|
"""Main entrypoint for the app.""" |
|
import os |
|
from timeit import default_timer as timer |
|
from typing import List, Optional |
|
|
|
from dotenv import find_dotenv, load_dotenv |
|
from langchain.embeddings import HuggingFaceInstructEmbeddings |
|
from langchain.vectorstores.chroma import Chroma |
|
from langchain.vectorstores.faiss import FAISS |
|
|
|
from app_modules.llm_loader import LLMLoader |
|
from app_modules.llm_qa_chain import QAChain |
|
from app_modules.utils import get_device_types, init_settings |
|
|
|
found_dotenv = find_dotenv(".env") |
|
|
|
if len(found_dotenv) == 0: |
|
found_dotenv = find_dotenv(".env.example") |
|
print(f"loading env vars from: {found_dotenv}") |
|
load_dotenv(found_dotenv, override=False) |
|
|
|
|
|
init_settings() |
|
|
|
llm_loader = None |
|
qa_chain = None |
|
|
|
|
|
def load_vectorstor(using_faiss, index_path, embeddings): |
|
start = timer() |
|
|
|
print(f"Load index from {index_path} with {'FAISS' if using_faiss else 'Chroma'}") |
|
|
|
if not os.path.isdir(index_path): |
|
raise ValueError(f"{index_path} does not exist!") |
|
elif using_faiss: |
|
vectorstore = FAISS.load_local(index_path, embeddings) |
|
else: |
|
vectorstore = Chroma( |
|
embedding_function=embeddings, persist_directory=index_path |
|
) |
|
|
|
end = timer() |
|
|
|
print(f"Completed in {end - start:.3f}s") |
|
return vectorstore |
|
|
|
|
|
def app_init(initQAChain: bool = True): |
|
global llm_loader |
|
global qa_chain |
|
if llm_loader == None: |
|
|
|
os.environ["CURL_CA_BUNDLE"] = "" |
|
|
|
llm_model_type = os.environ.get("LLM_MODEL_TYPE") |
|
n_threds = int(os.environ.get("NUMBER_OF_CPU_CORES") or "4") |
|
|
|
hf_embeddings_device_type, hf_pipeline_device_type = get_device_types() |
|
print(f"hf_embeddings_device_type: {hf_embeddings_device_type}") |
|
print(f"hf_pipeline_device_type: {hf_pipeline_device_type}") |
|
|
|
if initQAChain: |
|
hf_embeddings_model_name = ( |
|
os.environ.get("HF_EMBEDDINGS_MODEL_NAME") or "hkunlp/instructor-xl" |
|
) |
|
|
|
index_path = os.environ.get("FAISS_INDEX_PATH") or os.environ.get( |
|
"CHROMADB_INDEX_PATH" |
|
) |
|
using_faiss = os.environ.get("FAISS_INDEX_PATH") is not None |
|
|
|
start = timer() |
|
embeddings = HuggingFaceInstructEmbeddings( |
|
model_name=hf_embeddings_model_name, |
|
model_kwargs={"device": hf_embeddings_device_type}, |
|
) |
|
end = timer() |
|
|
|
print(f"Completed in {end - start:.3f}s") |
|
|
|
vectorstore = load_vectorstor(using_faiss, index_path, embeddings) |
|
|
|
doc_id_to_vectorstore_mapping = {} |
|
rootdir = index_path |
|
for file in os.listdir(rootdir): |
|
d = os.path.join(rootdir, file) |
|
if os.path.isdir(d): |
|
v = load_vectorstor(using_faiss, d, embeddings) |
|
doc_id_to_vectorstore_mapping[file] = v |
|
|
|
|
|
|
|
start = timer() |
|
llm_loader = LLMLoader(llm_model_type) |
|
llm_loader.init( |
|
n_threds=n_threds, hf_pipeline_device_type=hf_pipeline_device_type |
|
) |
|
qa_chain = ( |
|
QAChain(vectorstore, llm_loader, doc_id_to_vectorstore_mapping) |
|
if initQAChain |
|
else None |
|
) |
|
end = timer() |
|
print(f"Completed in {end - start:.3f}s") |
|
|
|
return llm_loader, qa_chain |
|
|