"""Main entrypoint for the app.""" import os from timeit import default_timer as timer from typing import List, Optional from dotenv import find_dotenv, load_dotenv from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.vectorstores.chroma import Chroma from langchain.vectorstores.faiss import FAISS from app_modules.llm_loader import LLMLoader from app_modules.llm_qa_chain import QAChain from app_modules.utils import get_device_types, init_settings found_dotenv = find_dotenv(".env") if len(found_dotenv) == 0: found_dotenv = find_dotenv(".env.example") print(f"loading env vars from: {found_dotenv}") load_dotenv(found_dotenv, override=False) # Constants init_settings() llm_loader = None qa_chain = None def load_vectorstor(using_faiss, index_path, embeddings): start = timer() print(f"Load index from {index_path} with {'FAISS' if using_faiss else 'Chroma'}") if not os.path.isdir(index_path): raise ValueError(f"{index_path} does not exist!") elif using_faiss: vectorstore = FAISS.load_local(index_path, embeddings) else: vectorstore = Chroma( embedding_function=embeddings, persist_directory=index_path ) end = timer() print(f"Completed in {end - start:.3f}s") return vectorstore def app_init(initQAChain: bool = True): global llm_loader global qa_chain if llm_loader == None: # https://github.com/huggingface/transformers/issues/17611 os.environ["CURL_CA_BUNDLE"] = "" llm_model_type = os.environ.get("LLM_MODEL_TYPE") n_threds = int(os.environ.get("NUMBER_OF_CPU_CORES") or "4") hf_embeddings_device_type, hf_pipeline_device_type = get_device_types() print(f"hf_embeddings_device_type: {hf_embeddings_device_type}") print(f"hf_pipeline_device_type: {hf_pipeline_device_type}") if initQAChain: hf_embeddings_model_name = ( os.environ.get("HF_EMBEDDINGS_MODEL_NAME") or "hkunlp/instructor-xl" ) index_path = os.environ.get("FAISS_INDEX_PATH") or os.environ.get( "CHROMADB_INDEX_PATH" ) using_faiss = os.environ.get("FAISS_INDEX_PATH") is not None start = timer() embeddings = HuggingFaceInstructEmbeddings( model_name=hf_embeddings_model_name, model_kwargs={"device": hf_embeddings_device_type}, ) end = timer() print(f"Completed in {end - start:.3f}s") vectorstore = load_vectorstor(using_faiss, index_path, embeddings) doc_id_to_vectorstore_mapping = {} rootdir = index_path for file in os.listdir(rootdir): d = os.path.join(rootdir, file) if os.path.isdir(d): v = load_vectorstor(using_faiss, d, embeddings) doc_id_to_vectorstore_mapping[file] = v # print(doc_id_to_vectorstore_mapping) start = timer() llm_loader = LLMLoader(llm_model_type) llm_loader.init( n_threds=n_threds, hf_pipeline_device_type=hf_pipeline_device_type ) qa_chain = ( QAChain(vectorstore, llm_loader, doc_id_to_vectorstore_mapping) if initQAChain else None ) end = timer() print(f"Completed in {end - start:.3f}s") return llm_loader, qa_chain