Add KLUE-MRC metric (F1 and EM)
Browse files- README.md +97 -28
- compute_score.py +315 -0
- klue_mrc.py +104 -57
- tests.py +0 -17
README.md
CHANGED
@@ -1,50 +1,119 @@
|
|
1 |
---
|
2 |
title: KLUE MRC
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
- evaluate
|
7 |
-
- metric
|
8 |
-
description: "TODO: add a description here"
|
9 |
sdk: gradio
|
10 |
sdk_version: 3.19.1
|
11 |
app_file: app.py
|
12 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
-
# Metric Card for KLUE
|
|
|
|
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
*Give general statement of how to use the metric*
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
*List all input arguments in the format below*
|
29 |
-
- **input_field** *(type): Definition of input, with explanation if necessary. State any default value(s).*
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
34 |
|
35 |
-
*
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
*
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
## Limitations and Bias
|
44 |
-
*Note any known limitations or biases that the metric has, with links and references if possible.*
|
45 |
|
46 |
## Citation
|
47 |
-
*Cite the source where this metric was introduced.*
|
48 |
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: KLUE MRC
|
3 |
+
emoji: 🤗
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
|
|
|
|
|
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.19.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
tags:
|
11 |
+
- evaluate
|
12 |
+
- metric
|
13 |
+
description: >-
|
14 |
+
This metric wrap the unofficial scoring script for [Machine Machine Reading Comprehension task of
|
15 |
+
Korean Language Understanding Evaluation (KLUE-MRC)](https://huggingface.co/datasets/klue/viewer/mrc/train).
|
16 |
+
|
17 |
+
KLUE-MRC is a Korean reading comprehension dataset consisting of questions where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
|
18 |
+
|
19 |
+
As KLUE-MRC has the same task format as SQuAD 2.0, this evaluation script uses the same metrics of SQuAD 2.0 (F1 and EM).
|
20 |
+
|
21 |
+
KLUE-MRC consists of 12,286 question paraphrasing, 7,931 multi-sentence reasoning, and 9,269 unanswerable questions. Totally, 29,313 examples are made with 22,343 documents and 23,717 passages.
|
22 |
---
|
23 |
|
24 |
+
# Metric Card for KLUE-MRC
|
25 |
+
|
26 |
+
Please note that as KLUE-MRC has the same task format as SQuAD 2.0, this evaluation script follows almost the same format as the official evaluation script for SQuAD 2.0.
|
27 |
|
28 |
+
## Metric description
|
29 |
|
30 |
+
This metric wrap the unofficial scoring script for [Machine Machine Reading Comprehension task of
|
31 |
+
Korean Language Understanding Evaluation (KLUE-MRC)](https://huggingface.co/datasets/klue/viewer/mrc/train).
|
32 |
|
33 |
+
KLUE-MRC is a Korean reading comprehension dataset consisting of questions where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
|
|
|
34 |
|
35 |
+
As KLUE-MRC has the same task format as SQuAD 2.0, this evaluation script uses the same metrics of SQuAD 2.0 (F1 and EM).
|
36 |
|
37 |
+
KLUE-MRC consists of 12,286 question paraphrasing, 7,931 multi-sentence reasoning, and 9,269 unanswerable questions. Totally, 29,313 examples are made with 22,343 documents and 23,717 passages.
|
|
|
|
|
38 |
|
39 |
+
## How to use
|
40 |
|
41 |
+
The metric takes two files or two lists - one representing model predictions and the other the references to compare them to.
|
42 |
|
43 |
+
*Predictions* : List of triple for question-answers to score with the following key-value pairs:
|
44 |
+
* `'id'`: the question-answer identification field of the question and answer pair
|
45 |
+
* `'prediction_text'` : the text of the answer
|
46 |
+
* `'no_answer_probability'` : the probability that the question has no answer
|
47 |
|
48 |
+
*References*: List of question-answers dictionaries with the following key-value pairs:
|
49 |
+
* `'id'`: id of the question-answer pair (see above),
|
50 |
+
* `'answers'`: a list of Dict {'text': text of the answer as a string}
|
51 |
+
* `'unanswerable'`: the boolean value indicating whether the question is answerable or not.
|
52 |
|
53 |
+
```python
|
54 |
+
from evaluate import load
|
55 |
+
klue_mrc_metric = load("ingyu/klue_mrc")
|
56 |
+
results = klue_mrc_metric.compute(predictions=predictions, references=references)
|
57 |
+
```
|
58 |
+
|
59 |
+
## Output values
|
60 |
+
|
61 |
+
This metric outputs a dictionary with 13 values:
|
62 |
+
* `'exact'`: Exact match (the normalized answer exactly match the gold answer) (see the `exact_match` metric (forthcoming))
|
63 |
+
* `'f1'`: The average F1-score of predicted tokens versus the gold answer (see the [F1 score](https://huggingface.co/metrics/f1) metric)
|
64 |
+
* `'total'`: Number of scores considered
|
65 |
+
* `'HasAns_exact'`: Exact match (the normalized answer exactly match the gold answer)
|
66 |
+
* `'HasAns_f1'`: The F-score of predicted tokens versus the gold answer
|
67 |
+
* `'HasAns_total'`: How many of the questions have answers
|
68 |
+
* `'NoAns_exact'`: Exact match (the normalized answer exactly match the gold answer)
|
69 |
+
* `'NoAns_f1'`: The F-score of predicted tokens versus the gold answer
|
70 |
+
* `'NoAns_total'`: How many of the questions have no answers
|
71 |
+
* `'best_exact'` : Best exact match (with varying threshold)
|
72 |
+
* `'best_exact_thresh'`: No-answer probability threshold associated to the best exact match
|
73 |
+
* `'best_f1'`: Best F1 score (with varying threshold)
|
74 |
+
* `'best_f1_thresh'`: No-answer probability threshold associated to the best F1
|
75 |
+
|
76 |
+
|
77 |
+
The range of `exact_match` is 0-100, where 0.0 means no answers were matched and 100.0 means all answers were matched.
|
78 |
+
|
79 |
+
The range of `f1` is 0-1 -- its lowest possible value is 0, if either the precision or the recall is 0, and its highest possible value is 1.0, which means perfect precision and recall.
|
80 |
+
|
81 |
+
The range of `total` depends on the length of predictions/references: its minimal value is 0, and maximal value is the total number of questions in the predictions and references.
|
82 |
+
|
83 |
+
## Example
|
84 |
+
|
85 |
+
```python
|
86 |
+
from evaluate import load
|
87 |
+
klue_mrc_metric = load("ingyu/klue_mrc")
|
88 |
+
predictions = [{'prediction_text': '2020', 'id': 'klue-mrc-v1_train_12311', 'no_answer_probability': 0.}]
|
89 |
+
references = [{'answers': {'answer_start': [ 38 ], 'text': [ '2020' ]}, 'id': 'klue-mrc-v1_train_12311'}]
|
90 |
+
results = klue_mrc_metric.compute(predictions=predictions, references=references)
|
91 |
+
results
|
92 |
+
{'exact': 100.0, 'f1': 100.0, 'total': 1, 'HasAns_exact': 100.0, 'HasAns_f1': 100.0, 'HasAns_total': 1, 'best_exact': 100.0, 'best_exact_thresh': 0.0, 'best_f1': 100.0, 'best_f1_thresh': 0.0}
|
93 |
+
```
|
94 |
+
|
95 |
+
## Limitations
|
96 |
+
This metric works only with the datasets in the same format as the [KLUE-MRC](https://huggingface.co/datasets/klue/viewer/mrc/train).
|
97 |
|
|
|
|
|
98 |
|
99 |
## Citation
|
|
|
100 |
|
101 |
+
```bibtex
|
102 |
+
@inproceedings{NEURIPS DATASETS AND BENCHMARKS2021_98dce83d,
|
103 |
+
author = {Park, Sungjoon and Moon, Jihyung and Kim, Sungdong and Cho, Won Ik and Han, Ji Yoon and Park, Jangwon and Song, Chisung and Kim, Junseong and Song, Youngsook and Oh, Taehwan and Lee, Joohong and Oh, Juhyun and Lyu, Sungwon and Jeong, Younghoon and Lee, Inkwon and Seo, Sangwoo and Lee, Dongjun and Kim, Hyunwoo and Lee, Myeonghwa and Jang, Seongbo and Do, Seungwon and Kim, Sunkyoung and Lim, Kyungtae and Lee, Jongwon and Park, Kyumin and Shin, Jamin and Kim, Seonghyun and Park, Lucy and Park, Lucy and Oh, Alice and Ha (NAVER AI Lab), Jung-Woo and Cho, Kyunghyun and Cho, Kyunghyun},
|
104 |
+
booktitle = {Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks},
|
105 |
+
editor = {J. Vanschoren and S. Yeung},
|
106 |
+
pages = {},
|
107 |
+
publisher = {Curran},
|
108 |
+
title = {KLUE: Korean Language Understanding Evaluation},
|
109 |
+
url = {https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/98dce83da57b0395e163467c9dae521b-Paper-round2.pdf},
|
110 |
+
volume = {1},
|
111 |
+
year = {2021}
|
112 |
+
}
|
113 |
+
```
|
114 |
+
|
115 |
+
## Further References
|
116 |
+
|
117 |
+
- [LM Eval Harness](https://github.com/EleutherAI/lm-evaluation-harness) leverages this scoring script for the evaluation of [KLUE-MRC](https://huggingface.co/datasets/klue/viewer/mrc/train).
|
118 |
+
- [The Stanford Question Answering Dataset: Background, Challenges, Progress (blog post)](https://rajpurkar.github.io/mlx/qa-and-squad/)
|
119 |
+
- [Hugging Face Course -- Question Answering](https://huggingface.co/course/chapter7/7)
|
compute_score.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Unofficial evaluation script for KLUE-MRC.
|
2 |
+
|
3 |
+
Please note that as KLUE-MRC has the same task format as SQuAD 2.0,
|
4 |
+
this evaluation script follows almost the same format as the official evaluation script for SQuAD 2.0.
|
5 |
+
"""
|
6 |
+
import argparse
|
7 |
+
import collections
|
8 |
+
import json
|
9 |
+
import os
|
10 |
+
import string
|
11 |
+
import sys
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
|
16 |
+
OPTS = None
|
17 |
+
|
18 |
+
|
19 |
+
def parse_args():
|
20 |
+
parser = argparse.ArgumentParser("Unofficial evaluation script for KLUE-MRC.")
|
21 |
+
parser.add_argument("data_file", metavar="data.json", help="Input data JSON file.")
|
22 |
+
parser.add_argument("pred_file", metavar="pred.json", help="Model predictions.")
|
23 |
+
parser.add_argument(
|
24 |
+
"--out-file", "-o", metavar="eval.json", help="Write accuracy metrics to file (default is stdout)."
|
25 |
+
)
|
26 |
+
parser.add_argument(
|
27 |
+
"--na-prob-file", "-n", metavar="na_prob.json", help="Model estimates of probability of no answer."
|
28 |
+
)
|
29 |
+
parser.add_argument(
|
30 |
+
"--na-prob-thresh",
|
31 |
+
"-t",
|
32 |
+
type=float,
|
33 |
+
default=1.0,
|
34 |
+
help='Predict "" if no-answer probability exceeds this (default = 1.0).',
|
35 |
+
)
|
36 |
+
parser.add_argument(
|
37 |
+
"--out-image-dir", "-p", metavar="out_images", default=None, help="Save precision-recall curves to directory."
|
38 |
+
)
|
39 |
+
parser.add_argument("--verbose", "-v", action="store_true")
|
40 |
+
if len(sys.argv) == 1:
|
41 |
+
parser.print_help()
|
42 |
+
sys.exit(1)
|
43 |
+
return parser.parse_args()
|
44 |
+
|
45 |
+
|
46 |
+
def make_qid_to_has_ans(dataset):
|
47 |
+
qid_to_has_ans = {}
|
48 |
+
for article in dataset:
|
49 |
+
for p in article["paragraphs"]:
|
50 |
+
for qa in p["qas"]:
|
51 |
+
qid_to_has_ans[qa["id"]] = not bool(qa["unanswerable"])
|
52 |
+
return qid_to_has_ans
|
53 |
+
|
54 |
+
|
55 |
+
def normalize_answer(s):
|
56 |
+
"""Lower text and remove punctuation, articles and extra whitespace."""
|
57 |
+
|
58 |
+
def white_space_fix(text):
|
59 |
+
return " ".join(text.split())
|
60 |
+
|
61 |
+
def remove_punc(text):
|
62 |
+
exclude = set(string.punctuation)
|
63 |
+
return "".join(ch for ch in text if ch not in exclude)
|
64 |
+
|
65 |
+
def lower(text):
|
66 |
+
return text.lower()
|
67 |
+
|
68 |
+
return white_space_fix(remove_punc(lower(s)))
|
69 |
+
|
70 |
+
|
71 |
+
def get_tokens(s):
|
72 |
+
if not s:
|
73 |
+
return []
|
74 |
+
return normalize_answer(s).split()
|
75 |
+
|
76 |
+
|
77 |
+
def compute_exact(a_gold, a_pred):
|
78 |
+
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
|
79 |
+
|
80 |
+
|
81 |
+
def compute_f1(a_gold, a_pred):
|
82 |
+
gold_toks = get_tokens(a_gold)
|
83 |
+
pred_toks = get_tokens(a_pred)
|
84 |
+
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
|
85 |
+
num_same = sum(common.values())
|
86 |
+
if len(gold_toks) == 0 or len(pred_toks) == 0:
|
87 |
+
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
|
88 |
+
return int(gold_toks == pred_toks)
|
89 |
+
if num_same == 0:
|
90 |
+
return 0
|
91 |
+
precision = 1.0 * num_same / len(pred_toks)
|
92 |
+
recall = 1.0 * num_same / len(gold_toks)
|
93 |
+
f1 = (2 * precision * recall) / (precision + recall)
|
94 |
+
return f1
|
95 |
+
|
96 |
+
|
97 |
+
def get_raw_scores(dataset, preds):
|
98 |
+
exact_scores = {}
|
99 |
+
f1_scores = {}
|
100 |
+
for article in dataset:
|
101 |
+
for p in article["paragraphs"]:
|
102 |
+
for qa in p["qas"]:
|
103 |
+
qid = qa["id"]
|
104 |
+
gold_answers = [t for t in qa["answers"]["text"] if normalize_answer(t)]
|
105 |
+
if qa["unanswerable"]:
|
106 |
+
# For unanswerable questions, only correct answer is empty string
|
107 |
+
gold_answers = [""]
|
108 |
+
if qid not in preds:
|
109 |
+
print(f"Missing prediction for {qid}")
|
110 |
+
continue
|
111 |
+
a_pred = preds[qid]
|
112 |
+
# Take max over all gold answers
|
113 |
+
exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers)
|
114 |
+
f1_scores[qid] = max(compute_f1(a, a_pred) for a in gold_answers)
|
115 |
+
return exact_scores, f1_scores
|
116 |
+
|
117 |
+
|
118 |
+
def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh):
|
119 |
+
new_scores = {}
|
120 |
+
for qid, s in scores.items():
|
121 |
+
pred_na = na_probs[qid] > na_prob_thresh
|
122 |
+
if pred_na:
|
123 |
+
new_scores[qid] = float(not qid_to_has_ans[qid])
|
124 |
+
else:
|
125 |
+
new_scores[qid] = s
|
126 |
+
return new_scores
|
127 |
+
|
128 |
+
|
129 |
+
def make_eval_dict(exact_scores, f1_scores, qid_list=None):
|
130 |
+
if not qid_list:
|
131 |
+
total = len(exact_scores)
|
132 |
+
return collections.OrderedDict(
|
133 |
+
[
|
134 |
+
("exact", 100.0 * sum(exact_scores.values()) / total),
|
135 |
+
("f1", 100.0 * sum(f1_scores.values()) / total),
|
136 |
+
("total", total),
|
137 |
+
]
|
138 |
+
)
|
139 |
+
else:
|
140 |
+
total = len(qid_list)
|
141 |
+
return collections.OrderedDict(
|
142 |
+
[
|
143 |
+
("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total),
|
144 |
+
("f1", 100.0 * sum(f1_scores[k] for k in qid_list) / total),
|
145 |
+
("total", total),
|
146 |
+
]
|
147 |
+
)
|
148 |
+
|
149 |
+
|
150 |
+
def merge_eval(main_eval, new_eval, prefix):
|
151 |
+
for k in new_eval:
|
152 |
+
main_eval[f"{prefix}_{k}"] = new_eval[k]
|
153 |
+
|
154 |
+
|
155 |
+
def plot_pr_curve(precisions, recalls, out_image, title):
|
156 |
+
plt.step(recalls, precisions, color="b", alpha=0.2, where="post")
|
157 |
+
plt.fill_between(recalls, precisions, step="post", alpha=0.2, color="b")
|
158 |
+
plt.xlabel("Recall")
|
159 |
+
plt.ylabel("Precision")
|
160 |
+
plt.xlim([0.0, 1.05])
|
161 |
+
plt.ylim([0.0, 1.05])
|
162 |
+
plt.title(title)
|
163 |
+
plt.savefig(out_image)
|
164 |
+
plt.clf()
|
165 |
+
|
166 |
+
|
167 |
+
def make_precision_recall_eval(scores, na_probs, num_true_pos, qid_to_has_ans, out_image=None, title=None):
|
168 |
+
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
|
169 |
+
true_pos = 0.0
|
170 |
+
cur_p = 1.0
|
171 |
+
cur_r = 0.0
|
172 |
+
precisions = [1.0]
|
173 |
+
recalls = [0.0]
|
174 |
+
avg_prec = 0.0
|
175 |
+
for i, qid in enumerate(qid_list):
|
176 |
+
if qid_to_has_ans[qid]:
|
177 |
+
true_pos += scores[qid]
|
178 |
+
cur_p = true_pos / float(i + 1)
|
179 |
+
cur_r = true_pos / float(num_true_pos)
|
180 |
+
if i == len(qid_list) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
|
181 |
+
# i.e., if we can put a threshold after this point
|
182 |
+
avg_prec += cur_p * (cur_r - recalls[-1])
|
183 |
+
precisions.append(cur_p)
|
184 |
+
recalls.append(cur_r)
|
185 |
+
if out_image:
|
186 |
+
plot_pr_curve(precisions, recalls, out_image, title)
|
187 |
+
return {"ap": 100.0 * avg_prec}
|
188 |
+
|
189 |
+
|
190 |
+
def run_precision_recall_analysis(main_eval, exact_raw, f1_raw, na_probs, qid_to_has_ans, out_image_dir):
|
191 |
+
if out_image_dir and not os.path.exists(out_image_dir):
|
192 |
+
os.makedirs(out_image_dir)
|
193 |
+
num_true_pos = sum(1 for v in qid_to_has_ans.values() if v)
|
194 |
+
if num_true_pos == 0:
|
195 |
+
return
|
196 |
+
pr_exact = make_precision_recall_eval(
|
197 |
+
exact_raw,
|
198 |
+
na_probs,
|
199 |
+
num_true_pos,
|
200 |
+
qid_to_has_ans,
|
201 |
+
out_image=os.path.join(out_image_dir, "pr_exact.png"),
|
202 |
+
title="Precision-Recall curve for Exact Match score",
|
203 |
+
)
|
204 |
+
pr_f1 = make_precision_recall_eval(
|
205 |
+
f1_raw,
|
206 |
+
na_probs,
|
207 |
+
num_true_pos,
|
208 |
+
qid_to_has_ans,
|
209 |
+
out_image=os.path.join(out_image_dir, "pr_f1.png"),
|
210 |
+
title="Precision-Recall curve for F1 score",
|
211 |
+
)
|
212 |
+
oracle_scores = {k: float(v) for k, v in qid_to_has_ans.items()}
|
213 |
+
pr_oracle = make_precision_recall_eval(
|
214 |
+
oracle_scores,
|
215 |
+
na_probs,
|
216 |
+
num_true_pos,
|
217 |
+
qid_to_has_ans,
|
218 |
+
out_image=os.path.join(out_image_dir, "pr_oracle.png"),
|
219 |
+
title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)",
|
220 |
+
)
|
221 |
+
merge_eval(main_eval, pr_exact, "pr_exact")
|
222 |
+
merge_eval(main_eval, pr_f1, "pr_f1")
|
223 |
+
merge_eval(main_eval, pr_oracle, "pr_oracle")
|
224 |
+
|
225 |
+
|
226 |
+
def histogram_na_prob(na_probs, qid_list, image_dir, name):
|
227 |
+
if not qid_list:
|
228 |
+
return
|
229 |
+
x = [na_probs[k] for k in qid_list]
|
230 |
+
weights = np.ones_like(x) / float(len(x))
|
231 |
+
plt.hist(x, weights=weights, bins=20, range=(0.0, 1.0))
|
232 |
+
plt.xlabel("Model probability of no-answer")
|
233 |
+
plt.ylabel("Proportion of dataset")
|
234 |
+
plt.title(f"Histogram of no-answer probability: {name}")
|
235 |
+
plt.savefig(os.path.join(image_dir, f"na_prob_hist_{name}.png"))
|
236 |
+
plt.clf()
|
237 |
+
|
238 |
+
|
239 |
+
def find_best_thresh(preds, scores, na_probs, qid_to_has_ans):
|
240 |
+
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
|
241 |
+
cur_score = num_no_ans
|
242 |
+
best_score = cur_score
|
243 |
+
best_thresh = 0.0
|
244 |
+
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
|
245 |
+
for i, qid in enumerate(qid_list):
|
246 |
+
if qid not in scores:
|
247 |
+
continue
|
248 |
+
if qid_to_has_ans[qid]:
|
249 |
+
diff = scores[qid]
|
250 |
+
else:
|
251 |
+
if preds[qid]:
|
252 |
+
diff = -1
|
253 |
+
else:
|
254 |
+
diff = 0
|
255 |
+
cur_score += diff
|
256 |
+
if cur_score > best_score:
|
257 |
+
best_score = cur_score
|
258 |
+
best_thresh = na_probs[qid]
|
259 |
+
return 100.0 * best_score / len(scores), best_thresh
|
260 |
+
|
261 |
+
|
262 |
+
def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
|
263 |
+
best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans)
|
264 |
+
best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans)
|
265 |
+
main_eval["best_exact"] = best_exact
|
266 |
+
main_eval["best_exact_thresh"] = exact_thresh
|
267 |
+
main_eval["best_f1"] = best_f1
|
268 |
+
main_eval["best_f1_thresh"] = f1_thresh
|
269 |
+
|
270 |
+
|
271 |
+
def main():
|
272 |
+
with open(OPTS.data_file) as f:
|
273 |
+
dataset_json = json.load(f)
|
274 |
+
dataset = dataset_json["data"]
|
275 |
+
with open(OPTS.pred_file) as f:
|
276 |
+
preds = json.load(f)
|
277 |
+
if OPTS.na_prob_file:
|
278 |
+
with open(OPTS.na_prob_file) as f:
|
279 |
+
na_probs = json.load(f)
|
280 |
+
else:
|
281 |
+
na_probs = {k: 0.0 for k in preds}
|
282 |
+
qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False
|
283 |
+
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
|
284 |
+
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
|
285 |
+
exact_raw, f1_raw = get_raw_scores(dataset, preds)
|
286 |
+
exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans, OPTS.na_prob_thresh)
|
287 |
+
f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans, OPTS.na_prob_thresh)
|
288 |
+
out_eval = make_eval_dict(exact_thresh, f1_thresh)
|
289 |
+
if has_ans_qids:
|
290 |
+
has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids)
|
291 |
+
merge_eval(out_eval, has_ans_eval, "HasAns")
|
292 |
+
if no_ans_qids:
|
293 |
+
no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids)
|
294 |
+
merge_eval(out_eval, no_ans_eval, "NoAns")
|
295 |
+
if OPTS.na_prob_file:
|
296 |
+
find_all_best_thresh(out_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans)
|
297 |
+
if OPTS.na_prob_file and OPTS.out_image_dir:
|
298 |
+
run_precision_recall_analysis(out_eval, exact_raw, f1_raw, na_probs, qid_to_has_ans, OPTS.out_image_dir)
|
299 |
+
histogram_na_prob(na_probs, has_ans_qids, OPTS.out_image_dir, "hasAns")
|
300 |
+
histogram_na_prob(na_probs, no_ans_qids, OPTS.out_image_dir, "noAns")
|
301 |
+
if OPTS.out_file:
|
302 |
+
with open(OPTS.out_file, "w") as f:
|
303 |
+
json.dump(out_eval, f)
|
304 |
+
else:
|
305 |
+
print(json.dumps(out_eval, indent=2))
|
306 |
+
|
307 |
+
|
308 |
+
if __name__ == "__main__":
|
309 |
+
OPTS = parse_args()
|
310 |
+
if OPTS.out_image_dir:
|
311 |
+
import matplotlib
|
312 |
+
|
313 |
+
matplotlib.use("Agg")
|
314 |
+
import matplotlib.pyplot as plt
|
315 |
+
main()
|
klue_mrc.py
CHANGED
@@ -11,85 +11,132 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
"""
|
15 |
|
16 |
-
import evaluate
|
17 |
import datasets
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
26 |
}
|
27 |
"""
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
34 |
|
35 |
-
# TODO: Add description of the arguments of the module here
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
-
|
38 |
Args:
|
39 |
-
predictions:
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
Returns:
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
Examples:
|
47 |
-
Examples should be written in doctest format, and should illustrate how
|
48 |
-
to use the function.
|
49 |
|
50 |
-
>>>
|
51 |
-
>>>
|
|
|
|
|
52 |
>>> print(results)
|
53 |
-
{'
|
54 |
"""
|
55 |
|
56 |
-
# TODO: Define external resources urls if needed
|
57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
58 |
-
|
59 |
-
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
61 |
class KLUEMRC(evaluate.Metric):
|
62 |
-
"""TODO: Short description of my evaluation module."""
|
63 |
-
|
64 |
def _info(self):
|
65 |
-
|
66 |
-
return evaluate.MetricInfo(
|
67 |
-
# This is the description that will appear on the modules page.
|
68 |
-
module_type="metric",
|
69 |
description=_DESCRIPTION,
|
70 |
citation=_CITATION,
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
)
|
83 |
|
84 |
-
def
|
85 |
-
""
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
""" KLUE-MRC metric. """
|
15 |
|
|
|
16 |
import datasets
|
17 |
|
18 |
+
import evaluate
|
19 |
+
|
20 |
+
from .compute_score import (
|
21 |
+
apply_no_ans_threshold,
|
22 |
+
find_all_best_thresh,
|
23 |
+
get_raw_scores,
|
24 |
+
make_eval_dict,
|
25 |
+
make_qid_to_has_ans,
|
26 |
+
merge_eval,
|
27 |
+
)
|
28 |
+
|
29 |
|
30 |
+
_CITATION = """
|
31 |
+
@inproceedings{NEURIPS DATASETS AND BENCHMARKS2021_98dce83d,
|
32 |
+
author = {Park, Sungjoon and Moon, Jihyung and Kim, Sungdong and Cho, Won Ik and Han, Ji Yoon and Park, Jangwon and Song, Chisung and Kim, Junseong and Song, Youngsook and Oh, Taehwan and Lee, Joohong and Oh, Juhyun and Lyu, Sungwon and Jeong, Younghoon and Lee, Inkwon and Seo, Sangwoo and Lee, Dongjun and Kim, Hyunwoo and Lee, Myeonghwa and Jang, Seongbo and Do, Seungwon and Kim, Sunkyoung and Lim, Kyungtae and Lee, Jongwon and Park, Kyumin and Shin, Jamin and Kim, Seonghyun and Park, Lucy and Park, Lucy and Oh, Alice and Ha (NAVER AI Lab), Jung-Woo and Cho, Kyunghyun and Cho, Kyunghyun},
|
33 |
+
booktitle = {Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks},
|
34 |
+
editor = {J. Vanschoren and S. Yeung},
|
35 |
+
pages = {},
|
36 |
+
publisher = {Curran},
|
37 |
+
title = {KLUE: Korean Language Understanding Evaluation},
|
38 |
+
url = {https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/98dce83da57b0395e163467c9dae521b-Paper-round2.pdf},
|
39 |
+
volume = {1},
|
40 |
+
year = {2021}
|
41 |
}
|
42 |
"""
|
43 |
|
44 |
+
_DESCRIPTION = """
|
45 |
+
This metric wrap the unofficial scoring script for Machine Machine Reading Comprehension task of
|
46 |
+
Korean Language Understanding Evaluation (KLUE-MRC).
|
47 |
+
|
48 |
+
KLUE-MRC is a Korean reading comprehension dataset consisting of questionswhere the answer to every
|
49 |
+
question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
|
50 |
+
|
51 |
+
As KLUE-MRC has the same task format as SQuAD 2.0, this evaluation script uses
|
52 |
+
the same metrics of SQuAD 2.0 (F1 and EM).
|
53 |
|
54 |
+
KLUE-MRC consists of 12,286 question paraphrasing, 7,931 multi-sentence reasoning, and 9,269 unanswerable questions.
|
55 |
+
Totally, 29,313 examples are made with 22,343 documents and 23,717 passages.
|
56 |
+
"""
|
57 |
|
|
|
58 |
_KWARGS_DESCRIPTION = """
|
59 |
+
Computes KLUE-MRC scores (F1 and EM).
|
60 |
Args:
|
61 |
+
predictions: List of triple for question-answers to score with the following elements:
|
62 |
+
- the question-answer 'id' field as given in the references (see below)
|
63 |
+
- the text of the answer
|
64 |
+
- the probability that the question has no answer
|
65 |
+
references: List of question-answers dictionaries with the following key-values:
|
66 |
+
- 'id': id of the question-answer pair (see above),
|
67 |
+
- 'answers': a list of Dict {'text': text of the answer as a string}
|
68 |
+
no_answer_threshold: float
|
69 |
+
Probability threshold to decide that a question has no answer.
|
70 |
Returns:
|
71 |
+
'exact': Exact match (the normalized answer exactly match the gold answer)
|
72 |
+
'f1': The F-score of predicted tokens versus the gold answer
|
73 |
+
'total': Number of score considered
|
74 |
+
'HasAns_exact': Exact match (the normalized answer exactly match the gold answer)
|
75 |
+
'HasAns_f1': The F-score of predicted tokens versus the gold answer
|
76 |
+
'HasAns_total': Number of score considered
|
77 |
+
'NoAns_exact': Exact match (the normalized answer exactly match the gold answer)
|
78 |
+
'NoAns_f1': The F-score of predicted tokens versus the gold answer
|
79 |
+
'NoAns_total': Number of score considered
|
80 |
+
'best_exact': Best exact match (with varying threshold)
|
81 |
+
'best_exact_thresh': No-answer probability threshold associated to the best exact match
|
82 |
+
'best_f1': Best F1 (with varying threshold)
|
83 |
+
'best_f1_thresh': No-answer probability threshold associated to the best F1
|
84 |
Examples:
|
|
|
|
|
85 |
|
86 |
+
>>> predictions = [{'prediction_text': '2020', 'id': 'klue-mrc-v1_train_12311', 'no_answer_probability': 0.}]
|
87 |
+
>>> references = [{'id': 'klue-mrc-v1_train_12311', 'answers': { "answer_start": [ 38 ], "text": [ "2020" ] }, 'unanswerable': False}]
|
88 |
+
>>> klue_mrc_metric = evaluate.load("ingyu/klue_mrc")
|
89 |
+
>>> results = klue_mrc_metric.compute(predictions=predictions, references=references)
|
90 |
>>> print(results)
|
91 |
+
{'exact': 100.0, 'f1': 100.0, 'total': 1, 'HasAns_exact': 100.0, 'HasAns_f1': 100.0, 'HasAns_total': 1, 'best_exact': 100.0, 'best_exact_thresh': 0.0, 'best_f1': 100.0, 'best_f1_thresh': 0.0}
|
92 |
"""
|
93 |
|
|
|
|
|
|
|
|
|
94 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
95 |
class KLUEMRC(evaluate.Metric):
|
|
|
|
|
96 |
def _info(self):
|
97 |
+
return datasets.MetricInfo(
|
|
|
|
|
|
|
98 |
description=_DESCRIPTION,
|
99 |
citation=_CITATION,
|
100 |
inputs_description=_KWARGS_DESCRIPTION,
|
101 |
+
features=datasets.Features(
|
102 |
+
{
|
103 |
+
"predictions": {
|
104 |
+
"id": datasets.Value("string"),
|
105 |
+
"prediction_text": datasets.Value("string"),
|
106 |
+
"no_answer_probability": datasets.Value("float32"),
|
107 |
+
},
|
108 |
+
"references": {
|
109 |
+
"id": datasets.Value("string"),
|
110 |
+
"answers": datasets.features.Sequence(
|
111 |
+
{"text": datasets.Value("string"), "answer_start": datasets.Value("int32")}
|
112 |
+
),
|
113 |
+
"unanswerable": datasets.Value("bool"),
|
114 |
+
},
|
115 |
+
}
|
116 |
+
),
|
117 |
+
codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"],
|
118 |
+
reference_urls=["https://klue-benchmark.com/tasks/72/overview/description"],
|
119 |
)
|
120 |
|
121 |
+
def _compute(self, predictions, references, no_answer_threshold=1.0):
|
122 |
+
no_answer_probabilities = {p["id"]: p["no_answer_probability"] for p in predictions}
|
123 |
+
dataset = [{"paragraphs": [{"qas": references}]}]
|
124 |
+
predictions = {p["id"]: p["prediction_text"] for p in predictions}
|
125 |
+
|
126 |
+
qid_to_has_ans = make_qid_to_has_ans(dataset) # maps qid to True/False
|
127 |
+
has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
|
128 |
+
no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
|
129 |
+
|
130 |
+
exact_raw, f1_raw = get_raw_scores(dataset, predictions)
|
131 |
+
exact_thresh = apply_no_ans_threshold(exact_raw, no_answer_probabilities, qid_to_has_ans, no_answer_threshold)
|
132 |
+
f1_thresh = apply_no_ans_threshold(f1_raw, no_answer_probabilities, qid_to_has_ans, no_answer_threshold)
|
133 |
+
out_eval = make_eval_dict(exact_thresh, f1_thresh)
|
134 |
+
|
135 |
+
if has_ans_qids:
|
136 |
+
has_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=has_ans_qids)
|
137 |
+
merge_eval(out_eval, has_ans_eval, "HasAns")
|
138 |
+
if no_ans_qids:
|
139 |
+
no_ans_eval = make_eval_dict(exact_thresh, f1_thresh, qid_list=no_ans_qids)
|
140 |
+
merge_eval(out_eval, no_ans_eval, "NoAns")
|
141 |
+
find_all_best_thresh(out_eval, predictions, exact_raw, f1_raw, no_answer_probabilities, qid_to_has_ans)
|
142 |
+
return dict(out_eval)
|
tests.py
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
test_cases = [
|
2 |
-
{
|
3 |
-
"predictions": [0, 0],
|
4 |
-
"references": [1, 1],
|
5 |
-
"result": {"metric_score": 0}
|
6 |
-
},
|
7 |
-
{
|
8 |
-
"predictions": [1, 1],
|
9 |
-
"references": [1, 1],
|
10 |
-
"result": {"metric_score": 1}
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"predictions": [1, 0],
|
14 |
-
"references": [1, 1],
|
15 |
-
"result": {"metric_score": 0.5}
|
16 |
-
}
|
17 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|