|
|
|
import os |
|
from timeit import default_timer as timer |
|
from typing import List |
|
|
|
from langchain.document_loaders import DirectoryLoader |
|
from langchain.document_loaders import PyPDFDirectoryLoader |
|
|
|
from langchain.embeddings import HuggingFaceInstructEmbeddings |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.vectorstores.base import VectorStore |
|
from langchain.vectorstores.chroma import Chroma |
|
from langchain.vectorstores.faiss import FAISS |
|
|
|
from app_modules.init import * |
|
|
|
|
|
def load_documents(source_path) -> List: |
|
loader = PyPDFDirectoryLoader(source_path, silent_errors=True) |
|
documents = loader.load() |
|
|
|
loader = DirectoryLoader( |
|
source_path, glob="**/*.html", silent_errors=True, show_progress=True |
|
) |
|
documents.extend(loader.load()) |
|
return documents |
|
|
|
|
|
def split_chunks(documents: List, chunk_size, chunk_overlap) -> List: |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=chunk_size, chunk_overlap=chunk_overlap |
|
) |
|
return text_splitter.split_documents(documents) |
|
|
|
|
|
def generate_index( |
|
chunks: List, embeddings: HuggingFaceInstructEmbeddings |
|
) -> VectorStore: |
|
if using_faiss: |
|
faiss_instructor_embeddings = FAISS.from_documents( |
|
documents=chunks, embedding=embeddings |
|
) |
|
|
|
faiss_instructor_embeddings.save_local(index_path) |
|
return faiss_instructor_embeddings |
|
else: |
|
chromadb_instructor_embeddings = Chroma.from_documents( |
|
documents=chunks, embedding=embeddings, persist_directory=index_path |
|
) |
|
|
|
chromadb_instructor_embeddings.persist() |
|
return chromadb_instructor_embeddings |
|
|
|
|
|
|
|
device_type, hf_pipeline_device_type = get_device_types() |
|
hf_embeddings_model_name = ( |
|
os.environ.get("HF_EMBEDDINGS_MODEL_NAME") or "hkunlp/instructor-xl" |
|
) |
|
index_path = os.environ.get("FAISS_INDEX_PATH") or os.environ.get("CHROMADB_INDEX_PATH") |
|
using_faiss = os.environ.get("FAISS_INDEX_PATH") is not None |
|
source_path = os.environ.get("SOURCE_PATH") |
|
chunk_size = os.environ.get("CHUNCK_SIZE") |
|
chunk_overlap = os.environ.get("CHUNK_OVERLAP") |
|
|
|
start = timer() |
|
embeddings = HuggingFaceInstructEmbeddings( |
|
model_name=hf_embeddings_model_name, model_kwargs={"device": device_type} |
|
) |
|
end = timer() |
|
|
|
print(f"Completed in {end - start:.3f}s") |
|
|
|
start = timer() |
|
|
|
if not os.path.isdir(index_path): |
|
print( |
|
f"The index persist directory {index_path} is not present. Creating a new one." |
|
) |
|
os.mkdir(index_path) |
|
|
|
print(f"Loading PDF & HTML files from {source_path}") |
|
sources = load_documents(source_path) |
|
|
|
|
|
print(f"Splitting {len(sources)} HTML pages in to chunks ...") |
|
|
|
chunks = split_chunks( |
|
sources, chunk_size=int(chunk_size), chunk_overlap=int(chunk_overlap) |
|
) |
|
print(chunks[3]) |
|
print(f"Generating index for {len(chunks)} chunks ...") |
|
|
|
index = generate_index(chunks, embeddings) |
|
else: |
|
print(f"The index persist directory {index_path} is present. Loading index ...") |
|
index = ( |
|
FAISS.load_local(index_path, embeddings) |
|
if using_faiss |
|
else Chroma(embedding_function=embeddings, persist_directory=index_path) |
|
) |
|
query = "hi" |
|
print(f"Load relevant documents for standalone question: {query}") |
|
|
|
start2 = timer() |
|
docs = index.as_retriever().get_relevant_documents(query) |
|
end = timer() |
|
|
|
print(f"Completed in {end - start2:.3f}s") |
|
print(docs) |
|
|
|
end = timer() |
|
|
|
print(f"Completed in {end - start:.3f}s") |
|
|