text += f"1. Text Repetition Score: {repetition_score:.3f}\n" partial_text += f"1. Total Repetitions: {total_repetitions:.3f}\n" partial_text += ( f"1. Repetition Ratio: {total_repetitions / len(answer):.3f}\n" ) partial_text += "\n\n Performance Metrics:\n" if [source] in examples: idx = examples.index([source]) reference = datasets["test"]["english"][idx] else: reference = "" scores = calc_perf_scores(answer, source, reference, debug=True) partial_text += f'1. COMET: {scores["comet_scores"]["mean_score"]:.3f}\n' if reference: partial_text += f'1. METEOR: {scores["meteor_scores"]["meteor"]:.3f}\n' partial_text += f'1. BLEU-1: {scores["bleu_scores"]["bleu"]:.3f}\n' partial_text += f'1. RougeL: {scores["rouge_scores"]["rougeL"]:.3f}\n' partial_text += f"\n\nGround truth: {reference}\n" partial_text += f"\n\nThe text generation has ended because: {finish_reason}\n" yield partial_text """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, examples=examples, cache_examples=False, textbox=gr.Textbox(placeholder="Enter your Chinese sentence for translation"), additional_inputs=[ gr.Textbox(value="You are a helpful assistant that translates Chinese to English.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()