File size: 5,221 Bytes
3ac9dae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71f3335
 
 
3ac9dae
71f3335
3ac9dae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# -*- coding:utf-8 -*-
from __future__ import annotations

import logging
import os
import platform
import re
from pathlib import Path

import requests
import torch
from tqdm import tqdm


class LogRecord(logging.LogRecord):
    def getMessage(self):
        msg = self.msg
        if self.args:
            if isinstance(self.args, dict):
                msg = msg.format(**self.args)
            else:
                msg = msg.format(*self.args)
        return msg


class Logger(logging.Logger):
    def makeRecord(
        self,
        name,
        level,
        fn,
        lno,
        msg,
        args,
        exc_info,
        func=None,
        extra=None,
        sinfo=None,
    ):
        rv = LogRecord(name, level, fn, lno, msg, args, exc_info, func, sinfo)
        if extra is not None:
            for key in extra:
                rv.__dict__[key] = extra[key]
        return rv


def init_settings():
    logging.setLoggerClass(Logger)
    logging.basicConfig(
        level=logging.WARNING,
        format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s",
    )


def remove_extra_spaces(text):
    return re.sub(" +", " ", text.strip())


def print_llm_response(llm_response):
    answer = llm_response["answer"] if "answer" in llm_response else None
    if answer is None:
        answer = llm_response["token"] if "token" in llm_response else None

    if answer is not None:
        print("\n\n***Answer:")
        print(answer)

    source_documents = (
        llm_response["source_documents"] if "source_documents" in llm_response else None
    )
    if source_documents is None:
        source_documents = llm_response["sourceDocs"]

    print("\nSources:")
    for source in source_documents:
        metadata = source["metadata"] if "metadata" in source else source.metadata
        if "page" in metadata:
            print(f"  Page:  {metadata['page']}", end="")

        print(
            " Source: "
            + str(metadata["url"] if "url" in metadata else metadata["source"])
        )
        print(
            source["page_content"] if "page_content" in source else source.page_content
        )


def get_device_types():
    print("Running on: ", platform.platform())
    print("MPS is", "NOT" if not torch.backends.mps.is_available() else "", "available")
    print("CUDA is", "NOT" if not torch.cuda.is_available() else "", "available")
    device_type_available = "cpu"

    if not torch.backends.mps.is_available():
        if not torch.backends.mps.is_built():
            print(
                "MPS not available because the current PyTorch install was not "
                "built with MPS enabled."
            )
        else:
            print(
                "MPS not available because the current MacOS version is not 12.3+ "
                "and/or you do not have an MPS-enabled device on this machine."
            )
    else:
        device_type_available = "mps"

    if torch.cuda.is_available():
        print("CUDA is available, we have found ", torch.cuda.device_count(), " GPU(s)")
        print(torch.cuda.get_device_name(0))
        print("CUDA version: " + torch.version.cuda)
        device_type_available = f"cuda:{torch.cuda.current_device()}"

    return (
        os.environ.get("HF_EMBEDDINGS_DEVICE_TYPE") or device_type_available,
        os.environ.get("HF_PIPELINE_DEVICE_TYPE") or device_type_available,
    )


def ensure_model_is_downloaded(llm_model_type):
    if llm_model_type.startswith("gpt4all"):
        local_path = (
            os.environ.get("GPT4ALL_J_MODEL_PATH")
            if llm_model_type == "gpt4all-j"
            else os.environ.get("GPT4ALL_MODEL_PATH")
        )
        url = (
            os.environ.get("GPT4ALL_J_DOWNLOAD_LINK")
            if llm_model_type == "gpt4all-j"
            else os.environ.get("GPT4ALL_DOWNLOAD_LINK")
        )
    elif llm_model_type == "llamacpp":
        local_path = os.environ.get("LLAMACPP_MODEL_PATH")
        url = os.environ.get("LLAMACPP_DOWNLOAD_LINK")
    elif llm_model_type == "ctransformers":
        local_path = os.environ.get("CTRANSFORMERS_MODEL_PATH")
        url = os.environ.get("CTRANSFORMERS_DOWNLOAD_LINK")
    else:
        raise ValueError(f"wrong model typle: {llm_model_type}")

    path = Path(local_path)

    if path.is_file():
        print(f"model: {local_path} exists")
    else:
        print(f"downloading model: {local_path} from {url} ...")
        path.parent.mkdir(parents=True, exist_ok=True)

        # send a GET request to the URL to download the file. Stream since it's large
        response = requests.get(url, stream=True)

        # open the file in binary mode and write the contents of the response to it in chunks
        # This is a large file, so be prepared to wait.
        with open(local_path, "wb") as f:
            for chunk in tqdm(response.iter_content(chunk_size=8192)):
                if chunk:
                    f.write(chunk)

    return local_path


if __name__ == "__main__":
    hf_embeddings_device_type, hf_pipeline_device_type = get_device_types()
    print(f"hf_embeddings_device_type: {hf_embeddings_device_type}")
    print(f"hf_pipeline_device_type: {hf_pipeline_device_type}")